The dose-dependent effect of caffeine supplementation on performance, reaction time and postural stability in CrossFit - a randomized placebo-controlled crossover trial
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu randomizované kontrolované studie, časopisecké články
PubMed
38226646
PubMed Central
PMC10795626
DOI
10.1080/15502783.2023.2301384
Knihovny.cz E-zdroje
- Klíčová slova
- cognitive function, ergogenic support, high-intensity functional exercise, sports dietetics, stability, supplementation,
- MeSH
- cytochrom P-450 CYP1A2 MeSH
- dvojitá slepá metoda MeSH
- klinické křížové studie MeSH
- kofein * farmakologie MeSH
- kyselina mléčná MeSH
- lidé MeSH
- polyestery MeSH
- potravní doplňky MeSH
- reakční čas MeSH
- sportovní výkon * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- cytochrom P-450 CYP1A2 MeSH
- kofein * MeSH
- kyselina mléčná MeSH
- polyestery MeSH
BACKGROUND: Caffeine (CAF) ingestion improves performance in a broad range of exercise tasks. Nevertheless, the CAF-induced, dose-dependent effect on discipline-specific performance and cognitive functions in CrossFit/High-Intensity Functional Training (HIFT) has not been sufficiently investigated. The aim of this study was to evaluate the effect of acute supplementation of three different doses of CAF and placebo (PLA) on specific performance, reaction time (RTime), postural stability (PStab), heart rate (HR) and perceived exertion (RPE). METHODS: In a randomized double-blind placebo-controlled crossover design, acute pre-exercise supplementation with CAF (3, 6, or 9 mg/kg body mass (BM)) and PLA in 26 moderately trained CrossFit practitioners was examined. The study protocol involved five separate testing sessions using the Fight Gone Bad test (FGB) as the exercise performance evaluation and biochemical analyses, HR and RPE monitoring, as well as the assessment of RTime and PStab, with regard to CYP1A2 (rs762551) and ADORA2A (rs5751876) single nucleotide polymorphism (SNP). RESULTS: Supplementation of 6 mgCAF/kgBM induced clinically noticeable improvements in FGBTotal results, RTime and pre-exercise motor time. Nevertheless, there were no significant differences between any CAF doses and PLA in FGBTotal, HRmax, HRmean, RPE, pre/post-exercise RTime, PStab variables or pyruvate concentrations. Lactate concentration was higher (p < 0.05) before and after exercise in all CAF doses than in PLA. There was no effect of CYP1A2 or ADORA2A SNPs on performance. CONCLUSIONS: The dose-dependent effect of CAF supplementation appears to be limited to statistically nonsignificant but clinically considered changes on specific performance, RTime, PStab, RPE or HR. However, regarding practical CAF-induced performance implications in CrossFit/HIFT, 6 mgCAF/kgBM may be supposed as the most rational supplementation strategy.
Department of Human Nutrition and Dietetics Poznań University of Life Sciences Poznań Poland
Department of Physiology and Biochemistry Poznań University of Physical Education Poznań Poland
Department of Sports Dietetics Poznań University of Physical Education Poznań Poland
Zobrazit více v PubMed
Grgic J, Grgic I, Pickering C, et al. Wake up and smell the coffee: caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br J Sports Med. 2020;54(11):681–142. doi: 10.1136/bjsports-2018-100278 PubMed DOI
Guest NS, VanDusseldorp TA, Nelson MT, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021;18(1):1. doi: 10.1186/s12970-020-00383-4 PubMed DOI PMC
Saunders B, da Costa LR, de Souza RAS, et al. Chapter three - caffeine and sport. Editor(s): Fidel Toldrá. Adv Food Nutr Res. 2023;106:95–127. Academic Press. PubMed
