The benefit of combinations of oximes for the ability of antidotal treatment to counteract sarin-induced brain damage in rats
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29954446
PubMed Central
PMC6022407
DOI
10.1186/s40360-018-0227-0
PII: 10.1186/s40360-018-0227-0
Knihovny.cz E-zdroje
- Klíčová slova
- FluoraJadeB, HI-6, Histopathology, K203, Rats, Sarin, TUNEL, Trimedoxime,
- MeSH
- antidota terapeutické užití MeSH
- kombinovaná farmakoterapie MeSH
- neurotoxické syndromy farmakoterapie MeSH
- oximy terapeutické užití MeSH
- potkani Wistar MeSH
- sarin otrava MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antidota MeSH
- oximy MeSH
- sarin MeSH
BACKGROUND: The aim of our study was to compare the ability of two combinations of oximes (HI-6 + trimedoxime and HI-6 + K203) with atropine to counteract acute sarin-induced brain damage with the efficacy of antidotal treatment involving single oxime (HI-6) and atropin using in vivo methods. METHODS: Brain damage and neuroprotective effects of antidotal treatment were evaluated in rats poisoned with sarin at a sublethal dose (108 μg/kg i.m.; 90% LD50) using histopathological, Fluoro-Jade B and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis 24 h after sarin administration. RESULTS: Both combinations of oximes reduce the number of rats that died before the end of experiment compared to non-treated sarin poisoning and sarin poisoning treated with HI-6 and atropine. In the case of treatment of sarin poisoning with HI-6 in combination with K203, all rats survived till the end of experiment. HI-6 with atropine was able to reduce sarin-induced brain damage, however, both combinations were slightly more effective. CONCLUSIONS: The oxime HI-6 in combination with K203 and atropine seems to be the most effective. Thus, both tested oxime combinations bring a small benefit in elimination of acute sarin-induced brain damage compared to single oxime antidotal therapy.
Biomedical Research Center Uiversity Hospital Hradec Kralove Hradec Kralove Czech Republic
Department of Neurology University Hospital Hradec Kralove Hradec Kralove Czech Republic
Zobrazit více v PubMed
Antonijevic E, Musilek K, Kuca K, Djukic-Cosic D, Vucinic S, Antonijevic B. Therapeutic and reactivating efficacy of oximes K027 and K203 against a direct acetylcholinesterase inhibitor. Neurotoxicology. 2016;55:33–39. doi: 10.1016/j.neuro.2016.05.006. PubMed DOI
Baille V, Clarke PG, Brochier G, Dorandeu F, Verna JM, Four E, Lallement G, Carpentier P. Soman-induced convulsions: the neuropathology revisited. Toxicology. 2005;215:1–24. doi: 10.1016/j.tox.2005.05.028. PubMed DOI
Ben-Ari Y, Zigmond RE, Shute CC, Lewis PR. Regional distribution of choline acetyltransferase and acetylcholinesterase within the amygdaloid complex and stria terminalis system. Brain Res. 1977;120:435–444. doi: 10.1016/0006-8993(77)90397-3. PubMed DOI
Brown MA, Brix KA. Review of health consequences from high-, intermediate- and low-level exposure to organophosphorus nerve agents. J Appl Toxicol. 1998;18:393–408. doi: 10.1002/(SICI)1099-1263(199811/12)18:6<393::AID-JAT528>3.0.CO;2-0. PubMed DOI
Cayre M, Canoll P, Goldman JE. Cell migration in the normal and pathological postnatal mammalian brain. Prog Neurobiol. 2009;88:41–63. doi: 10.1016/j.pneurobio.2009.02.001. PubMed DOI PMC
Chen Y. Organophosphate-induced brain damage: mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies. Neurotoxicology. 2012;33:391–400. doi: 10.1016/j.neuro.2012.03.011. PubMed DOI
Clement JG. Central activity of acetylcholinesterase oxime reactivators. Toxicol Appl Pharmacol. 1992;112:104–109. doi: 10.1016/0041-008X(92)90285-Z. PubMed DOI
Geoghegan J, Tong JL. Chemical warfare agents. Contin Educ Anaest Crit Care Pain. 2006;6:230–234. doi: 10.1093/bjaceaccp/mkl052. DOI
