The Evaluation of the Reactivating and Neuroprotective Efficacy of Two Newly Prepared Bispyridinium Oximes (K305, K307) in Tabun-Poisoned Rats-A Comparison with Trimedoxime and the Oxime K203
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
PubMed
28696367
PubMed Central
PMC6152392
DOI
10.3390/molecules22071152
PII: molecules22071152
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, functional observational battery, histopathology, neurotoxicity, oximes, rats, tabun,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- atropin terapeutické užití MeSH
- chemické bojové látky otrava MeSH
- lidé MeSH
- mozek účinky léků enzymologie MeSH
- neuroprotektivní látky terapeutické užití MeSH
- neurotoxické syndromy farmakoterapie MeSH
- organofosfáty toxicita MeSH
- otrava organofosfáty farmakoterapie MeSH
- oximy terapeutické užití MeSH
- potkani Wistar MeSH
- pyridinové sloučeniny terapeutické užití MeSH
- reaktivátory cholinesterázy terapeutické užití MeSH
- trimedoxim terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- atropin MeSH
- chemické bojové látky MeSH
- neuroprotektivní látky MeSH
- organofosfáty MeSH
- oximy MeSH
- pyridinové sloučeniny MeSH
- reaktivátory cholinesterázy MeSH
- tabun MeSH Prohlížeč
- trimedoxim MeSH
The ability of two newly developed oximes (K305, K307) to protect tabun-poisoned rats from tabun-induced inhibition of brain acetylcholinesterase, acute neurotoxic signs and symptoms and brain damage was compared with that of the oxime K203 and trimedoxime. The reactivating and neuroprotective effects of the oximes studied combined with atropine on rats poisoned with tabun at a sublethal dose were evaluated. The reactivating efficacy of a newly developed oxime K305 is lower compared to the reactivating efficacy of the oxime K203 and trimedoxime while the ability of the oxime K307 to reactivate tabun-inhibited acetylcholinesterase (AChE) in the brain roughly corresponds to the reactivating efficacy of the oxime K203 and it is slightly lower compared to trimedoxime. In addition, only one newly developed oxime (K307) combined with atropine was able to markedly decrease tabun-induced neurotoxicity although it did not eliminate all tabun-induced acute neurotoxic signs and symptoms. These results correspond to the histopathological evaluation of tabun-induced brain damage. Therefore, the newly developed oximes are not suitable for the replacement of commonly used oximes (especially trimedoxime) in the treatment of acute tabun poisonings.
Zobrazit více v PubMed
Bajgar J. Organophosphate/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. doi: 10.1016/S0065-2423(04)38006-6. PubMed DOI
Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus compounds as chemical warfare agents: A review. J. Braz. Chem. Soc. 2009;20:407–428. doi: 10.1590/S0103-50532009000300003. DOI
Colovic M.B., Krstic D.Z., Lazarevic-Pasti T.D., Bondzic A.M., Vasic V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC
Jokanovic M., Prostran M. Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr. Med. Chem. 2009;16:2177–2188. doi: 10.2174/092986709788612729. PubMed DOI
Kassa J., Musilek K., Zdarova Karasova J., Kuca K., Bajgar J. Two possibilities how to increase the efficacy of antidotal treatment of nerve agent poisonings. Mini-Rev. Med. Chem. 2012;12:24–34. doi: 10.2174/138955712798869011. PubMed DOI
Cabal J., Bajgar J. Tabun—Reappearance 50 years later. Chem. Listy. 1999;93:27–31. (In Czech)
Ekström F., Akfur C., Tunemalm A.K., Lundberg S. Structural changes of phenylalanine 338 and histidine 447 revealed by the crystal structures of tabun-inhibited murine acetylcholinesterase. Biochemistry. 2006;45:74–81. doi: 10.1021/bi051286t. PubMed DOI
Hoffman A., Eisenkraft A., Finkelstein A., Schein O., Rotman E., Dushnitsky T. A decade after the Tokyo sarin attack: A review of neurological follow-up of the victims. Mil. Med. 2007;172:607–610. doi: 10.7205/MILMED.172.6.607. PubMed DOI