Dexheimer JD, Schroeder ET, Sawyer BJ, et al. Physiological performance measures as indicators of Crossfit® performance. Sports. 2019;7(4):93. doi: 10.3390/sports7040093 PubMed DOI PMC
Feito Y, Heinrich KM, Butcher SJ, et al. High-Intensity Functional Training (HIFT): definition and research implications for improved fitness. Sports. 2018;6(3):76. doi: 10.3390/sports6030076 PubMed DOI PMC
Kapsis DP, Tsoukos A, Psarraki MP, et al. Changes in body composition and strength after 12 weeks of high-intensity functional training with two different loads in physically active men and women: a randomized controlled study. Sports. 2022;10(1):7. doi: 10.3390/sports10010007 PubMed DOI PMC
Durkalec-Michalski K, Zawieja EE, Zawieja BE, et al. Evaluation of the repeatability and reliability of the cross-training specific fight gone bad workout and its relation to aerobic fitness. Sci Rep. 2021;11(1):7263. doi: 10.1038/s41598-021-86660-x PubMed DOI PMC
Lorenzo Calvo J, Fei X, Domínguez R, et al. Caffeine and cognitive functions in sports: a systematic review and meta-analysis. Nutrients. 2021;13(3):868. doi: 10.3390/nu13030868 PubMed DOI PMC
Hogervorst E, Riedel WJ, Kovacs E, et al. Caffeine improves cognitive performance after strenuous physical exercise. Int J Sports Med. 1999;20(6):354–361. doi: 10.1055/s-2007-971144 PubMed DOI
Bello ML, Walker AJ, McFadden BA, et al. The effects of TeaCrine® and caffeine on endurance and cognitive performance during a simulated match in high-level soccer players. J Int Soc Sports Nutr. 2019;16(1):20. doi: 10.1186/s12970-019-0287-6 PubMed DOI PMC
Briggs I, Chidley JB, Chidley C, et al. Effects of caffeine ingestion on human standing balance: a systematic review of placebo-controlled trials. Nutrients. 2021;13(10):3527. doi: 10.3390/nu13103527 PubMed DOI PMC
Guest N, Corey P, Vescovi J, et al. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med Sci Sports Exerc. 2018;50(8):1570–1578. doi: 10.1249/MSS.0000000000001596 PubMed DOI
Barreto G, Grecco B, Merola P, et al. Novel insights on caffeine supplementation, CYP1A2 genotype, physiological responses and exercise performance. Eur J Appl Physiol. 2021;121(3):749–769. doi: 10.1007/s00421-020-04571-7 PubMed DOI
Nehlig A, Alexander SPH.. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol Rev. 2018;70(2):384–411. doi: 10.1124/pr.117.014407 PubMed DOI
Magkos F, Kavouras SA. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr. 2005;45(7–8):535–562. doi: 10.1080/1040-830491379245 PubMed DOI
Durkalec-Michalski K, Kamińska J, Saunders B, et al. Does sodium bicarbonate based extra-cellular buffering support reduce high intensity exercise-induced fatigue and enhance short-term recovery assessed by selected blood biochemical indices? Biol Sport. 2023;41(1):17–27. doi: 10.5114/biolsport.2024.125591 PubMed DOI PMC
Durkalec-Michalski K, Domagalski A, Główka N, et al. Effect of a four-week vegan diet on performance, training efficiency and blood biochemical indices in crossfit-trained participants. Nutrients. 2022;14(4):894. doi: 10.3390/nu14040894 PubMed DOI PMC
Durkalec-Michalski, K, Nowaczyk, PM, Główka, N, et al. Dose-dependent effect of caffeine supplementation on judo-specific performance and training activity: a randomized placebo-controlled crossover trial. J Int Soc Sports Nutr. 2019;16(1):38. doi: 10.1186/s12970-019-0305-8 PubMed DOI PMC
Nieber K. The impact of coffee on health. Planta Med. 2017;83(16):1256–1263. doi: 10.1055/s-0043-115007 PubMed DOI
