Oximes as pretreatment before acute exposure to paraoxon

. 2019 Nov ; 39 (11) : 1506-1515. [epub] 20190702

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31264735

Grantová podpora
Sheikh Hamdan Bin Rashid Al Maktoum Award for Medical Science - International

Organophosphates, useful agents as pesticides, also represent a serious danger due to their high acute toxicity. There is indication that oximes, when administered before organophosphate exposure, can protect from these toxic effects. We have tested at equitoxic dosage (25% of LD01 ) the prophylactic efficacy of five experimental (K-48, K-53, K-74, K-75, K-203) and two established oximes (pralidoxime and obidoxime) to protect from mortality induced by the organophosphate paraoxon. Mortalities were quantified by Cox analysis and compared with those observed after pretreatment with a strong acetylcholinesterase inhibitor (10-methylacridine) and after the FDA-approved pretreatment compound pyridostigmine. All nine tested substances statistically significantly reduced paraoxon-induced mortality. Best protection was conferred by the experimental oxime K-48, reducing the relative risk of death (RR) to 0.10, which was statistically significantly superior to pyridostigmine (RR = 0.31). The other oximes reduced the RR to 0.13 (obidoxime), 0.20 (K-203), 0.21 (K-74), 0.24 (K-75) and 0.26 (pralidoxime), which were significantly more efficacious than 10-methylacridine (RR = 0.65). These data support the hypothesis that protective efficacy is not primarily due to cholinesterase inhibition and indicate that the tested experimental oximes may be considered promising alternatives to the established pretreatment compound pyridostigmine.

Zobrazit více v PubMed

Antonijevic, B., & Stojiljkovic, M. P. (2007). Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. Clinical Medicine and Research, 5(1), 71-82. https://doi.org/10.3121/cmr.2007.701

Bajgar, J., Fusek, J., Kassa, J., Kuča, K., & Jun, D. (2009). Chemical aspects of pharmacological prophylaxis against nerve agent poisoning. Current Medicinal Chemistry, 16(23), 2977-2986. https://doi.org/10.2174/092986709788803088

Balali-Mood, M., & Balali-Mood, K. (2008). Neurotoxic disorders of organophosphorus compounds and their managements. Archives of Iranian Medicine, 11(1), 65-89. doi: 08111/AIM.0015

Buckley, N. A., Eddleston, M., Li, Y., Bevan, M., & Robertson, J. (2011). Oximes for acute organophosphate pesticide poisoning. Cochrane Database of Systematic Reviews, 2, 1-44. https://doi.org/10.1002/14651858.CD005085.pub2

Chowdhary, S., Bhattacharyya, R., & Banerjee, D. (2014). Acute organophosphorus poisoning. Clinica Chimica Acta, 431, 43166-43176. https://doi.org/10.1016/j.cca.2014.01.024

Cox, D. R. (1972). Regression models and life tables. Journal of the Royal Statistical Society, 34(2), 187-220. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

Delfino, R. T., Ribeiro, T. S., & Figueroa-Villar, J. D. (2009). Organophosphorus compounds as chemical warfare agents: a review. Journal of the Brazilian Chemical Society, 20(3), 407-428. https://doi.org/10.1590/S0103-50532009000300003

Dolgin, E. (2013). Syrian gas attack reinforces need for better anti-sarin drugs. Nature Medicine, 19(10), 1194-1195. https://doi.org/10.1038/nm1013-1194

Dolnik, A., & Bhattacharjee, A. (2002). Hamas: Suicide bombings, rockets, or WMD? Terrorism and Political Violence, 14(3), 109-128. https://doi.org/10.1080/714005624

Dudai, Y., Silman, I., Shinitzky, M., & Blumberg, S. (1972). Purification by affinity chromatography of the molecular forms of acetylcholinesterase present in fresh electric-organ tissue of electric eel. Proceedings of the National Academy of Sciences of the Unites States of America, 69(9), 2400-2403. https://doi.org/10.1073/pnas.69.9.2400

Dunn, M. A., Hackley, B. E., & Sidell, F. R. (1997). Pretreatment for nerve agent exposure. In F. R. Sidell, E. T. Takafuji, & D. R. Franz (Eds.), Textbook of military medicine: Medical aspects of chemical & biological warfare (pp. 181-196). Washington, DC: Borden Institute, Walter Reed Army Medical Center.

