Quantifying patch-specific seed dispersal and local population dynamics to estimate population spread of an endangered plant species

. 2021 Oct ; 11 (20) : 14070-14078. [epub] 20210914

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34707840

Grantová podpora
R25 CA018201 NCI NIH HHS - United States

AIM: Habitat loss and fragmentation impose high extinction risk upon endangered plant species globally. For many endangered plant species, as the remnant habitats become smaller and more fragmented, it is vital to estimate the population spread rate of small patches in order to effectively manage and preserve them for potential future range expansion. However, population spread rate has rarely been quantified at the patch level to inform conservation strategies and management decisions. To close this gap, we quantify the patch-specific seed dispersal and local population dynamics of Minuartia smejkalii, which is a critically endangered plant species endemic in the Czech Republic and is of urgent conservation concern. LOCATION: Želivka and Hrnčíře, Czechia. METHODS: We conducted demographic analyses using population projection matrices with long-term demographic data and used an analytic mechanistic dispersal model to simulate seed dispersal. We then used information on local population dynamics and seed dispersal to estimate the population spread rate and compared the relative contributions of seed dispersal and population growth rate to the population spread rate. RESULTS: We found that although both seed dispersal and population growth rate in M. smejkalii were critically limited, the population spread rate depended more strongly on the maximal dispersal distance than on the population growth rate. MAIN CONCLUSIONS: We recommend conservationists to largely increase the dispersal distance of M. smejkalii. Generally, efforts made to increase seed dispersal ability could largely raise efficiency and effectiveness of conservation actions for critically endangered plant species.

Zobrazit více v PubMed

Aavik, T. , Thetloff, M. , Träger, S. , Hernandez‐Agramonte, I. , Reinula, I. , & Pärtel, M. (2019). Delayed and immediate effects of habitat loss on the genetic diversity of the grassland plant Trifolium montanum . Biodiversity and Conservation, 28, 3299–3319. 10.1007/s10531-019-01822-8 DOI

Alexander, H. M. , Collins, C. D. , Reed, A. W. , Kettle, W. D. , Collis, D. A. , Christiana, L. D. , & Salisbury, V. B. (2018). Effects of removing woody cover on long‐term population dynamics of a rare annual plant (Agalinis auriculata): A study comparing remnant prairie and oldfield habitats. Ecology and Evolution, 8, 11975–11986. PubMed PMC

Andrieu, E. , Besnard, A. , Fréville, H. , Vaudey, V. , Gauthier, P. , Thompson, J. D. , & Debussche, M. (2017). Population dynamics of Paeonia officinalis in relation to forest closure: From model predictions to practical conservation management. Biological Conservation, 215, 51–60. 10.1016/j.biocon.2017.08.010 DOI

Baden, H. M. , Roach, D. , Schweingruber, F. H. , Reitzel, K. , Lundgreen, K. , & Dahlgren, J. P. (2021). The effects of age on the demography of a perennial plant depend on interactions with size and environment. Journal of Ecology, 109, 1068–1077. 10.1111/1365-2745.13537 DOI

Baskin, C. C. , & Baskin, J. M. (2014). Seeds: Ecology, biogeography, and evolution of dormancy and germination. Academic Press.

Bilz, M. , Kell, S. P. , Maxted, N. , & Lansdown, R. V. (2011). European red list of vascular plants. Publications Office of the European Union.

Block, S. , & Levine, J. M. (2021). How dispersal evolution and local adaptation affect the range dynamics of species lagging behind climate change. American Naturalist, 197, E173–E187. 10.1086/714130 PubMed DOI

Bonte, D. , Breyne, P. , Brys, R. , De La Peña, E. , D'Hondt, B. , Ghyselen, C. , Vandegehuchte, M. L. , & Hoffmann, M. (2012). Landscape dynamics determine the small‐scale genetic structure of an endangered dune slack plant species. Journal of Coastal Research, 28, 780–786.

