Interaction of Cucurbit[7]uril with Oxime K027, Atropine, and Paraoxon: Risky or Advantageous Delivery System?

. 2020 Oct 23 ; 21 (21) : . [epub] 20201023

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33114215

Grantová podpora
18-08937S Grantová Agentura České Republiky

Antidotes against organophosphates often possess physicochemical properties that mitigate their passage across the blood-brain barrier. Cucurbit[7]urils may be successfully used as a drug delivery system for bisquaternary oximes and improve central nervous system targeting. The main aim of these studies was to elucidate the relationship between cucurbit[7]uril, oxime K027, atropine, and paraoxon to define potential risks or advantages of this delivery system in a complex in vivo system. For this reason, in silico (molecular docking combined with umbrella sampling simulation) and in vivo (UHPLC-pharmacokinetics, toxicokinetics; acetylcholinesterase reactivation and functional observatory battery) methods were used. Based on our results, cucurbit[7]urils affect multiple factors in organophosphates poisoning and its therapy by (i) scavenging paraoxon and preventing free fraction of this toxin from entering the brain, (ii) enhancing the availability of atropine in the central nervous system and by (iii) increasing oxime passage into the brain. In conclusion, using cucurbit[7]urils with oximes might positively impact the overall treatment effectiveness and the benefits can outweigh the potential risks.

Zobrazit více v PubMed

Eyer P. The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol. Rev. 2003;22:165–190. doi: 10.2165/00139709-200322030-00004. PubMed DOI

Kuca K., Musilek K., Pohanka M., Zdarova Karasova J., Soukup O. Prophylaxis and post-exposure treatment of intoxications caused by nerve agents and organophosphorus pesticides. Mini Rev. Med. Chem. 2013;13:2102–2115. doi: 10.2174/13895575113136660108. PubMed DOI

Jokanovic M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Tox. Lett. 2009;190:107–115. doi: 10.1016/j.toxlet.2009.07.025. PubMed DOI

King A.M., Aaron C.K. Organophosphate and carbamate poisoning. Emerg. Med. Clin. N. Am. 2015;33:133–151. doi: 10.1016/j.emc.2014.09.010. PubMed DOI

Karasova J.Z., Zemek F., Musilek K., Kuca K. Time-dependent changes of oxime K027 concentrations in different parts of rat central nervous system. Neurotox. Res. 2013;23:63–68. doi: 10.1007/s12640-012-9329-4. PubMed DOI

Karasova J.Z., Zemek F., Kassa J., Kuca K. Entry of oxime K027 into the different parts of rat brain: Comparison with obidoxime and oxime HI-6. J. Appl. Biomed. 2014;12:25–29. doi: 10.1016/j.jab.2013.01.001. DOI

Karasova J.Z., Kvetina J., Tacheci I., Radochova V., Musilek K., Kuca K., Bures J. Pharmacokinetic profile of promising acetylcholinesterase reactivators K027 and K203 in experimental pigs. Tox. Lett. 2017;273:20–25. doi: 10.1016/j.toxlet.2017.03.017. PubMed DOI

Lagona J., Fettinger J.C., Isaacs L. Cucurbi[n]urils: Synthetic and Mechanistic studies. J. Org. Chem. 2005;70:10381–10392. doi: 10.1021/jo051655r. PubMed DOI

Liu S.M., Wu C.T. Recent progress in studies of cucurbituril. Prog. Chem. 2005;17:143–150.

Wang R., Bardelang D., Waite M., Udachin K.A., Leek D.M., Yu K., Ratcliffe C.I., Ripmeester J.A. Inclusion complexes of coumarin in cucurbiturils. Org. Biomol. Chem. 2009;7:2435–2439. doi: 10.1039/b903057c. PubMed DOI

Wang R., Macartney D.H. Cucurbit[7]uril host-guest complexes of the histamine H2-receptor antagonist ranitidine. Org. Biomol. Chem. 2008;6:1955–1960. doi: 10.1039/b801591k. PubMed DOI

McInnes F.J., Anthony N.G., Kennedy A.R., Wheate N.J. Solid state stabilisation of the orally delivered drugs atenolol, glibenclamide, memantine and paracetamol through their complexation with cucurbit[7]uril. Org. Biomol. Chem. 2010;8:765–773. doi: 10.1039/b918372h. PubMed DOI

Wyman I.W., Macartney D.H. Host-guest complexations of local anaesthetics by cucurbit[7]uril in aqueous solution. Org. Biomol. Chem. 2010;8:247–252. doi: 10.1039/B915694A. PubMed DOI

Wheate N.J., Buck D.P., Day A.I., Collins J.G. Cucurbit[n]uril binding of platinum anti-cancer complexes. Dalton Trans. 2006;3:451–458. doi: 10.1039/B513197A. PubMed DOI