Ito Y, Shibata MA, Kusakabe K, Otsuki Y. Method of specific detection of apoptosis using formamide-induced DNA denaturation assay. J Histochem Cytochem. 2006;54:683–692. doi: 10.1369/jhc.5A6799.2006. PubMed DOI
Joosen MJ, van der Schans MJ, van Dijk CG, Kuijpers WC, Wortelboer HM, van Helden HP. Increasing oxime efficacy by blood-brain barrier modulation. Toxicol Lett. 2011;206:67–71. doi: 10.1016/j.toxlet.2011.05.231. PubMed DOI
Jun D, Kuca K, Stodulka P, Koleckar V, Dolezal B, Simon P, Veverka M. HPLC analysis of HI-6 dichloride and dimethanosulfonate – antidotes against nerve agents and organophosphorus pesticides. Anal Lett. 2007;40:2783–2787. doi: 10.1080/00032710701588531. DOI
Jun D, Musilova L, Musilek K, Kuca K. In vitro ability of currently available oximes to reactivate organophosphate pesticide-inhibited human acetylcholinesterase and butyrylcholinesterase. Int J Mol Sci. 2011;12:2077–2087. doi: 10.3390/ijms12032077. PubMed DOI PMC
Kadar T, Shapira S, Cohen G, Sahar R, Alkalay D, Raveh L. Sarin-induced neuropathology in rats. Hum Exp Toxicol. 1995;14:252–259. doi: 10.1177/096032719501400304. PubMed DOI
Kalász H, Nurulain SM, Veress G, Antus S, Darvas F, Adeghate E, Adem A, Hashemi F, Tekes K. Mini review on blood-brain barrier penetration of pyridinium aldoximes. J Appl Toxicol. 2015;35:116–123. doi: 10.1002/jat.3048. PubMed DOI
Kaler S, Dhar P, Bhattacharya A, Mehra RD. Preliminary morphological and immunohistochemical changes in rat hippocampus following postnatal exposure to sodium arsenite. Toxicol Int. 2013;20:160–169. doi: 10.4103/0971-6580.117259. PubMed DOI PMC
Karasova JZ, Pohanka M, Musilek K, Zemek F, Kuca K. Passive diffusion of acetylcholinesterase oxime reactivators through the blood-brain barrier: influence of molecular structure. Toxicol in Vitro. 2010;24:1838–1844. doi: 10.1016/j.tiv.2010.05.009. PubMed DOI
Kassa J, Karasova J, Bajgar J, Kuca K, Musilek K. A comparison of the therapeutic and reactivating efficacy of newly developed bispyridinium compounds (K206, K269) with currently available oximes against tabun in rats and mice. J Enzyme Inhib Med Chem. 2008;23:776–780. doi: 10.1080/14756360701809902. PubMed DOI
Kassa J, Karasova JZ, Sepsova V, Caisberger F. The benefit of combinations of oximes for the reactivating and therapeutic efficacy of antidotal treatment of sarin poisoning in rats and mice. Basic Clin Pharmacol Toxicol. 2011;109:30–34. doi: 10.1111/j.1742-7843.2011.00678.x. PubMed DOI
Kassa J, Kunesova G. The benefit of combination of oximes for the neuroprotective efficacy of antidotal treatment of sarin-poisoned rats. Toxicol Mech Methods. 2012;22:260–267. doi: 10.3109/15376516.2011.640717. PubMed DOI
Kassa J, Misik J, Hatlapatkova J, Zdarova Karasova J, Sepsova V, Caisberger F, Pejchal J. The evaluation of the reactivating and neuroprotective efficacy of two newly prepared Bispyridinium oximes (K305, K307) in Tabun-poisoned rats-a comparison with Trimedoxime and the oxime K203. Molecules. 2017;22:1152. doi: 10.3390/molecules22071152. PubMed DOI PMC
Kassa J, Sepsova V, Matouskova L, Horova A, Musilek K. A comparison of the reactivating and therapeutic efficacy of two novel bispyridinium oximes (K727, K733) with the oxime HI-6 and obidoxime in sarin-poisoned rats and mice. Toxicol Mech Methods. 2015;25:229–233. doi: 10.3109/15376516.2015.1036333. PubMed DOI
Kassa J, Sepsova V, Tumova M, Horova A, Musilek K. A comparison of the reactivating and therapeutic efficacy of two newly developed oximes (k727 and k733) with oxime k203 and trimedoxime in tabun-poisoned rats and mice. Basic Clin Pharmacol Toxicol. 2015;116:367–371. doi: 10.1111/bcpt.12327. PubMed DOI
Krinke GJ. Neuronal vacuolation. Toxicol Pathol. 2011;39:1140. doi: 10.1177/0192623311422920. PubMed DOI
Kuca K, Hrabinova M, Jun D, Musilek K, Penhaker M, Krejcar O, Soukup O. Universality of oxime K203 for reactivation of nerve agent-inhibited AChE. Med Chem. 2015;11:683–686. doi: 10.2174/1573406411666150407154204. PubMed DOI