Eckert, S., Eyer, P., & Worek, F. (2007). Reversible inhibition of acetylcholinesterase by carbamates or huperzine A increases residual activity of the enzyme upon soman challenge. Toxicology, 233(1-3), 180-186. https://doi.org/10.1016/j.tox.2006.09.012

Eddleston, M., Buckley, N. A., Eyer, P., & Dawson, A. H. (2008). Management of acute organophosphorus pesticide poisoning. Lancet, 371(9612), 597-607. https://doi.org/10.1016/S0140-6736(07)61202-1

Friedman, A., Kaufer, D., Shermer, J., Hendler, I., Soreq, H., & Tur-Kaspa, I. (1996). Pyridostigmine brain penetration under stress enhances neuronal excitability and induces early immediate transcriptional response. Nature Medicine, 2(12), 1382-1385. https://doi.org/10.1038/nm1296-1382

Green, A. L. (1983). A theoretical kinetic analysis of the protective action exerted by eserine and other carbamate anticholinesterases against poisoning by organophosphorus compounds. Biochemical Pharmacology, 32(11), 1717-1722. https://doi.org/10.1016/0006-2952(83)90115-6

Gupta, R. C. (2006). Classification and uses of organophosphates and carbamates. In R. C. Gupta (Ed.), Toxicology of organophosphate and carbamate compounds (pp. 5-24). Amsterdam: Elsevier Academic Press. https://doi.org/10.1016/B978-012088523-7/50003-X

Hrabetz, H., Thiermann, H., Felgenhauer, N., Zilker, T., Haller, B., Nahrig, J., & Eyer, F. (2013). Organophosphate poisoning in the developed world-a single centre experience from here to the millennium. Chemico-Biological Interactions, 206(3), 561-568. https://doi.org/10.1016/j.cbi.2013.05.003

Jan, Y. H., Richardson, J. R., Baker, A. A., Mishin, V., Heck, D. E., Laskin, D. L., & Laskin, J. D. (2015). Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication. Toxicology and Applied Pharmacology, 288(1), 114-120. https://doi.org/10.1016/j.taap.2015.07.023

Jun, D., Kuča, K., Stodulka, P., Koleckar, V., Dolezal, B., Simon, P., & Veverka, M. (2007). HPLC analysis of HI-6 dichloride and dimethanesulfonate-antidotes against nerve agents and organophosphorus pesticides. Analytical Letters, 40(14), 2783-2787. https://doi.org/10.1080/00032710701588531

Jun, D., Stodulka, P., Kuča, K., Koleckar, V., Dolezal, B., Simon, P., & Veverka, M. (2008). TLC analysis of intermediates arising during the preparation of oxime HI-6 dimethanesulfonate. Journal of Chromatographic Science, 46(4), 316-319. https://doi.org/10.1093/chromsci/46.4.316

Kalasz, H., Hasan, M. Y., Sheen, R., Kuča, K., Petroianu, G., Ludanyi, K., & Tekes, K. (2006). HPLC analysis of K-48 concentration in plasma. Analytical and Bioanalytical Chemistry, 385(6), 1062-1067. https://doi.org/10.1007/s00216-006-0490-6

Kassa, J., Kuča, K., Cabal, J., & Paar, M. (2006). A comparison of the efficacy of new asymmetric bispyridinium oximes (K027, K048) with currently available oximes against tabun by in vivo methods. Journal of Toxicology and Environmental Health. Part A, 69(20), 1875-1882. https://doi.org/10.1080/15287390600631730

Kaufer, D., Friedman, A., Seidman, S., & Soreq, H. (1998). Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature, 393(6683), 373-377. https://doi.org/10.1038/30741

Keeler, J. R., Hurst, C. G., & Dunn, M. A. (1991). Pyridostigmine used as a nerve agent pretreatment under wartime conditions. The Journal of the American Medical Association (JAMA), 266(5), 693-695. https://doi.org/10.1001/jama.1991.03470050093029

Kostadinov, R., Kanev, K., & Dimov, D. (2010). Chemical terrorism, history and threat assessment. Medical Management of Chemical and Biological Casualties, 8, 77-84.

Kuča, K., Bielavsky, J., Cabal, J., & Bielavska, M. (2003). Synthesis of a potential reactivator of acetylcholinesterase-1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium)propane dibromide. Tetrahedron Letters, 44(15), 3123-3125. https://doi.org/10.1016/S0960-894X(03)00751-0

Kuča, K., & Cabal, J. (2004). In vitro reactivation of tabun-inhibited acetylcholinesterase using new oximes-K027, K005, K033 and K048. Central European Journal of Public Health, 12(Suppl), S59-S61.

Kuča, K., & Kassa, J. (2004). In vitro reactivation of acetylcholinesterase using the oxime K027. Veterinary and Human Toxicology, 46(1), 15-18.

