Interaction of Cucurbit[7]uril with Oxime K027, Atropine, and Paraoxon: Risky or Advantageous Delivery System?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-08937S
Grantová Agentura České Republiky
PubMed
33114215
PubMed Central
PMC7672622
DOI
10.3390/ijms21217883
PII: ijms21217883
Knihovny.cz E-zdroje
- Klíčová slova
- CB7, K027, acetylcholinesterase, antidote, cucurbit[7]uril, cucurbiturils, in vivo, mouse, paraoxon, pesticide,
- MeSH
- atropin chemie MeSH
- hematoencefalická bariéra MeSH
- imidazoly chemie MeSH
- myši MeSH
- oximy chemie MeSH
- paraoxon chemie toxicita MeSH
- počítačová simulace MeSH
- přemostěné cyklické sloučeniny chemie MeSH
- pyridinové sloučeniny chemie MeSH
- reaktivátory cholinesterázy chemie toxicita MeSH
- simulace molekulového dockingu MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium) propane dibromide MeSH Prohlížeč
- atropin MeSH
- cucurbit(7)uril MeSH Prohlížeč
- imidazoly MeSH
- oximy MeSH
- paraoxon MeSH
- přemostěné cyklické sloučeniny MeSH
- pyridinové sloučeniny MeSH
- reaktivátory cholinesterázy MeSH
Antidotes against organophosphates often possess physicochemical properties that mitigate their passage across the blood-brain barrier. Cucurbit[7]urils may be successfully used as a drug delivery system for bisquaternary oximes and improve central nervous system targeting. The main aim of these studies was to elucidate the relationship between cucurbit[7]uril, oxime K027, atropine, and paraoxon to define potential risks or advantages of this delivery system in a complex in vivo system. For this reason, in silico (molecular docking combined with umbrella sampling simulation) and in vivo (UHPLC-pharmacokinetics, toxicokinetics; acetylcholinesterase reactivation and functional observatory battery) methods were used. Based on our results, cucurbit[7]urils affect multiple factors in organophosphates poisoning and its therapy by (i) scavenging paraoxon and preventing free fraction of this toxin from entering the brain, (ii) enhancing the availability of atropine in the central nervous system and by (iii) increasing oxime passage into the brain. In conclusion, using cucurbit[7]urils with oximes might positively impact the overall treatment effectiveness and the benefits can outweigh the potential risks.
Zobrazit více v PubMed
Eyer P. The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol. Rev. 2003;22:165–190. doi: 10.2165/00139709-200322030-00004. PubMed DOI
Kuca K., Musilek K., Pohanka M., Zdarova Karasova J., Soukup O. Prophylaxis and post-exposure treatment of intoxications caused by nerve agents and organophosphorus pesticides. Mini Rev. Med. Chem. 2013;13:2102–2115. doi: 10.2174/13895575113136660108. PubMed DOI
Jokanovic M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Tox. Lett. 2009;190:107–115. doi: 10.1016/j.toxlet.2009.07.025. PubMed DOI
King A.M., Aaron C.K. Organophosphate and carbamate poisoning. Emerg. Med. Clin. N. Am. 2015;33:133–151. doi: 10.1016/j.emc.2014.09.010. PubMed DOI
Karasova J.Z., Zemek F., Musilek K., Kuca K. Time-dependent changes of oxime K027 concentrations in different parts of rat central nervous system. Neurotox. Res. 2013;23:63–68. doi: 10.1007/s12640-012-9329-4. PubMed DOI
Karasova J.Z., Zemek F., Kassa J., Kuca K. Entry of oxime K027 into the different parts of rat brain: Comparison with obidoxime and oxime HI-6. J. Appl. Biomed. 2014;12:25–29. doi: 10.1016/j.jab.2013.01.001. DOI
Karasova J.Z., Kvetina J., Tacheci I., Radochova V., Musilek K., Kuca K., Bures J. Pharmacokinetic profile of promising acetylcholinesterase reactivators K027 and K203 in experimental pigs. Tox. Lett. 2017;273:20–25. doi: 10.1016/j.toxlet.2017.03.017. PubMed DOI
Lagona J., Fettinger J.C., Isaacs L. Cucurbi[n]urils: Synthetic and Mechanistic studies. J. Org. Chem. 2005;70:10381–10392. doi: 10.1021/jo051655r. PubMed DOI
Liu S.M., Wu C.T. Recent progress in studies of cucurbituril. Prog. Chem. 2005;17:143–150.