Durkalec-Michalski K, Zawieja EE, Podgórski T, et al. The effect of chronic progressive-dose sodium bicarbonate ingestion on CrossFit-like performance: a double-blind, randomized cross-over trial. PloS One. 2018;13(5):e0197480. doi: 10.1371/journal.pone.0197480 PubMed DOI PMC
Baláková V, Boschek P, Skalíková L. Selected cognitive abilities in elite youth soccer players. J Hum Kinet. 2015;49(1):267–276. doi: 10.1515/hukin-2015-0129 PubMed DOI PMC
Bonnet CT. Advantages and disadvantages of stiffness instructions when studying postural control. Gait Posture. 2016;46:208–210. doi: 10.1016/j.gaitpost.2015.12.026 PubMed DOI
van Melick N, Meddeler BM, Hoogeboom TJ, et al. How to determine leg dominance: the agreement between self-reported and observed performance in healthy adults. PloS One. 2017;12(12):e0189876. doi: 10.1371/journal.pone.0189876 PubMed DOI PMC
Zawieja E, Chmurzynska A, Anioła J, et al. The effect of caffeine supplementation on resistance and jumping exercise: the interaction with CYP1A2 and ADORA2A genotypes. Nutraceuticals. 2023;3(2):274–289. doi: 10.3390/nutraceuticals3020022 DOI
Kim HY. Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restor Dent Endod. 2013;38(1):52–54. doi: 10.5395/rde.2013.38.1.52 PubMed DOI PMC
Fogaça LJ, Santos SL, Soares RC, et al. Effect of caffeine supplementation on exercise performance, power, markers of muscle damage, and perceived exertion in trained CrossFit men: a randomized, double-blind, placebo-controlled crossover trial. J Sports Med Phys Fitness. 2020;60(2):181–188. doi: 10.23736/S0022-4707.19.10043-6 PubMed DOI
Stein JA, Ramirez M, Heinrich KM. Acute caffeine supplementation does not improve performance in trained Crossfit® athletes. Sports. 2020;8(4):54. doi: 10.3390/sports8040054 PubMed DOI PMC
Ziyaiyan A, Shabkhiz F, Hofmeister M. Supplementation of caffeine and sodium bicarbonate together could not improve performance and performance-related factors in CrossFit participants: a randomized, double-blind, placebo-controlled study. J Int Soc Sports Nutr. 2023;20(1):2206390. doi: 10.1080/15502783.2023.2206390 PubMed DOI PMC
Caetano ML, Souza MLR, Loureiro LL, et al. The effects of acute caffeine supplementation on performance in trained CrossFit® athletes: a randomized, double-blind, placebo-controlled, and crossover trial. Science & Sports. 2023;38(7):701–707. doi: 10.1016/j.scispo.2022.04.007 DOI
Barreto G, Esteves G, Marticorena F, et al. Caffeine, CYP1A2 genotype and exercise performance: a systematic review and meta-analysis. Med Sci Sports Exerc. 2023; Epub ahead of print. PMID: 37844569. PubMed
Fulton JL, Dinas PC, Carrillo AE, et al. Impact of genetic variability on physiological responses to caffeine in humans: a systematic review. Nutrients. 2018;10(10):1373. doi: 10.3390/nu10101373 PubMed DOI PMC
Womack CJ, Saunders MJ, Bechtel MK, et al. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J Int Soc Sports Nutr. 2012;9(1):7. doi: 10.1186/1550-2783-9-7 PubMed DOI PMC
Wong O, Marshall K, Sicova M, et al. CYP1A2 genotype modifies the effects of caffeine compared with placebo on muscle strength in competitive male athletes. Int J Sport Nutr Exerc Metab. 2021;31(5):420–426. doi: 10.1123/ijsnem.2020-0395 PubMed DOI
Carswell AT, Howland K, Martinez-Gonzalez B, et al. The effect of caffeine on cognitive performance is influenced by CYP1A2 but not ADORA2A genotype, yet neither genotype affects exercise performance in healthy adults. Eur J Appl Physiol. 2020;120(7):1495–1508. doi: 10.1007/s00421-020-04384-8 PubMed DOI PMC
Giersch GEW, Boyett JC, Hargens TA, et al. The effect of the CYP1A2 −163 C > a polymorphism on caffeine metabolism and subsequent cycling performance. J Caffeine Adenosine Res. 2018;8(2):65–70. doi: 10.1089/caff.2017.0028 DOI