Kuča, K., Cabal, J., & Kassa, J. (2005). A comparison of the potency of newly developed oximes (K005, K027, K033, K048) and currently used oximes (pralidoxime, obidoxime, HI-6) to reactivate sarin-inhibited rat brain acetylcholinesterase by in vitro methods. Journal of Toxicology and Environmental Health. Part A, 68(8), 677-686. https://doi.org/10.1080/15287390590921784

Kuča, K., Musilova, L., Palecek, J., Cirkva, V., Paar, M., Musilek, K., … Jun, D. (2009). Novel bisquaternary oximes-reactivation of acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon. Molecules, 14(12), 4915-4921. https://doi.org/10.3390/molecules14124915

Kuča, K., Musilek, K., Jun, D., Pohanka, M., Ghosh, K. K., & Hrabinova, M. (2010). Oxime K027: novel low-toxic candidate for the universal reactivator of nerve agent- and pesticide-inhibited acetylcholinesterase. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(4), 509-512. https://doi.org/10.3109/14756360903357569

Lallement, G., Baille, V., Baubichon, D., Carpentier, P., Collombet, J. M., Filliat, P., … Dorandeu, F. (2002). Review of the value of huperzine as pretreatment of organophosphate poisoning. Neurotoxicology, 23(1), 1-5. https://doi.org/10.1016/S0161-813X(02)00015-3

Lorke, D. E., & Petroianu, G. A. (2009). Minireview: does in-vitro testing of oximes help predict their in-vivo action after paraoxon exposure? Journal of Applied Toxicology, 29(6), 459-469. https://doi.org/10.1002/jat.1457

Lorke, D. E., & Petroianu, G. A. (2019). Reversible cholinesterase inhibitors as pretreatment for exposure to organophosphates. A Review. Journal of Applied Toxicology, 39(1), 101-116. https://doi.org/10.1002/jat.3662

Lorke, D. E., Hasan, M. Y., Nurulain, S. M., Sheen, R., Kuča, K., & Petroianu, G. A. (2007). Entry of two new asymmetric bispyridinium oximes (K-27 and K-48) into the rat brain: comparison with obidoxime. Journal of Applied Toxicology, 27(5), 482-490. https://doi.org/10.1002/jat.1229

Lorke, D. E., Kalasz, H., Petroianu, G. A., & Tekes, K. (2008). Entry of oximes into the brain: a review. Current Medicinal Chemistry, 15(8), 743-753. https://doi.org/10.2174/092986708783955563

Lorke, D. E., Nurulain, S. M., Hasan, M. Y., Kuča, K., Musilek, K., & Petroianu, G. A. (2008). Eight new bispyridinium oximes in comparison with the conventional oximes pralidoxime and obidoxime: in vivo efficacy to protect from diisopropylfluorophosphate toxicity. Journal of Applied Toxicology, 28(7), 920-928. https://doi.org/10.1002/jat.1359

Lorke, D. E., Hasan, M. Y., Arafat, K., Kuča, K., Musilek, K., Schmitt, A., & Petroianu, G. A. (2008). In vitro oxime protection of human red blood cell acetylcholinesterase inhibited by diisopropyl-fluorophosphate. Journal of Applied Toxicology, 28(4), 422-429. https://doi.org/10.1002/jat.1344

Lorke, D. E., Hasan, M. Y., Nurulain, S. M., Shafiullah, M., Kuča, K., & Petroianu, G. A. (2011). Pretreatment for acute exposure to diisopropylfluorophosphate: in vivo efficacy of various acetylcholinesterase inhibitors. Journal of Applied Toxicology, 31(6), 515-523. https://doi.org/10.1002/jat.1589

Lorke, D. E., Hasan, M. Y., Nurulain, S. M., Shafiullah, M., Kuča, K., & Petroianu, G. A. (2012). Acetylcholinesterase inhibitors as pretreatment before acute exposure to organophosphates: assessment using methyl-paraoxon. CNS & Neurological Disorders-Drug Targets, 11(8), 1052-1060. https://doi.org/10.2174/1871527311211080016

Lorke, D. E., Nurulain, S. M., Hasan, M. Y., Kuča, K., & Petroianu, G. A. (2013). Five experimental bispyridinium oximes in comparison with the conventional oximes pralidoxime and obidoxime: in vivo efficacy to protect from azinphos-methyl-induced toxicity. Journal of Environmental Immunology and Toxicology, 1(1), 44-50. https://doi.org/10.7178/jeit.14

Lorke, D. E., Nurulain, S. M., Hasan, M. Y., Kuča, K., & Petroianu, G. A. (2014). Prophylactic administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: assessment using terbufos sulfone. Journal of Applied Toxicology, 34(10), 1096-1103. https://doi.org/10.1002/jat.2939