Wang R., Bardelang D., Waite M., Udachin K.A., Leek D.M., Yu K., Ratcliffe C.I., Ripmeester J.A. Inclusion complexes of coumarin in cucurbiturils. Org. Biomol. Chem. 2009;7:2435–2439. doi: 10.1039/b903057c. PubMed DOI
Wang R., Macartney D.H. Cucurbit[7]uril host-guest complexes of the histamine H2-receptor antagonist ranitidine. Org. Biomol. Chem. 2008;6:1955–1960. doi: 10.1039/b801591k. PubMed DOI
McInnes F.J., Anthony N.G., Kennedy A.R., Wheate N.J. Solid state stabilisation of the orally delivered drugs atenolol, glibenclamide, memantine and paracetamol through their complexation with cucurbit[7]uril. Org. Biomol. Chem. 2010;8:765–773. doi: 10.1039/b918372h. PubMed DOI
Wyman I.W., Macartney D.H. Host-guest complexations of local anaesthetics by cucurbit[7]uril in aqueous solution. Org. Biomol. Chem. 2010;8:247–252. doi: 10.1039/B915694A. PubMed DOI
Wheate N.J., Buck D.P., Day A.I., Collins J.G. Cucurbit[n]uril binding of platinum anti-cancer complexes. Dalton Trans. 2006;3:451–458. doi: 10.1039/B513197A. PubMed DOI
Andrýs R., Klusoňová A., Lísa M., Karasová J.Ž. Encapsulation of oxime acetylcholinesterase reactivators: Influence of physiological conditions on the stability of oxime-cucurbit[7]uril complexes. New J. Chem. 2020 doi: 10.1039/d0nj03102j. DOI
Zdarova Karasova J., Hepnarova V., Andrys R., Lisa M., Jost P., Muckova L., Pejchal J., Herman D., Jun D., Kassa J., et al. Encapsulation of oxime K027 into cucurbit[7]uril: In vivo evaluation of safety, absorption, brain distribution and reactivation effectiveness. Toxicol. Lett. 2020;320:64–72. doi: 10.1016/j.toxlet.2019.11.021. PubMed DOI
Plumb J.A., Venugopal B., Oun R., Gomez-Roman N., Kawazoe Y., Venkataramanan N.S., Wheate N.J. Cucurbit[7]uril encapsulated cisplatin overcomes cisplatin resistance via a pharmacokinetic effect. Metallomics. 2012;4:561–567. doi: 10.1039/c2mt20054f. PubMed DOI
EMA Guideline on Bioanalytical Method Validation. [(accessed on 27 July 2020)];2011 Jul 21; Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf.
Center for Drug Evaluation and Research (CDER) Center for Veterinary Medicine (CVM) FDA Guidance for Industry, Bioanalytical Method Validation. [(accessed on 27 July 2018)];2018 May; Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf.
Li B., Sedlacek M., Manoharan I., Boopathy M., Duysen E.G., Masson P., Lockride O. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem. Pharmacol. 2005;70:1673–1684. doi: 10.1016/j.bcp.2005.09.002. PubMed DOI
Ortigoza-Ferado J., Richter R.J., Hornung S.K., Motulsky A.G., Furlong C.E. Paraoxon hydrolysis in human serum mediated by a genetically variable arylesterase and albumin. Am. J. Hum. Genet. 1984;36:295–305. PubMed PMC
Moser V.C., Tilson H.A., MacPhail R.C., Becking G.C., Cuomo V., Frantík E., Kulig B.M., Winneke G. The IPCS Collaborative Study on Neurobehavioral Screening Methods: II. Protocol design and testing procedures. Neurotoxicology. 1997;18:929–938. PubMed
Assaf K.I., Nau W.M. Cucurbiturils: From synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 2015;44:394–418. doi: 10.1039/C4CS00273C. PubMed DOI
Biedermann F., Uzunova V.D., Scherman O.A., Nau W.M., De Simone A. Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 2012;134:15318–15323. doi: 10.1021/ja303309e. PubMed DOI
Proakis A.G., Harris G.B. Comparative penetration of glycopyrrolate and atropine across the blood—brain and placental barriers in anesthetized dogs. Anesthesiology. 1978;48:339–344. doi: 10.1097/00000542-197805000-00007. PubMed DOI
Harrison S.D., Bosin T.R., Maickel R.P. Physiological disposition of atropine in the rat. Pharmacol. Biochem. Behav. 1974;2:843–845. doi: 10.1016/0091-3057(74)90120-8. PubMed DOI
Chowdhary S., Bhattacharya R., Banerjee D. Acute organophosphorus poisoning. Clin. Chim. Acta. 2014;431:66–76. doi: 10.1016/j.cca.2014.01.024. PubMed DOI
Kanto J., Virtanen R., Iisalo E., Mäenpää K., Liukko P. Placental transfer and pharmacokinetics of atropine after a single maternal intravenous and intramuscular administration. Acta Anaesthesiol. Scand. 1981;25:85–88. doi: 10.1111/j.1399-6576.1981.tb01613.x. PubMed DOI
Kassa J. Importance of cholinolytic drug selection for the efficacy of HI-6 against soman in rats. Toxicology. 1997;116:147–152. doi: 10.1016/S0300-483X(96)03537-8. PubMed DOI
