The Evaluation of the Reactivating and Neuroprotective Efficacy of Two Newly Prepared Bispyridinium Oximes (K305, K307) in Tabun-Poisoned Rats-A Comparison with Trimedoxime and the Oxime K203

. 2017 Jul 11 ; 22 (7) : . [epub] 20170711

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28696367

The ability of two newly developed oximes (K305, K307) to protect tabun-poisoned rats from tabun-induced inhibition of brain acetylcholinesterase, acute neurotoxic signs and symptoms and brain damage was compared with that of the oxime K203 and trimedoxime. The reactivating and neuroprotective effects of the oximes studied combined with atropine on rats poisoned with tabun at a sublethal dose were evaluated. The reactivating efficacy of a newly developed oxime K305 is lower compared to the reactivating efficacy of the oxime K203 and trimedoxime while the ability of the oxime K307 to reactivate tabun-inhibited acetylcholinesterase (AChE) in the brain roughly corresponds to the reactivating efficacy of the oxime K203 and it is slightly lower compared to trimedoxime. In addition, only one newly developed oxime (K307) combined with atropine was able to markedly decrease tabun-induced neurotoxicity although it did not eliminate all tabun-induced acute neurotoxic signs and symptoms. These results correspond to the histopathological evaluation of tabun-induced brain damage. Therefore, the newly developed oximes are not suitable for the replacement of commonly used oximes (especially trimedoxime) in the treatment of acute tabun poisonings.

Zobrazit více v PubMed

Bajgar J. Organophosphate/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. doi: 10.1016/S0065-2423(04)38006-6. PubMed DOI

Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus compounds as chemical warfare agents: A review. J. Braz. Chem. Soc. 2009;20:407–428. doi: 10.1590/S0103-50532009000300003. DOI

Colovic M.B., Krstic D.Z., Lazarevic-Pasti T.D., Bondzic A.M., Vasic V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC

Jokanovic M., Prostran M. Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr. Med. Chem. 2009;16:2177–2188. doi: 10.2174/092986709788612729. PubMed DOI

Kassa J., Musilek K., Zdarova Karasova J., Kuca K., Bajgar J. Two possibilities how to increase the efficacy of antidotal treatment of nerve agent poisonings. Mini-Rev. Med. Chem. 2012;12:24–34. doi: 10.2174/138955712798869011. PubMed DOI

Cabal J., Bajgar J. Tabun—Reappearance 50 years later. Chem. Listy. 1999;93:27–31. (In Czech)

Ekström F., Akfur C., Tunemalm A.K., Lundberg S. Structural changes of phenylalanine 338 and histidine 447 revealed by the crystal structures of tabun-inhibited murine acetylcholinesterase. Biochemistry. 2006;45:74–81. doi: 10.1021/bi051286t. PubMed DOI

Hoffman A., Eisenkraft A., Finkelstein A., Schein O., Rotman E., Dushnitsky T. A decade after the Tokyo sarin attack: A review of neurological follow-up of the victims. Mil. Med. 2007;172:607–610. doi: 10.7205/MILMED.172.6.607. PubMed DOI

Yamasue H., Abe O., Kasai K., Suga M., Iwanami A., Yamada A., Tochigi M., Ohtani T., Rogers M.A., Sasaki T., et al. Human brain structural changes related to acute single exposure to sarin. Ann. Neurol. 2007;61:37–46. doi: 10.1002/ana.21024. PubMed DOI

Cassel G., Karlsson L., Waara L., Wee Ang K., Goransson-Nyberg A. Pharmacokinetics and effects of HI-6 in blood and brain of soman-intoxicated rats: A microdialysis study. Eur. J. Pharmacol. 1997;332:43–52. doi: 10.1016/S0014-2999(97)01058-3. PubMed DOI

Sakurada K., Matsubara K., Shimizu K., Shiono H., Seto Y., Tsuge K., Yoshino M., Sakai I., Mukoyama H., Takatori E. Pralidoxime iodide (2-PAM) penetrates across the blood-brain barrier. Neurochem. Res. 2003;28:1401–1407. doi: 10.1023/A:1024960819430. PubMed DOI

Lorke D.E., Kalasz H., Petroianu G.A., Tekes K. Entry of oximes into the brain: A review. Curr. Med. Chem. 2008;15:743–753. doi: 10.2174/092986708783955563. PubMed DOI