Brady, K. U. , Kruckeberg, A. R. , & Bradshaw, H. D. Jr (2005). Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics, 36, 243–266. 10.1146/annurev.ecolsys.35.021103.105730 DOI

Bucharová, A. , Brabec, J. , & Münzbergová, Z. (2012). Effect of land use and climate change on the future fate of populations of an endemic species in central Europe. Biological Conservation, 145, 39–47. 10.1016/j.biocon.2011.09.016 DOI

Bullock, J. M. , White, S. M. , Prudhomme, C. , Tansey, C. , Perea, R. , & Hooftman, D. A. P. (2012). Modelling spread of British wind‐dispersed plants under future wind speeds in a changing climate. Journal of Ecology, 100, 104–115. 10.1111/j.1365-2745.2011.01910.x DOI

Bullock, J. M. , Wichmann, M. C. , Hails, R. S. , Hodgson, D. J. , Alexander, M. J. , Morley, K. , Knopp, T. , Ridding, L. E. , & Hooftman, D. A. P. (2020). Human‐mediated dispersal and disturbance shape the metapopulation dynamics of a long‐lived herb. Ecology, 101, e03087. 10.1002/ecy.3087 PubMed DOI

Caswell, H. (2000). Matrix population models. Sinauer.

Ceballos, G. , Ehrlich, P. R. , Barnosky, A. D. , García, A. , Pringle, R. M. , & Palmer, T. M. (2015). Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 1, e1400253. 10.1126/sciadv.1400253 PubMed DOI PMC

Chen, S.‐C. , Dener, E. , Altman, A. , Chen, F. , & Giladi, I. (2020). Effect of habitat fragmentation on seed dispersal ability of a wind‐dispersed annual in an agroecosystem. Agriculture, Ecosystems and Environment, 304, 107138. 10.1016/j.agee.2020.107138 DOI

Chen, S.‐C. , & Giladi, I. (2020). Variation in morphological traits affects dispersal and seedling emergence in dispersive diaspores of Geropogon hybridus . American Journal of Botany, 107, 436–444. PubMed PMC

Chiarucci, A. , & Baker, A. J. M. (2007). Advances in the ecology of serpentine soils. Plant and Soil, 293, 1–2. 10.1007/s11104-007-9268-7 DOI

Clark, J. S. , Lewis, M. , & Horvath, L. (2001). Invasion by extremes: Population spread with variation in dispersal and reproduction. The American Naturalist, 157, 537–554. 10.1086/319934 PubMed DOI

Clobert, J. , Baguette, M. , Benton, T. G. , & Bullock, J. M. (2012). Dispersal ecology and evolution. Oxford University Press.

Dahlgren, J. P. , Bengtsson, K. , & Ehrlén, J. (2016). The demography of climate‐driven and density‐regulated population dynamics in a perennial plant. Ecology, 97, 899–907. PubMed

Dener, E. , Ovadia, O. , Shemesh, H. , Altman, A. , Chen, S.‐C. , & Giladi, I. (2021). Direct and indirect effects of fragmentation on seed dispersal traits in a fragmented agricultural landscape. Agriculture, Ecosystems & Environment, 309, 107273. 10.1016/j.agee.2020.107273 DOI

Dostálek, T. , & Münzbergová, Z. (2013). Comparative population biology of critically endangered Dracocephalum austriacum (Lamiaceae) in two distant regions. Folia Geobotanica, 48, 75–93. 10.1007/s12224-012-9132-2 DOI

Ehrlén, J. , Syrjänen, K. , Leimu, R. , Begoña Garcia, M. , & Lehtilä, K. (2005). Land use and population growth of Primula veris: An experimental demographic approach. Journal of Applied Ecology, 42, 317–326. 10.1111/j.1365-2664.2005.01015.x DOI

Emsens, W. J. , Aggenbach, C. J. S. , Rydin, H. , Smolders, A. J. P. , & van Diggelen, R. (2018). Competition for light as a bottleneck for endangered fen species: An introduction experiment. Biological Conservation, 220, 76–83. 10.1016/j.biocon.2018.02.002 DOI