Glaister M, Chopra K, Pereira De Sena AL, et al. Caffeine, exercise physiology, and time-trial performance: no effect of ADORA2A or CYP1A2 genotypes. Appl Physiol Nutr Metab. 2021;46(6):541–551. doi: 10.1139/apnm-2020-0551 PubMed DOI
Grgic J, Pickering C, Bishop DJ, et al. CYP1A2 genotype and acute effects of caffeine on resistance exercise, jumping, and sprinting performance. J Int Soc Sports Nutr. 2020;17(1):21. doi: 10.1186/s12970-020-00349-6 PubMed DOI PMC
Loy BD, O’Connor PJ, Lindheimer JB, et al. Caffeine is ergogenic for adenosine A2A receptor gene (ADORA2A) t allele homozygotes: a pilot study. J Caffeine Res. 2015;5(2):73–81. doi: 10.1089/jcr.2014.0035 DOI
Muñoz A, López-Samanes Á, Aguilar-Navarro M, et al. Effects of CYP1A2 and ADORA2A genotypes on the ergogenic response to caffeine in professional handball players. Genes. 2020;11(8):933. doi: 10.3390/genes11080933 PubMed DOI PMC
Glaister M, Williams BH, Muniz-Pumares D, et al. The effects of caffeine supplementation on physiological responses to submaximal exercise in endurance-trained men. PloS One. 2016;11(8):e0161375. doi: 10.1371/journal.pone.0161375 PubMed DOI PMC
Black CD, Waddell DE, Gonglach AR. Caffeine’s ergogenic effects on cycling: neuromuscular and perceptual factors. Med Sci Sports Exerc. 2015;47(6):1145–1158. doi: 10.1249/MSS.0000000000000513 PubMed DOI
Graham TE, Helge JW, MacLean DA, et al. Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J Physiol. 2000;529(Pt 3):837–847. doi: 10.1111/j.1469-7793.2000.00837.x PubMed DOI PMC
Stadheim HK, Kvamme B, Olsen R, et al. Caffeine increases performance in cross-country double-poling time trial exercise. Med Sci Sports Exerc. 2013;45(11):2175–2183. doi: 10.1249/MSS.0b013e3182967948 PubMed DOI
Simmonds MJ, Minahan CL, Sabapathy S. Caffeine improves supramaximal cycling but not the rate of anaerobic energy release. Eur J Appl Physiol. 2010;109(2):287–295. doi: 10.1007/s00421-009-1351-8 PubMed DOI
Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med. 2009;39(10):813–832. doi: 10.2165/11317770-000000000-00000 PubMed DOI
Henderson GC, Horning MA, Lehman SL, et al. Pyruvate shuttling during rest and exercise before and after endurance training in men. J Appl Physiol. 2004;97(1):317–325. (1985). doi: 10.1152/japplphysiol.01367.2003 PubMed DOI
Podgorski T, Adrian J, Nowak A. Changes in lactate, pyruvate and glucose levels in field hockey players under different training and match stimuli. Trends Sport Sci. 2015;3(22):145–152.
Grgic J, Mikulic P, Schoenfeld BJ, et al. The influence of caffeine supplementation on resistance exercise: a review. Sports Med. 2019;49(1):17–30. doi: 10.1007/s40279-018-0997-y PubMed DOI
Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports. 2005;15(2):69–78. doi: 10.1111/j.1600-0838.2005.00445.x PubMed DOI
Duncan MJ, Oxford SW. The effect of caffeine ingestion on mood state and bench press performance to failure. J Strength Cond Res. 2011;25(1):178–185. doi: 10.1519/JSC.0b013e318201bddb PubMed DOI
Crawford DA, Drake NB, Carper MJ, et al. Validity, reliability, and application of the session-RPE method for quantifying training loads during high intensity functional training. Sports. 2018;6(3):84. doi: 10.3390/sports6030084 PubMed DOI PMC
Bunsawat K, White DW, Kappus RM, et al. Caffeine delays autonomic recovery following acute exercise. Eur J Prev Cardiol. 2015;22(11):1473–1479. doi: 10.1177/2047487314554867 PubMed DOI