Lorke, D. E., Nurulain, S. M., Hasan, M. Y., Kuča, K., & Petroianu, G. A. (2017). Optimal pre-treatment for acute exposure to the organophosphate dicrotophos. Current Pharmaceutical Design, 23(23), 3432-3439. https://doi.org/10.2174/1381612822666161027154303

Lucić Vrdoljak, A., Calić, M., Radić, B., Berend, S., Jun, D., Kuča, K., & Kovarik, Z. (2006). Pretreatment with pyridinium oximes improves antidotal therapy against tabun poisoning. Toxicology, 228(1), 41-50. https://doi.org/10.1016/j.tox.2006.08.012

Masson, P., & Nachon, F. (2017). Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. Journal of Neurochemistry, 142(Suppl), 226-240. https://doi.org/10.1111/jnc.14026

McCauley, L. A. (2006). Organophosphates and the gulf war syndrome. In R. C. Gupta (Ed.), Toxicology of organophosphate and carbamate compounds (pp. 69-78). Amsterdam, Boston, Heidelberg: Elsevier Academic Press. https://doi.org/10.1016/B978-012088523-7/50007-7

Musilek, K., Kuča, K., Dohnal, V., Jun, D., Marek, J., & Koleckar, V. (2007). Two step synthesis of a non-symmetric acetylcholinesterase reactivator. Molecules, 12(8), 1755-1761. https://doi.org/10.3390/12081755

Myhrer, T., & Aas, P. (2016). Pretreatment and prophylaxis against nerve agent poisoning: Are undesirable behavioral side effects unavoidable? Neuroscience and Biobehavioral Reviews, 71, 657-670. https://doi.org/10.1016/j.neubiorev.2016.10.017

Nakab, L., Bardot, I., Bardot, S., Simar, S., Marzin, D., & Nesslany, F. (2014). In vitro and in vivo genotoxicity assessment of HI-6 dimethanesulfonate/oxime. Mutation Research/Genetic Toxicology Environmental Mutagenesis, 762, 30-38. https://doi.org/10.1016/j.mrgentox.2013.11.006

Nurulain, S. M., Lorke, D. E., Hasan, M. Y., Shafiullah, M., Kuča, K., Musilek, K., & Petroianu, G. A. (2009). Efficacy of eight experimental bispyridinium oximes against paraoxon-induced mortality: comparison with the conventional oximes pralidoxime and obidoxime. Neurotoxicity Research, 16(1), 60-67. https://doi.org/10.1007/s12640-009-9048-7

Petroianu, G., Toomes, L. M., Petroianu, A., Bergler, W., & Rufer, R. (1998). Control of blood pressure, heart rate and haematocrit during high-dose intravenous paraoxon exposure in mini pigs. Journal of Applied Toxicology, 18(4), 293-298. https://doi.org/10.1002/(SICI)1099-1263(199807/08)18:4<293::AID-JAT509>3.0.CO;2-P

Petroianu, G. A. (2014). Pharmacists Adolf Schall and Ernst Ratzlaff and the synthesis of tabun-like compounds: A brief history. Pharmazie, 69(10), 780-784. https://doi.org/10.1691/ph.2014.4028

Petroianu, G. A., Hasan, M. Y., Nurulain, S. M., Shafiullah, M., Sheen, R., & Nagelkerke, N. (2006). Ranitidine in acute high-dose organophosphate exposure in rats: effect of the time-point of administration and comparison with pyridostigmine. Basic & Clinical Pharmacology & Toxicology, 99(4), 312-316. https://doi.org/10.1111/j.1742-7843.2006.pto_215.x

Petroianu, G. A., Hasan, M. Y., Nurulain, S. M., Arafat, K., Sheen, R., & Nagelkerke, N. (2007). Comparison of two pre-exposure treatment regimens in acute organophosphate (paraoxon) poisoning in rats: Tiapride vs. pyridostigmine. Toxicology and Applied Pharmacology, 219(2-3), 235-240. https://doi.org/10.1016/j.taap.2006.09.002

Petroianu, G. A., Lorke, D. E., Hasan, M. Y., Adem, A., Sheen, R., Nurulain, S. M., & Kalasz, H. (2007). Paraoxon has only a minimal effect on pralidoxime brain concentration in rats. Journal of Applied Toxicology, 27(4), 350-357. https://doi.org/10.1002/jat.1213