Fisher, R. A. (1937). The wave of advance of advantageous genes. Annals of Eugenics, 7, 355–369. 10.1111/j.1469-1809.1937.tb02153.x DOI

Gilbert, M. A. , White, S. M. , Bullock, J. M. , & Gaffney, E. A. (2014). Spreading speeds for stage structured plant populations in fragmented landscapes. Journal of Theoretical Biology, 349, 135–149. 10.1016/j.jtbi.2014.01.024 PubMed DOI

Griffith, A. B. , & Forseth, I. N. (2005). Population matrix models of Aeschynomene virginica, a rare annual plant: Implications for conservation. Ecological Applications, 15, 222–233. 10.1890/02-5219 DOI

Gyllenberg, M. , Parvinen, K. , & Dieckmann, U. (2002). Evolutionary suicide and evolution of dispersal in structured metapopulations. Journal of Mathematical Biology, 45, 79–105. 10.1007/s002850200151 PubMed DOI

Halley, J. M. , Monokrousos, N. , Mazaris, A. D. , Newmark, W. D. , & Vokou, D. (2016). Dynamics of extinction debt across five taxonomic groups. Nature Communications, 7, 12283. PubMed PMC

Hastings, A. , Cuddington, K. , Davies, K. F. , Dugaw, C. J. , Elmendorf, S. , Freestone, A. , Harrison, S. , Holland, M. , Lambrinos, J. , Malvadkar, U. , Melbourne, B. A. , Moore, K. , Taylor, C. , & Thomson, D. (2005). The spatial spread of invasions: New developments in theory and evidence. Ecology Letters, 8, 91–101. 10.1111/j.1461-0248.2004.00687.x DOI

Heinken, T. , & Weber, E. (2013). Consequences of habitat fragmentation for plant species: Do we know enough? Perspectives in Plant Ecology, Evolution and Systematics, 15, 205–216. 10.1016/j.ppees.2013.05.003 DOI

Heinken‐Šmídová, A. , & Münzbergová, Z. (2012). Population dynamics of the endangered, long‐lived perennial species, Ligularia sibirica . Folia Geobotanica, 47, 193–214. 10.1007/s12224-011-9116-7 DOI

Hemrová, L. , Bullock, J. M. , Hooftman, D. A. P. , White, S. M. , & Münzbergová, Z. (2017). Drivers of plant species’ potential to spread: The importance of local population dynamics versus seed dispersal. Oikos, 126, 1493–1500.

Hobbs, R. J. , & Yates, C. J. (2003). Impacts of ecosystem fragmentation on plant populations: Generalising the idiosyncratic. Australian Journal of Botany, 51, 471–488. 10.1071/BT03037 DOI

Ibáñez, I. , Katz, D. S. , Peltier, D. , Wolf, S. M. , & Connor Barrie, B. T. (2014). Assessing the integrated effects of landscape fragmentation on plants and plant communities: The challenge of multiprocess–multiresponse dynamics. Journal of Ecology, 102, 882–895. 10.1111/1365-2745.12223 DOI

Jongejans, E. , Shea, K. , Skarpaas, O. , Kelly, D. , Sheppard, A. W. , & Woodburn, T. L. (2008). Dispersal and demography contributions to population spread of Carduus nutans in its native and invaded ranges. Journal of Ecology, 96, 687–697.