Benjamim CJR, Kliszczewicz B, Garner DM, et al. Is caffeine recommended before exercise? a systematic review to investigate its impact on cardiac autonomic control via heart rate and its variability. J Am Coll Nutr. 2020;39(6):563–573. doi: 10.1080/07315724.2019.1705201 PubMed DOI
Smirmaul BPC, de Moraes AC, Angius L, et al. Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia. Eur J Appl Physiol. 2017;117(1):27–38. doi: 10.1007/s00421-016-3496-6 PubMed DOI PMC
Lopes-Silva JP, Silva Santos JF, Branco BHM, et al. Caffeine ingestion increases estimated glycolytic metabolism during taekwondo combat simulation but does not improve performance or parasympathetic reactivation. PloS One. 2015;10(11):e0142078. doi: 10.1371/journal.pone.0142078 PubMed DOI PMC
Gonzaga LA, Vanderlei LCM, Gomes RL, et al. Caffeine affects autonomic control of heart rate and blood pressure recovery after aerobic exercise in young adults: a crossover study. Sci Rep. 2017;7(1):14091. doi: 10.1038/s41598-017-14540-4 PubMed DOI PMC
Kliszczewicz B, Bechke E, Williamson C, et al. The influence of citrus aurantium and caffeine complex versus placebo on the cardiac autonomic response: a double blind crossover design. J Int Soc Sports Nutr. 2018;15(1):34. doi: 10.1186/s12970-018-0240-0 PubMed DOI PMC
Saville CWN, de Morree HM, Dundon NM, et al. Effects of caffeine on reaction time are mediated by attentional rather than motor processes. Psychopharmacol (Berl). 2018;235(3):749–759. doi: 10.1007/s00213-017-4790-7 PubMed DOI PMC
Share B, Sanders N, Kemp J. Caffeine and performance in clay target shooting. J Sports Sci. 2009;27(6):661–666. doi: 10.1080/02640410902741068 PubMed DOI
Church DD, Hoffman JR, LaMonica MB, et al. The effect of an acute ingestion of Turkish coffee on reaction time and time trial performance. J Int Soc Sports Nutr. 2015;12(1):37. doi: 10.1186/s12970-015-0098-3 PubMed DOI PMC
Crowe MJ, Leicht AS, Spinks WL. Physiological and cognitive responses to caffeine during repeated, high-intensity exercise. Int J Sport Nutr Exerc Metab. 2006;16(5):528–544. doi: 10.1123/ijsnem.16.5.528 PubMed DOI
Russell M, Reynolds NA, Crewther BT, et al. Physiological and performance effects of caffeine gum consumed during a simulated half-time by professional academy rugby union players. J Strength Cond Res. 2020;34(1):145–151. doi: 10.1519/JSC.0000000000002185 PubMed DOI
Ali, A, O’Donnell, J, Von Hurst, P, et al. Caffeine ingestion enhances perceptual responses during intermittent exercise in female team-game players. J Sports Sci. 2016;34(4):330–341. doi: 10.1080/02640414.2015.1052746 PubMed DOI
Salinero JJ, Lara B, Ruiz-Vicente D, et al. CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: a pilot study. Nutrients. 2017;9(3):269. doi: 10.3390/nu9030269 PubMed DOI PMC
Nuotto E, Mattila MJ, Seppälä T, et al. Coffee and caffeine and alcohol effects on psychomotor function. Clin Pharmacol Ther. 1982;31(1):68–76. doi: 10.1038/clpt.1982.11 PubMed DOI
Swift CG, Tiplady B. The effects of age on the response to caffeine. Psychopharmacol (Berl). 1988;94(1):29–31. doi: 10.1007/BF00735876 PubMed DOI
Liguori A, Robinson JH. Caffeine antagonism of alcohol-induced driving impairment. Drug Alcohol Depend. 2001;63(2):123–129. doi: 10.1016/S0376-8716(00)00196-4 PubMed DOI
Ben Waer F, Laatar R, Srihi S, et al. Acute effects of low versus high caffeine dose consumption on postural balance in middle-aged women. J Women Aging. 2021;33(6):620–634. doi: 10.1080/08952841.2020.1735288 PubMed DOI
Glaister M. Multiple-sprint work: methodological, physiological, and experimental issues. Int J Sports Physiol Perform. 2008;3(1):107–112. doi: 10.1123/ijspp.3.1.107 PubMed DOI