The effect of caffeine dose on caffeine and paraxanthine changes in serum and saliva and CYP1A2 enzyme activity in athletes: a randomized placebo-controlled crossover trial

. 2024 Nov 11 ; 21 (1) : 90. [epub] 20241111

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39529054
Odkazy

PubMed 39529054
PubMed Central PMC11555877
DOI 10.1186/s12986-024-00863-3
PII: 10.1186/s12986-024-00863-3
Knihovny.cz E-zdroje

BACKGROUND: Although caffeine (CAF) supplementation has been shown to improve exercise performance, its dose-dependent effect on CAF metabolism has not been sufficiently investigated. The aim of this study was to evaluate the effects of 3, 6 and 9 mg of CAF/kgBM on changes of CAF and paraxanthine (PRX) in the serum and saliva at four time-points. METHODS: In a randomized, double-blind, placebo-controlled crossover design, acute pre-exercise supplementation in 26 moderately-trained athletes, participating in high-intensity functional training (HIFT), was examined. The study protocol involved CAF/PRX biochemical analyses of serum and saliva with respect to CYP1A2 polymorphism and CYP1A2 enzyme activity. RESULTS: Despite significant differences between the serum and saliva levels of CAF and PRX, there was no difference in the PRX/CAF ratio. The interaction effect of dose and time-points for PRX concentration was revealed. The main effects of dose were observed for CAF and the PRX/CAF ratio. The main effect of time-points was registered only for serum CAF. CONCLUSIONS: Dose- and time-dependent effect of CAF supplementation on CAF and PRX in the serum and saliva of athletes was confirmed, but there was no effect of the CAF dose on CYP1A2 enzyme activity, nor was there an interaction of CYP1A2 with enzyme inducibility. The CAF/PRX correlation indicated the possibility of interchangeable use of serum and/or saliva analyses in exercise studies. CLINICAL TRIAL REGISTRATION: This trial was registered prospectively at ClinicalTrials.gov (NCT03822663, registration date: 30/01/2019).

Zobrazit více v PubMed

Nehlig A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol Rev. 2018;70:384–411. PubMed

Arnaud MJ. Pharmacokinetics and metabolism of natural methylxanthines in animal and man. Handb Exp Pharmacol. 2011;33–91. PubMed

Reddy VS, Shiva S, Manikantan S, et al. Pharmacology of caffeine and its effects on the human body. Eur J Med Chem Rep. 2024;10:100138.

Kamimori GH, Karyekar CS, Otterstetter R, et al. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int J Pharm. 2002;234:159–67. PubMed

Wickham KA, Spriet LL. Administration of caffeine in alternate forms. Sports Med. 2018;48:79–91. PubMed PMC

Grgic J. Effects of caffeine on resistance exercise: a review of recent research. Sports Med. 2021;51:2281–98. PubMed

Guest NS, VanDusseldorp TA, Nelson MT, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021;18:1. PubMed PMC

Urry E, Jetter A, Landolt H-P. Assessment of CYP1A2 enzyme activity in relation to type-2 diabetes and habitual caffeine intake. Nutr Metab. 2016;13:66. PubMed PMC

Saunders B, da Costa LR, de Souza RAS, Barreto G, Marticorena FM. Caffeine and sport. Adv Food Nutr Res. 2023;106:95–127. PubMed

van Doude LJAE, Koopmans RP, Guchelaar H-J. Two novel methods for the determination of CYP1A2 activity using the paraxanthine/caffeine ratio. Fundam Clin Pharmacol. 2003;17:355–62. PubMed

Perera V, Gross AS, McLachlan AJ. Caffeine and paraxanthine HPLC assay for CYP1A2 phenotype assessment using saliva and plasma. Biom Chromatogr. 2010;24:1136–44. PubMed

Perera V, Gross AS, Xu H, McLachlan AJ. Pharmacokinetics of caffeine in plasma and saliva, and the influence of caffeine abstinence on CYP1A2 metrics. J Pharm Pharmacol. 2011;63:1161–8. PubMed

Perera V, Gross AS, McLachlan AJ. Measurement of CYP1A2 activity: a focus on caffeine as a probe. Curr Drug Metab. 2012;13:667–78. PubMed

Grzegorzewski J, Bartsch F, Köller A, König M. Pharmacokinetics of caffeine: a systematic analysis of reported data for application in metabolic phenotyping and liver function testing. Front Pharmacol. 2022;12:752826. PubMed PMC

Durkalec-Michalski K, Kamińska J, Saunders B, Pokrywka A, Łoniewski I, Steffl M, Podgórski T. Does sodium bicarbonate based extra-cellular buffering support reduce high intensity exercise-induced fatigue and enhance short-term recovery assessed by selected blood biochemical indices? Biol Sport. 2023;41:17–27. PubMed PMC

Durkalec-Michalski K, Domagalski A, Główka N, Kamińska J, Szymczak D, Podgórski T. Effect of a four-week vegan diet on performance, training efficiency and blood biochemical indices in crossfit-trained participants. Nutrients. 2022;14:894. PubMed PMC