Jordano, P. (2017). What is long‐distance dispersal? And a taxonomy of dispersal events. Journal of Ecology, 105, 75–84. 10.1111/1365-2745.12690 DOI

Katul, G. G. , Porporato, A. , Nathan, R. , Siqueira, M. , Soons, M. B. , Poggi, D. , Horn, H. S. , & Levin, S. A. (2005). Mechanistic analytical models for long‐distance seed dispersal by wind. The American Naturalist, 166, 368–381. 10.1086/432589 PubMed DOI

Keitt, T. H. , Lewis, M. A. , & Holt, R. D. (2001). Allee effects, invasion pinning, and species’ borders. The American Naturalist, 157, 203–216. 10.1086/318633 PubMed DOI

Kildisheva, O. A. , Dixon, K. W. , Silveira, F. A. O. , Chapman, T. , Di Sacco, A. , Mondoni, A. , Turner, S. R. , & Cross, A. T. (2020). Dormancy and germination: Making every seed count in restoration. Restoration Ecology, 28, S256–S265. 10.1111/rec.13140 DOI

Kot, M. , Lewis, M. A. , & von den Diessche, P. (1996). Dispersal data and the spread of invading organisms. Ecology, 77, 2027–2042. 10.2307/2265698 DOI

Lozada‐Gobilard, S. , Pánková, H. , Zhu, J. , Stojanova, B. , & Münzbergová, Z. (2020). Potential risk of interspecific hybridization in ex situ collections. Journal for Nature Conservation, 58, 125912. 10.1016/j.jnc.2020.125912 DOI

Marrero, M. V. , Oostermeijer, G. , Nogales, M. , Van Hengstum, T. , Saro, I. , Carqué, E. , Sosa, P. A. , & Bañares, Á. (2019). Comprehensive population viability study of a rare endemic shrub from the high mountain zone of the Canary Islands and its conservation implications. Journal for Nature Conservation, 47, 65–76. 10.1016/j.jnc.2018.11.003 DOI

Mildén, M. , Münzbergová, Z. , Herben, T. , & Ehrlén, J. (2006). Metapopulation dynamics of a perennial plant, Succisa pratensis, in an agricultural landscape. Ecological Modelling, 199, 464–475. 10.1016/j.ecolmodel.2005.11.047 DOI

Monteith, J. L. , & Unsworth, M. H. (2013). Micrometeorology: (i). Turbulent transfer, profiles, and fluxes. In: Monteith J. L., & Unsworth M. H. (Eds.), Principles of environmental physics (4th edn, pp. 289–320). Academic Press.

Münzbergová, Z. (2013). Comparative demography of two co‐occurring Linum species with different distribution patterns. Plant Biology, 15, 963–970. PubMed

Münzbergová, Z. , Mildén, M. , Ehrlén, J. , & Herben, T. (2005). Population viability and reintroduction strategies: A spatially explicit landscape‐level approach. Ecological Applications, 15, 1377–1386. 10.1890/04-1464 DOI

Nathan, R. (2006). Long‐distance dispersal of plants. Science, 313, 786–788. 10.1126/science.1124975 PubMed DOI

Nathan, R. , Katul, G. G. , Horn, H. S. , Thomas, S. M. , Oren, R. , Avissar, R. , Pacala, S. W. , & Levin, S. A. (2002). Mechanisms of long‐distance dispersal of seeds by wind. Nature, 418, 409–413. 10.1038/nature00844 PubMed DOI

Nathan, R. , Schurr, F. M. , Spiegel, O. , Steinitz, O. , Trakhtenbrot, A. , & Tsoar, A. (2008). Mechanisms of long‐distance seed dispersal. Trends in Ecology & Evolution, 23, 638–647. 10.1016/j.tree.2008.08.003 PubMed DOI

Neubert, M. G. , & Caswell, H. (2000). Local population dynamics and dispersal: Calculation and sensitivity analysis of invasion speed for structured populations. Ecology, 81, 1613–1628.