Karasova J., Bajgar J., Jun D., Pavlikova R., Kuca K. Time-course changes of acetylcholinesterase activity in blood and some tissues in rats after intoxication by Russian VX. Neurotox. Res. 2009;16:356–360. doi: 10.1007/s12640-009-9102-5. PubMed DOI
Zhang X., Xu X., Li S., Li L., Zhang J., Wang R. A Synthetic Receptor as a Specific Antidote for Paraquat Poisoning. Theranostics. 2019;9:633–645. doi: 10.7150/thno.31485. PubMed DOI PMC
Kassa J., Musilek K., Karasova J.Z., Kuca K., Bajgar J. Two possibilities how to increase the efficacy of antidotal treatment of nerve agent poisonings. Mini Med. Chem. Rev. 2012;12:24–34. doi: 10.2174/138955712798869011. PubMed DOI
Katalinic M., Hrvat N.M., Karasova J.Z., Misik J., Kovarik Z. Translation of in vitro to in vivo pyridinium oxime potential in tabun poisoning. Arh. Hig. Rada Toksikol. 2015;66:291–298. doi: 10.1515/aiht-2015-66-2740. PubMed DOI
Collombet J.M., Four E., Fauquette W., Burckhart M.F., Masqueliez C., Bernabe D., Baubichon D., Lallement G. Soman poisoning induces delayed astrogliotic scar and angiogenesis in damaged mouse brain areas. Neurotoxicology. 2007;28:38–48. doi: 10.1016/j.neuro.2006.07.011. PubMed DOI
Collombet J.M. Nerve agent intoxication: Recent neuropathophysiological findings and subsequent impact on medical management prospects. Toxicol. Appl. Pharmacol. 2011;255:229–241. doi: 10.1016/j.taap.2011.07.003. PubMed DOI
Torrie G.M., Valleau J.P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977;23:187–199. doi: 10.1016/0021-9991(77)90121-8. DOI
O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC
Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI
Wang J., Wang W., Kollman Case D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006;25:247–260. doi: 10.1016/j.jmgm.2005.12.005. PubMed DOI
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Hub J.S., de Groot B.L., van der Spoel D. G_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. J. Chem Theory Comput. 2010;6:3713–3720. doi: 10.1021/ct100494z. DOI
Aldrige W.N. Serum esterases. II. An enzyme hydrolysing diethyl p-nitrophenyl phosphate (E600) and its identity with the A-esterase of mammalian sera. Biochem. J. 1953;53:117–124. doi: 10.1042/bj0530117. PubMed DOI PMC
Kassa J., Korabecny J., Nepovimova E., Jun D. The influence of modulators of acetylcholinesterase on the resistance of mice against soman and on the effectiveness of antidotal treatment of soman poisoning in mice. J. Appl. Biomed. 2018;16:10–14. doi: 10.1016/j.jab.2017.01.004. DOI
Karasova J.Z., Maderycova Z., Tumova M., Jun D., Rehacek V., Kuca K., Misik J. Activity of cholinesterases in a young and healthy middle-European population: Relevance for toxicology, pharmacology and clinical praxis. Toxicol. Lett. 2017;277:24–31. doi: 10.1016/j.toxlet.2017.04.017. PubMed DOI
Clement J.G. Central activity of acetylcholinesterase oxime reactivators. Toxicol. Appl. Pharmacol. 1992;112:104–109. doi: 10.1016/0041-008X(92)90285-Z. PubMed DOI
Kassa J., Misik J., Hatlapatkova J., Zdarova Karasova J., Sepsova V., Caisberber F., Pejchal J. The evaluation of the reactivating and neuroprotective efficacy of two newly prepared bispyridinium oximes (K305, K307) in tabun-poisoned rats—A comparison with trimedoxime and the oxime K203. Molecules. 2017;22:1152. doi: 10.3390/molecules22071152. PubMed DOI PMC
Kassa J., Zdarova Karasova J., Tesarova S. A comparison of the neuroprotective efficacy of individual oxime (HI-6) and combinations of oximes (HI-6+trimedoxime, HI-6+K203) in soman-poisoned rats. Drug Chem. Toxicol. 2011;34:233–239. doi: 10.3109/01480545.2010.510525. PubMed DOI
Shih T.-M., McDonough J.H. Neurochemical mechanisms in soman-induced seizures. J. Appl. Toxicol. 1997;17:255–264. doi: 10.1002/(SICI)1099-1263(199707)17:4<255::AID-JAT441>3.0.CO;2-D. PubMed DOI
Lushchekina S.V., Schopfer L.M., Grigorenko B.L., Nemukhin A.V., Varfolomeev S.D., Lockridge O., Masson P. Optimization of cholinesterase-based catalytic bioscavengers against organophosphorus agents. Front. Pharmacol. 2018;9:211. doi: 10.3389/fphar.2018.00211. PubMed DOI PMC
Joosen M.J.A., van der Schansa M.J., van Dijka C.h.G.M., Kuijpersa W.C., Wortelboerb H.M., van Helden H.P.M. Increasing oxime efficacy by blood-brain barrier modulation. Toxicol. Lett. 2011;206:67–71. doi: 10.1016/j.toxlet.2011.05.231. PubMed DOI
Brominated oxime nucleophiles are efficiently reactivating cholinesterases inhibited by nerve agents