Jokanovic M. Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: A review of recent data. Curr. Top. Med. Chem. 2012;12:1775–1789. doi: 10.2174/1568026611209061775. PubMed DOI

Wilhelm C.M., Snider T.H., Babin M.C., Jett D.A., Platoff G.E., Jr., Yeung D.T. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides. Toxicol. Appl. Pharmacol. 2014;281:254–265. doi: 10.1016/j.taap.2014.10.009. PubMed DOI PMC

Sharma R., Gupta B., Singh N., Acharya J.R., Musilek K., Kuca K., Ghosh K.K. Development and structural modifications of cholinesterase reactivators against chemical warfare agents in last decade: A review. Mini-Rev. Med. Chem. 2015;15:58–72. doi: 10.2174/1389557514666141128102837. PubMed DOI

Kassa J., Karasova J., Musilek K., Kuca K. An evaluation of therapeutic and reactivating effects of newly developed oximes (K156, K203) with commonly used oximes (obidoxime, trimedoxime, HI-6) in tabun-poisoned rats and mice. Toxicology. 2008;243:311–316. doi: 10.1016/j.tox.2007.10.015. PubMed DOI

Winter M., Wille T., Musilek K., Kuca K., Thiermann H., Worek F. Investigation of the reactivation kinetics of a large series of bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase. Toxicol. Lett. 2016;244:136–142. doi: 10.1016/j.toxlet.2015.07.007. PubMed DOI

Bajgar J., Jun D., Kuca K., Bartosova L., Fusek J. Cholinesterase reactivators: The fate and effects in the organism poisoned with organophosphates/nerve agents. Curr. Drug Metab. 2007;8:803–809. doi: 10.2174/138920007782798144. PubMed DOI

Dolgin E. Syrian gas attack reinforces need for better anti-sarin drugs. Nat. Med. 2013;19:1194–1195. doi: 10.1038/nm1013-1194. PubMed DOI

Pita R., Domingo J. The use of chemical weapons in the Syrian conflict. Toxics. 2014;2:391–402. doi: 10.3390/toxics2030391. DOI

Shih T.M., Duniho S.M., McDonough J.H. Control of NA-induced seizures is critical for neuroprotection and survival. Toxicol. Appl. Pharmacol. 2003;188:69–80. doi: 10.1016/S0041-008X(03)00019-X. PubMed DOI

Marrs T.C. Toxicology of Organophosphate Nerve Agents. In: Marrs T.C., Maynard R.L., Sidell F.R., editors. Chemical Warfare Agents: Toxicology and Treatment. John Wiley & Sons, Ltd.; Chichester, UK: 2007. pp. 191–221.

Chen Y. Organophosphate-induced brain damage: Mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies. NeuroToxicology. 2012;33:391–400. doi: 10.1016/j.neuro.2012.03.011. PubMed DOI

Weissman B.A., Raveh L. Therapy against organophosphate poisoning: The importance of anticholinergic drugs with antiglutamatergic properties. Toxicol. Appl. Pharmacol. 2008;232:351–358. doi: 10.1016/j.taap.2008.07.005. PubMed DOI

Kassa J., Kunesova G. Comparison of the neuroprotective effects of the newly developed oximes (K027, K048) with trimedoxime in tabun-poisoned rats. J. Appl. Biomed. 2006;4:123–134.

McDonough J.H., Jr., Zoeffel L.D., McMonagle J., Copeland T.L., Smith C.D., Shih T.-M. Anticonvulsant treatment of nerve agent seizures: Anticholinergics versus diazepam in soman-intoxicated guinea-pigs. Epilepsy Res. 2000;38:1–14. doi: 10.1016/S0920-1211(99)00060-1. PubMed DOI

Antonijevic B., Stojiljkovic P. Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. Clin. Med. Res. 2007;5:71–82. doi: 10.3121/cmr.2007.701. PubMed DOI PMC

Nurulain S.M. Efficacious oxime for organophosphorus poisoning: A minireview. Trop. J. Pharm. Res. 2011;10:341–349. doi: 10.4314/tjpr.v10i3.10. DOI

Kassa J., Krejcova G. Neuroprotective effects of currently used antidotes in tabun-poisoned rats. Pharmacol. Toxicol. 2003;92:258–264. doi: 10.1034/j.1600-0773.2003.920602.x. PubMed DOI