Newbold, T. , Hudson, L. N. , Hill, S. L. L. , Contu, S. , Lysenko, I. , Senior, R. A. , Börger, L. , Bennett, D. J. , Choimes, A. , Collen, B. , Day, J. , De Palma, A. , Díaz, S. , Echeverria‐Londoño, S. , Edgar, M. J. , Feldman, A. , Garon, M. , Harrison, M. L. K. , Alhusseini, T. , … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520, 45–50. 10.1038/nature14324 PubMed DOI

Okubo, A. , & Levin, S. A. (1989). A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology, 70, 329–338. 10.2307/1937537 DOI

Opdam, P. , van Apeldoorn, R. , Schotman, A. , & Kalkhoven, J. (1993). Population responses to landscape fragmentation. In Vos C. C., & Opdam P. (Eds.), Landscape ecology of a stressed environment (pp. 147–171). Springer.

Plue, J. , Vandepitte, K. , Honnay, O. , & Cousins, S. A. (2017). Does the seed bank contribute to the build‐up of a genetic extinction debt in the grassland perennial Campanula rotundifolia? Annals of Botany, 120, 373–385. 10.1093/aob/mcx057 PubMed DOI PMC

Quintana‐Ascencio, P. F. , Koontz, S. M. , Smith, S. A. , Sclater, V. L. , David, A. S. , & Menges, E. S. (2018). Predicting landscape‐level distribution and abundance: Integrating demography, fire, elevation and landscape habitat configuration. Journal of Ecology, 106, 2395–2408. 10.1111/1365-2745.12985 DOI

Salguero‐Gómez, R. , Jones, O. R. , Archer, C. R. , Buckley, Y. M. , Che‐Castaldo, J. , Caswell, H. , Hodgson, D. , Scheuerlein, A. , Conde, D. A. , Brinks, E. , & de Buhr, H. (2015). The compadre Plant Matrix Database: An open online repository for plant demography. Journal of Ecology, 103, 202–218.

Schneider, C. A. , Rasband, W. S. , & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. 10.1038/nmeth.2089 PubMed DOI PMC

Schreiber, S. J. , & Beckman, N. G. (2020). Individual variation in dispersal and fecundity increases rates of spatial spread. AoB Plants, 12, plaa001. 10.1093/aobpla/plaa001 PubMed DOI PMC

Schupp, E. W. , Jordano, P. , & Gomez, J. M. (2010). Seed dispersal effectiveness revisited: A conceptual review. New Phytologist, 188, 333–353. 10.1111/j.1469-8137.2010.03402.x PubMed DOI

Schurr, F. M. , Spiegel, O. , Steinitz, O. , Trakhtenbrot, A. , Tsoar, A. , & Nathan, R. (2009). Long‐distance seed dispersal. Annual Plant Reviews, 38, 204–237. PubMed

Seguro, J. V. , & Lambert, T. W. (2000). Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. Journal of Wind Engineering and Industrial Aerodynamics, 85, 75–84. 10.1016/S0167-6105(99)00122-1 DOI

Shea, K. , Jongejans, E. , Skarpaas, O. , Kelly, D. , & Sheppard, A. W. (2010). Optimal management strategies to control local population growth or population spread may not be the same. Ecological Applications, 20, 1148–1161. 10.1890/09-0316.1 PubMed DOI

Skarpaas, O. , & Shea, K. (2007). Dispersal patterns, dispersal mechanisms, and invasion wave speeds for invasive thistles. The American Naturalist, 170, 421–430. 10.1086/519854 PubMed DOI

Skellam, J. G. (1951). Random dispersal in theoretical populations. Biometrika, 38, 196–218. 10.1093/biomet/38.1-2.196 PubMed DOI

Snell, R. S. , Beckman, N. G. , Fricke, E. , Loiselle, B. A. , Carvalho, C. S. , Jones, L. R. , Lichti, N. I. , Lustenhouwer, N. , Schreiber, S. J. , Strickland, C. , Sullivan, L. L. , Cavazos, B. R. , Giladi, I. , Hastings, A. , Holbrook, K. M. , Jongejans, E. , Kogan, O. , Montaño‐Centellas, F. , Rudolph, J. , … Schupp, E. W. (2019). Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution and global change. AoB PLANTS, 11, plz016. 10.1093/aobpla/plz016 PubMed DOI PMC