Yamasue H., Abe O., Kasai K., Suga M., Iwanami A., Yamada A., Tochigi M., Ohtani T., Rogers M.A., Sasaki T., et al. Human brain structural changes related to acute single exposure to sarin. Ann. Neurol. 2007;61:37–46. doi: 10.1002/ana.21024. PubMed DOI
Cassel G., Karlsson L., Waara L., Wee Ang K., Goransson-Nyberg A. Pharmacokinetics and effects of HI-6 in blood and brain of soman-intoxicated rats: A microdialysis study. Eur. J. Pharmacol. 1997;332:43–52. doi: 10.1016/S0014-2999(97)01058-3. PubMed DOI
Sakurada K., Matsubara K., Shimizu K., Shiono H., Seto Y., Tsuge K., Yoshino M., Sakai I., Mukoyama H., Takatori E. Pralidoxime iodide (2-PAM) penetrates across the blood-brain barrier. Neurochem. Res. 2003;28:1401–1407. doi: 10.1023/A:1024960819430. PubMed DOI
Lorke D.E., Kalasz H., Petroianu G.A., Tekes K. Entry of oximes into the brain: A review. Curr. Med. Chem. 2008;15:743–753. doi: 10.2174/092986708783955563. PubMed DOI
Jokanovic M. Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: A review of recent data. Curr. Top. Med. Chem. 2012;12:1775–1789. doi: 10.2174/1568026611209061775. PubMed DOI
Wilhelm C.M., Snider T.H., Babin M.C., Jett D.A., Platoff G.E., Jr., Yeung D.T. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides. Toxicol. Appl. Pharmacol. 2014;281:254–265. doi: 10.1016/j.taap.2014.10.009. PubMed DOI PMC
Sharma R., Gupta B., Singh N., Acharya J.R., Musilek K., Kuca K., Ghosh K.K. Development and structural modifications of cholinesterase reactivators against chemical warfare agents in last decade: A review. Mini-Rev. Med. Chem. 2015;15:58–72. doi: 10.2174/1389557514666141128102837. PubMed DOI
Kassa J., Karasova J., Musilek K., Kuca K. An evaluation of therapeutic and reactivating effects of newly developed oximes (K156, K203) with commonly used oximes (obidoxime, trimedoxime, HI-6) in tabun-poisoned rats and mice. Toxicology. 2008;243:311–316. doi: 10.1016/j.tox.2007.10.015. PubMed DOI
Winter M., Wille T., Musilek K., Kuca K., Thiermann H., Worek F. Investigation of the reactivation kinetics of a large series of bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase. Toxicol. Lett. 2016;244:136–142. doi: 10.1016/j.toxlet.2015.07.007. PubMed DOI
Bajgar J., Jun D., Kuca K., Bartosova L., Fusek J. Cholinesterase reactivators: The fate and effects in the organism poisoned with organophosphates/nerve agents. Curr. Drug Metab. 2007;8:803–809. doi: 10.2174/138920007782798144. PubMed DOI
Dolgin E. Syrian gas attack reinforces need for better anti-sarin drugs. Nat. Med. 2013;19:1194–1195. doi: 10.1038/nm1013-1194. PubMed DOI
Pita R., Domingo J. The use of chemical weapons in the Syrian conflict. Toxics. 2014;2:391–402. doi: 10.3390/toxics2030391. DOI
Shih T.M., Duniho S.M., McDonough J.H. Control of NA-induced seizures is critical for neuroprotection and survival. Toxicol. Appl. Pharmacol. 2003;188:69–80. doi: 10.1016/S0041-008X(03)00019-X. PubMed DOI
Marrs T.C. Toxicology of Organophosphate Nerve Agents. In: Marrs T.C., Maynard R.L., Sidell F.R., editors. Chemical Warfare Agents: Toxicology and Treatment. John Wiley & Sons, Ltd.; Chichester, UK: 2007. pp. 191–221.
Chen Y. Organophosphate-induced brain damage: Mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies. NeuroToxicology. 2012;33:391–400. doi: 10.1016/j.neuro.2012.03.011. PubMed DOI
Weissman B.A., Raveh L. Therapy against organophosphate poisoning: The importance of anticholinergic drugs with antiglutamatergic properties. Toxicol. Appl. Pharmacol. 2008;232:351–358. doi: 10.1016/j.taap.2008.07.005. PubMed DOI
Kassa J., Kunesova G. Comparison of the neuroprotective effects of the newly developed oximes (K027, K048) with trimedoxime in tabun-poisoned rats. J. Appl. Biomed. 2006;4:123–134.