Petroianu, G. A., Lorke, D. E., & Kalasz, H. (2012). Comparison of the ability of pyridinium aldoximes to reactivate human red blood cell acetylcholinesterases inhibited by ethyl- and methyl-paraoxon. Current Organic Chemistry, 16(10), 1359-1369. https://doi.org/10.2174/138527212800564277

Petroianu, G. A., Nurulain, S. M., Shafiullah, M., Hasan, M. Y., Kuča, K., & Lorke, D. E. (2013). Usefulness of administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: assessment using paraoxon. Journal of Applied Toxicology, 33(9), 894-900. https://doi.org/10.1002/jat.2760

Petroianu, G. A., Nurulain, S. M., Hasan, M. Y., Kuča, K., & Lorke, D. E. (2015). Reversible cholinesterase inhibitors as pre-treatment for exposure to organophosphates: assessment using azinphos-methyl. Journal of Applied Toxicology, 35(5), 493-499. https://doi.org/10.1002/jat.3052

Pita, R., & Domingo, J. (2014). The use of chemical weapons in the Syrian conflict. Toxics, 2(3), 391-402. https://doi.org/10.3390/toxics2030391

Pope, C. N. (2006). Central nervous system effects and neurotoxicity. In R. C. Gupta (Ed.), Toxicology of organophosphate and carbamate compounds (pp. 271-291). Amsterdam: Elsevier Academic Press. https://doi.org/10.1016/B978-012088523-7/50021-1

Shaked, I., Meerson, A., Wolf, Y., Avni, R., Greenberg, D., Gilboa-Geffen, A., & Soreq, H. (2009). MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity, 31(6), 965-973. https://doi.org/10.1016/j.immuni.2009.09.019

Soukup, O., Proska, J., Binder, J., Karasova, J. Z., Tobin, G., Jun, D., … Kuča, K. (2009). Methylacridinium and its cholinergic properties. Neurotoxicity Research, 16(4), 372-377. https://doi.org/10.1007/s12640-009-9071-8

Soukup, O., Jun, D., Zdarova-Karasova, J., Patocka, J., Musilek, K., Korabecny, J., … Kuča, K. (2013). A resurrection of 7-MEOTA: a comparison with tacrine. Current Alzheimer Research, 10(8), 893-906. https://doi.org/10.2174/1567205011310080011

Tekes, K., Hasan, M. Y., Sheen, R., Kuča, K., Petroianu, G., Ludanyi, K., & Kalasz, H. (2006). High-performance liquid chromatographic determination of the plasma concentration of K-27, a novel oxime-type cholinesterase reactivator. Journal of Chromatography A, 1122(1-2), 84-87. https://doi.org/10.1016/j.chroma.2006.04.016

US Food and Drug Administration. (2003). FDA approves pyridostigmine bromide as pretreatment against nerve gas. Retrieved from http://www.fda.gov/Drugs/EmergencyPreparedness/BioterrorismandDrugPreparedness/ucm130342.htm (accessed on 20 March 2019).

van Helden, H. P., Joosen, M. J., & Philippens, I. H. (2011). Non-enzymatic pretreatment of nerve agent (soman) poisoning: A brief state-of-the-art review. Toxicology Letters, 206(1), 35-40. https://doi.org/10.1016/j.toxlet.2011.04.021

Wetherell, J., Price, M., Mumford, H., Armstrong, S., & Scott, L. (2007). Development of next generation medical countermeasures to nerve agent poisoning. Toxicology, 233(1-3), 120-127. https://doi.org/10.1016/j.tox.2006.07.028

Wiener, S. W., & Hoffman, R. S. (2004). Nerve agents: a comprehensive review. Journal of Intensive Care Medicine, 19(1), 22-37. https://doi.org/10.1177/0885066603258659

Xia, D. Y., Wang, L. X., & Pei, S. Q. (1981). The inhibition and protection of cholinesterase by physostigmine and pyridostigmine against Soman poisoning in vivo. Fundamental and Applied Toxicology, 1(2), 217-221.

Yanagisawa, N., Morita, H., & Nakajima, T. (2006). Sarin experiences in Japan: acute toxicity and long-term effects. Journal of Neurological Sciences, 249(1), 76-85. https://doi.org/10.1016/j.jns.2006.06.007

Žunec, S., Kopjar, N., Želježić, D., Kuča, K., Musilek, K., & Lucić Vrdoljak, A. (2014). In vivo evaluation of cholinesterase activity, oxidative stress markers, cyto- and genotoxicity of K048 oxime-a promising antidote against organophosphate poisoning. Basic & Clinical Pharmacology & Toxicology, 114(4), 344-351. https://doi.org/10.1111/bcpt.12158

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...