Andrýs R., Klusoňová A., Lísa M., Karasová J.Ž. Encapsulation of oxime acetylcholinesterase reactivators: Influence of physiological conditions on the stability of oxime-cucurbit[7]uril complexes. New J. Chem. 2020 doi: 10.1039/d0nj03102j. DOI

Zdarova Karasova J., Hepnarova V., Andrys R., Lisa M., Jost P., Muckova L., Pejchal J., Herman D., Jun D., Kassa J., et al. Encapsulation of oxime K027 into cucurbit[7]uril: In vivo evaluation of safety, absorption, brain distribution and reactivation effectiveness. Toxicol. Lett. 2020;320:64–72. doi: 10.1016/j.toxlet.2019.11.021. PubMed DOI

Plumb J.A., Venugopal B., Oun R., Gomez-Roman N., Kawazoe Y., Venkataramanan N.S., Wheate N.J. Cucurbit[7]uril encapsulated cisplatin overcomes cisplatin resistance via a pharmacokinetic effect. Metallomics. 2012;4:561–567. doi: 10.1039/c2mt20054f. PubMed DOI

EMA Guideline on Bioanalytical Method Validation. [(accessed on 27 July 2020)];2011 Jul 21; Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf.

Center for Drug Evaluation and Research (CDER) Center for Veterinary Medicine (CVM) FDA Guidance for Industry, Bioanalytical Method Validation. [(accessed on 27 July 2018)];2018 May; Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf.

Li B., Sedlacek M., Manoharan I., Boopathy M., Duysen E.G., Masson P., Lockride O. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem. Pharmacol. 2005;70:1673–1684. doi: 10.1016/j.bcp.2005.09.002. PubMed DOI

Ortigoza-Ferado J., Richter R.J., Hornung S.K., Motulsky A.G., Furlong C.E. Paraoxon hydrolysis in human serum mediated by a genetically variable arylesterase and albumin. Am. J. Hum. Genet. 1984;36:295–305. PubMed PMC

Moser V.C., Tilson H.A., MacPhail R.C., Becking G.C., Cuomo V., Frantík E., Kulig B.M., Winneke G. The IPCS Collaborative Study on Neurobehavioral Screening Methods: II. Protocol design and testing procedures. Neurotoxicology. 1997;18:929–938. PubMed

Assaf K.I., Nau W.M. Cucurbiturils: From synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 2015;44:394–418. doi: 10.1039/C4CS00273C. PubMed DOI

Biedermann F., Uzunova V.D., Scherman O.A., Nau W.M., De Simone A. Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 2012;134:15318–15323. doi: 10.1021/ja303309e. PubMed DOI

Proakis A.G., Harris G.B. Comparative penetration of glycopyrrolate and atropine across the blood—brain and placental barriers in anesthetized dogs. Anesthesiology. 1978;48:339–344. doi: 10.1097/00000542-197805000-00007. PubMed DOI

Harrison S.D., Bosin T.R., Maickel R.P. Physiological disposition of atropine in the rat. Pharmacol. Biochem. Behav. 1974;2:843–845. doi: 10.1016/0091-3057(74)90120-8. PubMed DOI

Chowdhary S., Bhattacharya R., Banerjee D. Acute organophosphorus poisoning. Clin. Chim. Acta. 2014;431:66–76. doi: 10.1016/j.cca.2014.01.024. PubMed DOI

Kanto J., Virtanen R., Iisalo E., Mäenpää K., Liukko P. Placental transfer and pharmacokinetics of atropine after a single maternal intravenous and intramuscular administration. Acta Anaesthesiol. Scand. 1981;25:85–88. doi: 10.1111/j.1399-6576.1981.tb01613.x. PubMed DOI

Kassa J. Importance of cholinolytic drug selection for the efficacy of HI-6 against soman in rats. Toxicology. 1997;116:147–152. doi: 10.1016/S0300-483X(96)03537-8. PubMed DOI

Karasova J., Bajgar J., Jun D., Pavlikova R., Kuca K. Time-course changes of acetylcholinesterase activity in blood and some tissues in rats after intoxication by Russian VX. Neurotox. Res. 2009;16:356–360. doi: 10.1007/s12640-009-9102-5. PubMed DOI

Zhang X., Xu X., Li S., Li L., Zhang J., Wang R. A Synthetic Receptor as a Specific Antidote for Paraquat Poisoning. Theranostics. 2019;9:633–645. doi: 10.7150/thno.31485. PubMed DOI PMC