Magkos F, Kavouras SA. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr. 2005;45:535–62. PubMed

Nieber K. The impact of coffee on health. Planta Med. 2017;83:1256–63. PubMed

Główka N, Malik J, Podgórski T, Stemplewski R, Maciaszek J, Ciążyńska J, Zawieja EE, Chmurzynska A, Nowaczyk PM, Durkalec-Michalski K. The dose-dependent effect of caffeine supplementation on performance, reaction time and postural stability in CrossFit - a randomized placebo-controlled crossover trial. J Int Soc Sports Nutr. 2024;21:2301384. PubMed PMC

Durkalec-Michalski K, Zawieja EE, Zawieja BE, Podgórski T. Evaluation of the repeatability and reliability of the cross-training specific Fight Gone Bad workout and its relation to aerobic fitness. Sci Rep. 2021;11:7263. PubMed PMC

Durkalec-Michalski K, Nowaczyk PM, Główka N, Grygiel A. Dose-dependent effect of caffeine supplementation on judo-specific performance and training activity: a randomized placebo-controlled crossover trial. J Int Soc Sports Nutr. 2019;16:38. PubMed PMC

Durkalec-Michalski K, Zawieja EE, Podgórski T, Łoniewski I, Zawieja BE, Warzybok M, Jeszka J. The effect of chronic progressive-dose sodium bicarbonate ingestion on CrossFit-like performance: A double-blind, randomized cross-over trial. PLoS ONE. 2018;13:e0197480. PubMed PMC

Zawieja E, Chmurzynska A, Anioła J, Zawieja BE, Cholewa J. The effect of caffeine supplementation on resistance and jumping exercise: the interaction with CYP1A2 and ADORA2A genotypes. Nutraceuticals. 2023;3:274–89.

Fuhr U, Rost KL, Engelhardt R, Sachs M, Liermann D, Belloc C, Beaune P, Janezic S, Grant D, Meyer UA, Staib AH. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenetics. 1996;6:159–76. PubMed

Fuhr U, Rost KL. Simple and reliable CYP1A2 phenotyping by the paraxanthine/caffeine ratio in plasma and in saliva. Pharmacogenetics. 1994;4:109–16. PubMed

Spigset O, Hägg S, Söderström E, Dahlqvist R. The paraxanthine:caffeine ratio in serum or in saliva as a measure of CYP1A2 activity: when should the sample be obtained? Pharmacogenetics. 1999;9:409–12. PubMed

Grgic J, Grgic I, Pickering C, et al. Wake up and smell the coffee: caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br J Sports Med. 2020;54:681–8. PubMed

Scott NR, Chakraborty J, Marks V. Determination of caffeine, theophylline and theobromine in serum and saliva using high-performance liquid chromatography. Ann Clin Biochem. 1984;21(Pt 2):120–4. PubMed

Southward K, Rutherfurd-Markwick KJ, Ali A. The effect of acute caffeine ingestion on endurance performance: a systematic review and meta-analysis. Sports Med. 2018;48:1913–28. PubMed

Davenport AD, Jameson TSO, Kilroe SP, Monteyne AJ, Pavis GF, Wall BT, Dirks ML, Alamdari N, Mikus CR, Stephens FB. A randomised, placebo-controlled, crossover study investigating the optimal timing of a caffeine-containing supplement for exercise performance. Sports Med Open. 2020;6:17. PubMed PMC

Graham TE, Spriet LL. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol. 1995;78:867–74. PubMed

Lajin B, Schweighofer N, Goessler W, Obermayer-Pietsch B. The determination of the Paraxanthine/Caffeine ratio as a metabolic biomarker for CYP1A2 activity in various human matrices by UHPLC-ESIMS/MS. Talanta. 2021;234:122658. PubMed

Jacobson AF, Cerqueira MD, Raisys V, Shattuc S. Serum caffeine levels after 24 hours of caffeine abstention: observations on clinical patients undergoing myocardial perfusion imaging with dipyridamole or adenosine. Eur J Nucl Med. 1994;21:23–6. PubMed

Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44(Suppl 2):S175–184. PubMed PMC

Blanchard J, Sawers SJ. Comparative pharmacokinetics of caffeine in young and elderly men. J Pharmacokinet Biopharm. 1983;11:109–26. PubMed

Benowitz NL, Jacob P III, Mayan H, Denaro C. Sympathomimetic effects of paraxanthine and caffeine in humans. Clin Pharmacol Ther. 1995;58:684–91. PubMed

Collomp K, Anselme F, Audran M, Gay JP, Chanal JL, Prefaut C. Effects of moderate exercise on the pharmacokinetics of caffeine. Eur J Clin Pharmacol. 1991;40:279–82. PubMed