Stojanova, B. , Münzbergová, Z. , & Pánková, H. (2021). Inbreeding depression and heterosis vary in space and time in the serpentinophyte perennial Minuartia smejkalii . Preslia, 93, 149–168. 10.23855/preslia.2021.149 DOI

Stojanova, B. , Šurinová, M. , Zeisek, V. , Münzbergová, Z. , & Pánková, H. (2020). Low genetic differentiation despite high fragmentation in the endemic serpentinophyte Minuartia smejkalii (M. verna agg., Caryophyllaceae) revealed by RADSeq SNP markers. Conservation Genetics, 21, 187–198. 10.1007/s10592-019-01239-4 DOI

Stubben, C. J. , & Milligan, B. G. (2007). Estimating and analyzing demographic models using the popbio package in R. Journal of Statistical Software, 22, 1–23.

Sun, J. , Qiu, H. , Guo, J. , Xu, X. , Wu, D. , Zhong, L. , Jiang, B. O. , Jiao, J. , Yuan, W. , Huang, Y. , Shen, A. , & Wang, W. (2020). Modeling the potential distribution of Zelkova schneideriana under different human activity intensities and climate change patterns in China. Global Ecology and Conservation, 21, e00840. 10.1016/j.gecco.2019.e00840 DOI

Tackenberg, O. (2003). Modeling long‐distance dispersal of plant diaspores by wind. Ecological Monographs, 73, 173–189.

Thompson, K. , & Ooi, M. K. J. (2010). To germinate or not to germinate: More than just a question of dormancy. Seed Science Research, 20, 209–211. 10.1017/S0960258510000267 DOI

Tielbörger, K. , & Petrů, M. (2010). An experimental test for effects of the maternal environment on delayed germination. Journal of Ecology, 98, 1216–1223. 10.1111/j.1365-2745.2010.01682.x DOI

Trakhtenbrot, A. , Nathan, R. , Perry, G. , & Richardson, D. M. (2005). The importance of long‐distance dispersal in biodiversity conservation. Diversity and Distributions, 11, 173–181. 10.1111/j.1366-9516.2005.00156.x DOI

Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348, 571–573. 10.1126/science.aaa4984 PubMed DOI

Vittoz, P. , & Engler, R. (2007). Seed dispersal distances: A typology based on dispersal modes and plant traits. Botanica Helvetica, 117, 109–124. 10.1007/s00035-007-0797-8 DOI

Wenny, D. G. (2001). Advantages of seed dispersal: A re‐evaluation of directed dispersal. Evolutionary Ecology Research, 3, 51–74.

Yang, J. , Song, X. , Zambrano, J. , Chen, Y. , Cao, M. , Deng, X. , Zhang, W. , Yang, X. , Zhang, G. , Tang, Y. , & Swenson, N. G. (2021). Intraspecific variation in tree growth responses to neighbourhood composition and seasonal drought in a tropical forest. Journal of Ecology, 109, 26–37. 10.1111/1365-2745.13439 DOI

Yesuf, G. U. , Brown, K. A. , Walford, N. S. , Rakotoarisoa, S. E. , & Rufino, M. C. (2021). Predicting range shifts for critically endangered plants: Is habitat connectivity irrelevant or necessary? Biological Conservation, 256, 109033. 10.1016/j.biocon.2021.109033 DOI

Zhu, J. (2022). Data for: Quantifying patch‐specific seed dispersal and local population dynamics to estimate population spread of an endangered plant species. Dryad, Dataset, 10.5061/dryad.tht76hf0f PubMed DOI PMC

Zhu, J. , Liu, M. , Xin, Z. , Zhao, Y. , & Liu, Z. (2016). Which factors have stronger explanatory power for primary wind dispersal distance of winged diaspores: The case of Zygophyllum xanthoxylon (Zygophyllaceae).? Journal of Plant Ecology, 9, 346–356.

Zobrazit více v PubMed

Dryad
10.5061/dryad.tht76hf0f

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...