Kassa J., Musilek K., Karasova J.Z., Kuca K., Bajgar J. Two possibilities how to increase the efficacy of antidotal treatment of nerve agent poisonings. Mini Med. Chem. Rev. 2012;12:24–34. doi: 10.2174/138955712798869011. PubMed DOI

Katalinic M., Hrvat N.M., Karasova J.Z., Misik J., Kovarik Z. Translation of in vitro to in vivo pyridinium oxime potential in tabun poisoning. Arh. Hig. Rada Toksikol. 2015;66:291–298. doi: 10.1515/aiht-2015-66-2740. PubMed DOI

Collombet J.M., Four E., Fauquette W., Burckhart M.F., Masqueliez C., Bernabe D., Baubichon D., Lallement G. Soman poisoning induces delayed astrogliotic scar and angiogenesis in damaged mouse brain areas. Neurotoxicology. 2007;28:38–48. doi: 10.1016/j.neuro.2006.07.011. PubMed DOI

Collombet J.M. Nerve agent intoxication: Recent neuropathophysiological findings and subsequent impact on medical management prospects. Toxicol. Appl. Pharmacol. 2011;255:229–241. doi: 10.1016/j.taap.2011.07.003. PubMed DOI

Torrie G.M., Valleau J.P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977;23:187–199. doi: 10.1016/0021-9991(77)90121-8. DOI

O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC

Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI

Wang J., Wang W., Kollman Case D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006;25:247–260. doi: 10.1016/j.jmgm.2005.12.005. PubMed DOI

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Hub J.S., de Groot B.L., van der Spoel D. G_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. J. Chem Theory Comput. 2010;6:3713–3720. doi: 10.1021/ct100494z. DOI

Aldrige W.N. Serum esterases. II. An enzyme hydrolysing diethyl p-nitrophenyl phosphate (E600) and its identity with the A-esterase of mammalian sera. Biochem. J. 1953;53:117–124. doi: 10.1042/bj0530117. PubMed DOI PMC

Kassa J., Korabecny J., Nepovimova E., Jun D. The influence of modulators of acetylcholinesterase on the resistance of mice against soman and on the effectiveness of antidotal treatment of soman poisoning in mice. J. Appl. Biomed. 2018;16:10–14. doi: 10.1016/j.jab.2017.01.004. DOI

Karasova J.Z., Maderycova Z., Tumova M., Jun D., Rehacek V., Kuca K., Misik J. Activity of cholinesterases in a young and healthy middle-European population: Relevance for toxicology, pharmacology and clinical praxis. Toxicol. Lett. 2017;277:24–31. doi: 10.1016/j.toxlet.2017.04.017. PubMed DOI

Clement J.G. Central activity of acetylcholinesterase oxime reactivators. Toxicol. Appl. Pharmacol. 1992;112:104–109. doi: 10.1016/0041-008X(92)90285-Z. PubMed DOI

Kassa J., Misik J., Hatlapatkova J., Zdarova Karasova J., Sepsova V., Caisberber F., Pejchal J. The evaluation of the reactivating and neuroprotective efficacy of two newly prepared bispyridinium oximes (K305, K307) in tabun-poisoned rats—A comparison with trimedoxime and the oxime K203. Molecules. 2017;22:1152. doi: 10.3390/molecules22071152. PubMed DOI PMC

Kassa J., Zdarova Karasova J., Tesarova S. A comparison of the neuroprotective efficacy of individual oxime (HI-6) and combinations of oximes (HI-6+trimedoxime, HI-6+K203) in soman-poisoned rats. Drug Chem. Toxicol. 2011;34:233–239. doi: 10.3109/01480545.2010.510525. PubMed DOI

Shih T.-M., McDonough J.H. Neurochemical mechanisms in soman-induced seizures. J. Appl. Toxicol. 1997;17:255–264. doi: 10.1002/(SICI)1099-1263(199707)17:4<255::AID-JAT441>3.0.CO;2-D. PubMed DOI

Lushchekina S.V., Schopfer L.M., Grigorenko B.L., Nemukhin A.V., Varfolomeev S.D., Lockridge O., Masson P. Optimization of cholinesterase-based catalytic bioscavengers against organophosphorus agents. Front. Pharmacol. 2018;9:211. doi: 10.3389/fphar.2018.00211. PubMed DOI PMC

Joosen M.J.A., van der Schansa M.J., van Dijka C.h.G.M., Kuijpersa W.C., Wortelboerb H.M., van Helden H.P.M. Increasing oxime efficacy by blood-brain barrier modulation. Toxicol. Lett. 2011;206:67–71. doi: 10.1016/j.toxlet.2011.05.231. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Brominated oxime nucleophiles are efficiently reactivating cholinesterases inhibited by nerve agents

. 2024 Sep ; 98 (9) : 2937-2952. [epub] 20240524

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...