Simmonds MJ, Minahan CL, Sabapathy S. Caffeine improves supramaximal cycling but not the rate of anaerobic energy release. Eur J Appl Physiol. 2010;109:287–95. PubMed

Sampaio-Jorge F, Morales AP, Pereira R, Barth T, Ribeiro BG. Caffeine increases performance and leads to a cardioprotective effect during intense exercise in cyclists. Sci Rep. 2021;11:24327. PubMed PMC

Stadheim HK, Kvamme B, Olsen R, Drevon CA, Ivy JL, Jensen J. Caffeine increases performance in cross-country double-poling time trial exercise. Med Sci Sports Exerc. 2013;45:2175–83. PubMed

Skinner TL, Jenkins DG, Taaffe DR, Leveritt MD, Coombes JS. Coinciding exercise with peak serum caffeine does not improve cycling performance. J Sci Med Sport. 2013;16(1):54–9. PubMed

Hetzler RK, Knowlton RG, Somani SM, Brown DD, Perkins RM 3rd. Effect of paraxanthine on FFA mobilization after intravenous caffeine administration in humans. J Appl Physiol (1985). 1990;68(1):44–7. PubMed

Desbrow B, Barrett CM, Minahan CL, Grant GD, Leveritt MD. Caffeine, cycling performance, and exogenous CHO oxidation: a dose-response study. Med Sci Sports Exerc. 2009;41(9):1744–51. PubMed

Robertson D, Frölich JC, Carr RK, Watson JT, Hollifield JW, Shand DG, Oates JA. Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N Engl J Med. 1978;26(4):181–6. PubMed

Mesquita RNO, Cronin NJ, Kyröläinen H, Hintikka J, Avela J. Effects of caffeine on neuromuscular function in a non-fatigued state and during fatiguing exercise. Exp Physiol. 2020;105(4):690–706. PubMed

Bell DG, McLellan TM. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol. 2002;93:1227–34. PubMed

Conway KJ, Orr R, Stannard SR. Effect of a divided caffeine dose on endurance cycling performance, postexercise urinary caffeine concentration, and plasma paraxanthine. J Appl Physiol (1985). 2003;94:1557–62. PubMed

Skinner TL, Jenkins DG, Leveritt MD, McGorm A, Bolam KA, Coombes JS, Taaffe DR. Factors influencing serum caffeine concentrations following caffeine ingestion. J Sci Med Sport. 2014;17(5):516–20. PubMed

Skinner TL, Jenkins DG, Folling J, Leveritt MD, Coombes JS, Taaffe DR. Influence of carbohydrate on serum caffeine concentrations following caffeine ingestion. J Sci Med Sport. 2013;16(4):343–7. PubMed

Talanian JL, Spriet LL. Low and moderate doses of caffeine late in exercise improve performance in trained cyclists. Appl Physiol Nutr Metab. 2016;41:850–5. PubMed

Desbrow B, Leveritt M. Awareness and use of caffeine by athletes competing at the 2005 Ironman Triathlon World Championships. Int J Sport Nutr Exerc Metab. 2006;16:545–58. PubMed

Kovacs EM, Stegen JHCH, Brouns F. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol (1985). 1998;85:709–15. PubMed

Nordmark A, Lundgren S, Cnattingius S, Rane A. Dietary caffeine as a probe agent for assessment of cytochrome P4501A2 activity in random urine samples. Br J Clin Pharmacol. 1999;47(4):397–402. PubMed PMC

Han XM, Ou-Yang DS, Lu PX, Jiang CH, Shu Y, Chen XP, Tan ZR, Zhou HH. Plasma caffeine metabolite ratio (17X/137X) in vivo associated with G-2964A and C734A polymorphisms of human CYP1A2. Pharmacogenetics. 2001;11(5):429–35. PubMed

Guest N, Corey P, Vescovi J, El-Sohemy A, Caffeine. CYP1A2 genotype, and endurance performance in athletes. Med Sci Sports Exerc. 2018;50(8):1570–8. PubMed

Dobrinas M, Cornuz J, Oneda B, Kohler Serra M, Puhl M, Eap CB. Impact of smoking, smoking cessation, and genetic polymorphisms on CYP1A2 activity and inducibility. Clin Pharmacol Ther. 2011;90(1):117–25. PubMed

Gunes A, Dahl M-L. Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics. 2008;9:625–37. PubMed

Gunes A, Ozbey G, Vural EH, Uluoglu C, Scordo MG, Zengil H, Dahl ML. Influence of genetic polymorphisms, smoking, gender and age on CYP1A2 activity in a Turkish population. Pharmacogenomics. 2009;10(5):769–78. PubMed

Tian DD, Natesan S, White JR, Paine J. Effects of Common CYP1A2 Genotypes and Other Key Factors on Intraindividual Variation in the Caffeine Metabolic Ratio: An Exploratory Analysis. Clin Transl Sci. 2019;12(1):39–46. PubMed PMC

Zobrazit více v PubMed

ClinicalTrials.gov
NCT03822663

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...