Labat-Moleur F, Guillermet C, Lorimier P, Robert C, Lantuejoul S, Brambilla E, Negoescu A. TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J Histochem Cytochem. 1998;46:327–334. doi: 10.1177/002215549804600306. PubMed DOI
Lundy PM, Hansen AS, Hand BT, Boulet CA. Comparison of several oximes against poisoning by soman, tabun and GF. Toxicology. 1992;72:99–105. doi: 10.1016/0300-483X(92)90089-W. PubMed DOI
Lysakowski A, Wainer BH, Bruce G, Hersh LB. An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex. Neuroscience. 1989;28:291–336. doi: 10.1016/0306-4522(89)90180-2. PubMed DOI
McDonough JH, Jr, Shih TM. Neuropharmacological mechanisms of nerve agent-induced seizure and neuropathology. Neurosci Biobehav Rev. 1997;21:559–579. doi: 10.1016/S0149-7634(96)00050-4. PubMed DOI
Mesulam MM, Mufson EJ, Wainer BH, Levey AI. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6) Neuroscience. 1983;10:1185–1201. doi: 10.1016/0306-4522(83)90108-2. PubMed DOI
Musilek K, Holas O, Jun D, Dohnal V, Gunn-Moore F, Opletalova V, Dolezal M, Kuca K. Monooxime reactivators of acetylcholinesterase with (E)-but-2-ene linker: preparation and reactivation of tabun- and paraoxon-inhibited acetylcholinesterase. Bioorg Med Chem. 2007;15:6733–6741. doi: 10.1016/j.bmc.2007.08.002. PubMed DOI
Musilova L, Kuca K, Jung YS, Jun D. In vitro oxime-assisted reactivation of paraoxon-inhibited human acetylcholinesterase and butyrylcholinesterase. Clin Toxicol (Phila) 2009;47:545–550. doi: 10.1080/15563650903058914. PubMed DOI
Okumura T, Seto Y, Fuse A. Countermeasures against chemical terrorism in Japan. Forensic Sci Int. 2013;227:2–6. doi: 10.1016/j.forsciint.2012.11.008. PubMed DOI
Paxinos G, Watson C. The rat brain in stereotactic coordinates. 4. San Diego: Academic Press; 2006.
Pejchal J, Novotny J, Marak V, Osterreicher J, Tichy A, Vavrova J, Sinkorova Z, Zarybnicka L, Novotna E, Chladek J, Babicova A, Kubelkova K, Kuca K. Activation of p38 MAPK and expression of TGF-ß1 in rat colon enterocytes after whole body γ-irradiation. Int J Radiat Biol. 2012;88:348–358. doi: 10.3109/09553002.2012.654044. PubMed DOI
Riudavets MA, Aronica-Pollak P, Troncoso JC. Pseudolaminar necrosis in cyanide intoxication: a neuropathology case report. Am J Forensic Med Pathol. 2005;26:189–191. doi: 10.1097/01.paf.0000176277.15834.d3. PubMed DOI
Rosman Y, Eisenkraft A, Milk N, Shiyovich A, Ophir N, Shrot S, Kreiss Y, Kassirer M. Lessons learned from the Syrian sarin attack: evaluation of a clinical syndrome through social media. Ann Intern Med. 2014;160:644–648. doi: 10.7326/M13-2799. PubMed DOI
Schmued LC, Albertson C, Slikker W., Jr Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res. 1997;751:37–46. doi: 10.1016/S0006-8993(96)01387-X. PubMed DOI
Valente T, Domínguez MI, Bellmann A, Journot L, Ferrer I, Auladell C. Zac1 is up-regulated in neural cells of the limbic system of mouse brain following seizures that provoke strong cell activation. Neuroscience. 2004;128:323–336. doi: 10.1016/j.neuroscience.2004.06.056. PubMed DOI
Wilhelm CM, Snider TH, Babin MC, Jett DA, Platoff GE, Jr, Yeung DT. A comprehensive evaluation of the efficacy of leading oxime therapies in Guinea pigs exposed to organophosphorus chemical warfare agents or pesticides. Toxicol Appl Pharmacol. 2014;281:254–265. doi: 10.1016/j.taap.2014.10.009. PubMed DOI PMC
Wohlsein P, Deschl U, Baumgärtner W. Nonlesions, unusual cell types, and postmortem artifacts in the central nervous system of domestic animals. Vet Pathol. 2013;50:122–143. doi: 10.1177/0300985812450719. PubMed DOI
Worek F, Aurbek N, Thiermann H. Reactivation of organophosphate-inhibited human AChE by combinations of obidoxime and HI 6 in vitro. J Appl Toxicol. 2007;27:582–588. doi: 10.1002/jat.1241. PubMed DOI