Kassa J., Karasova J., Vasina L., Bajgar J., Kuca K., Musilek K. A comparison of neuroprotective efficacy of newly developed oximes (K203, K206) and commonly used oximes (obidoxime, HI-6) in tabun-poisoned rats. Drug Chem. Toxicol. 2009;32:128–138. doi: 10.1080/01480540802593873. PubMed DOI

Worek F., Widmann R., Knopff O., Szinicz L. Reactivating potency of obidoxime, pralidoxime, HI-6 and HLö-7 in human erythrocyte acetylcholinesterase inhibited by highly toxic organophosphorus compounds. Arch. Toxicol. 1998;72:237–243. doi: 10.1007/s002040050495. PubMed DOI

Zdarova Karasova J., Pohanka M., Musilek K., Zemek F., Kuca K. Passive diffusion of acetylcholinesterase oxime reactivators through the blood-brain barrier: Influence of molecular structure. Toxicol. In Vitro. 2010;24:1838–1844. doi: 10.1016/j.tiv.2010.05.009. PubMed DOI

Cabal J., Kuca K., Kassa J. Specification of the structure of oximes able to reactivate tabun-inhibited acetylcholinesterase. Basic Clin. Pharmacol. Toxicol. 2004;95:81–86. doi: 10.1111/j.1742-7843.2004.950207.x. PubMed DOI

Kuca K., Jun D., Musilek K. Structural requirements of acetylcholinesterase reactivators. Mini Rev. Med. Chem. 2006;6:269–277. doi: 10.2174/138955706776073510. PubMed DOI

Musilek K., Kuca K., Jun D., Dolezal M. Progress in synthesis of new acetylcholinesterase reactivators during the period 1990–2004. Curr. Org. Chem. 2007;11:229–238. doi: 10.2174/138527207779316417. DOI

Biljana A., Slavica V., Cupic V. Protective effect of HI-6 and trimedoxime combination in mice acutely poisoned with tabun, dichlorvos and heptenophos. Acta Vet. Beogr. 2012;62:123–135. doi: 10.2298/AVB1203123A. DOI

Kassa J., Sepsova V., Tumova M., Horova A., Musilek K. A comparison of the reactivating and therapeutic efficacy of two newly developed oximes (K727, K733) with oxime K203 and trimedoxime in tabun-poisoned rats and mice. Basic Clin. Pharmacol. Toxicol. 2015;116:367–371. doi: 10.1111/bcpt.12327. PubMed DOI

Kadar T., Shapira S., Cohen G., Sahar R., Alkalay D., Raveh L. Sarin-induced neuropathology in rats. Hum. Exp. Toxicol. 1995;14:252–259. doi: 10.1177/096032719501400304. PubMed DOI

Jun D., Kuca K., Stodulka P., Koleckar V., Dolezal B., Simon P., Veverka M. HPLC analysis of HI-6 dichloride and dimethanesulfonate - antidotes against nerve agents and organophosphorus pesticides. Anal. Lett. 2007;40:2783–2787. doi: 10.1080/00032710701588531. DOI

Kassa J., Sepsova V., Horova A., Musilek K. A comparison of the reactivating and therapeutic efficacy of two novel bispyridinium oximes (K305, K307) with the oxime K203 and trimedoxime in tabun-poisoned rats and mice. J. Appl. Biomed. 2017;15:49–53. doi: 10.1016/j.jab.2016.09.008. DOI

Moser V.C., Tilson H., McPhail R.C., Becking G.C., Cuomo V., Frantik E., Kulig B.M., Winneke G. The IPCS collaborative study on neurobehavioral screening methods: II. Protocol design and testing procedures. NeuroToxicology. 1997;18:929–938. doi: 10.1093/toxsci/35.2.143. PubMed DOI

Ellman G.L., Courtney D.K., Andres V., Jr., Feartherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–93. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Clement J.G., Hansen A.S., Boulet C.A. Efficacy of HLö-7 and pyrimidoxime as antidotes of nerve agent poisoning in mice. Arch. Toxicol. 1992;66:216–219. doi: 10.1007/BF01974018. PubMed DOI

Paxinos G., Watson C. The Rat Brain in Stereotactic Coordinates. 6th ed. Academic Press; San Diego, CA, USA: 2006. 456p

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...