McDonough J.H., Jr., Zoeffel L.D., McMonagle J., Copeland T.L., Smith C.D., Shih T.-M. Anticonvulsant treatment of nerve agent seizures: Anticholinergics versus diazepam in soman-intoxicated guinea-pigs. Epilepsy Res. 2000;38:1–14. doi: 10.1016/S0920-1211(99)00060-1. PubMed DOI
Antonijevic B., Stojiljkovic P. Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. Clin. Med. Res. 2007;5:71–82. doi: 10.3121/cmr.2007.701. PubMed DOI PMC
Nurulain S.M. Efficacious oxime for organophosphorus poisoning: A minireview. Trop. J. Pharm. Res. 2011;10:341–349. doi: 10.4314/tjpr.v10i3.10. DOI
Kassa J., Krejcova G. Neuroprotective effects of currently used antidotes in tabun-poisoned rats. Pharmacol. Toxicol. 2003;92:258–264. doi: 10.1034/j.1600-0773.2003.920602.x. PubMed DOI
Kassa J., Karasova J., Vasina L., Bajgar J., Kuca K., Musilek K. A comparison of neuroprotective efficacy of newly developed oximes (K203, K206) and commonly used oximes (obidoxime, HI-6) in tabun-poisoned rats. Drug Chem. Toxicol. 2009;32:128–138. doi: 10.1080/01480540802593873. PubMed DOI
Worek F., Widmann R., Knopff O., Szinicz L. Reactivating potency of obidoxime, pralidoxime, HI-6 and HLö-7 in human erythrocyte acetylcholinesterase inhibited by highly toxic organophosphorus compounds. Arch. Toxicol. 1998;72:237–243. doi: 10.1007/s002040050495. PubMed DOI
Zdarova Karasova J., Pohanka M., Musilek K., Zemek F., Kuca K. Passive diffusion of acetylcholinesterase oxime reactivators through the blood-brain barrier: Influence of molecular structure. Toxicol. In Vitro. 2010;24:1838–1844. doi: 10.1016/j.tiv.2010.05.009. PubMed DOI
Cabal J., Kuca K., Kassa J. Specification of the structure of oximes able to reactivate tabun-inhibited acetylcholinesterase. Basic Clin. Pharmacol. Toxicol. 2004;95:81–86. doi: 10.1111/j.1742-7843.2004.950207.x. PubMed DOI
Kuca K., Jun D., Musilek K. Structural requirements of acetylcholinesterase reactivators. Mini Rev. Med. Chem. 2006;6:269–277. doi: 10.2174/138955706776073510. PubMed DOI
Musilek K., Kuca K., Jun D., Dolezal M. Progress in synthesis of new acetylcholinesterase reactivators during the period 1990–2004. Curr. Org. Chem. 2007;11:229–238. doi: 10.2174/138527207779316417. DOI
Biljana A., Slavica V., Cupic V. Protective effect of HI-6 and trimedoxime combination in mice acutely poisoned with tabun, dichlorvos and heptenophos. Acta Vet. Beogr. 2012;62:123–135. doi: 10.2298/AVB1203123A. DOI
Kassa J., Sepsova V., Tumova M., Horova A., Musilek K. A comparison of the reactivating and therapeutic efficacy of two newly developed oximes (K727, K733) with oxime K203 and trimedoxime in tabun-poisoned rats and mice. Basic Clin. Pharmacol. Toxicol. 2015;116:367–371. doi: 10.1111/bcpt.12327. PubMed DOI
Kadar T., Shapira S., Cohen G., Sahar R., Alkalay D., Raveh L. Sarin-induced neuropathology in rats. Hum. Exp. Toxicol. 1995;14:252–259. doi: 10.1177/096032719501400304. PubMed DOI
Jun D., Kuca K., Stodulka P., Koleckar V., Dolezal B., Simon P., Veverka M. HPLC analysis of HI-6 dichloride and dimethanesulfonate - antidotes against nerve agents and organophosphorus pesticides. Anal. Lett. 2007;40:2783–2787. doi: 10.1080/00032710701588531. DOI
Kassa J., Sepsova V., Horova A., Musilek K. A comparison of the reactivating and therapeutic efficacy of two novel bispyridinium oximes (K305, K307) with the oxime K203 and trimedoxime in tabun-poisoned rats and mice. J. Appl. Biomed. 2017;15:49–53. doi: 10.1016/j.jab.2016.09.008. DOI
Moser V.C., Tilson H., McPhail R.C., Becking G.C., Cuomo V., Frantik E., Kulig B.M., Winneke G. The IPCS collaborative study on neurobehavioral screening methods: II. Protocol design and testing procedures. NeuroToxicology. 1997;18:929–938. doi: 10.1093/toxsci/35.2.143. PubMed DOI
Ellman G.L., Courtney D.K., Andres V., Jr., Feartherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–93. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Clement J.G., Hansen A.S., Boulet C.A. Efficacy of HLö-7 and pyrimidoxime as antidotes of nerve agent poisoning in mice. Arch. Toxicol. 1992;66:216–219. doi: 10.1007/BF01974018. PubMed DOI
Paxinos G., Watson C. The Rat Brain in Stereotactic Coordinates. 6th ed. Academic Press; San Diego, CA, USA: 2006. 456p
A-series agent A-234: initial in vitro and in vivo characterization