Nutrition in CrossFit® - scientific evidence and practical perspectives: a systematic scoping review

. 2025 Dec ; 22 (1) : 2509674. [epub] 20250605

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, scoping review

Perzistentní odkaz   https://www.medvik.cz/link/pmid40471841

BACKGROUND: CrossFitⓇ sessions and competitions are characterized by high-intensity challenges that combine aerobic and anaerobic activities with short recovery periods. As a result, effective nutritional practices play a crucial role in optimizing performance and enhancing recovery. Therefore, nutritional practices are central to optimizing performance and accelerating recovery. This review aims to summarize current evidence on nutritional and ergogenic aid responses to CrossFitⓇ practice. METHODS: The search was conducted in four electronic databases (PubMed, Web of Science, Scopus and SportDiscus). Gray literature was also extracted for studies exploring the nutritional habits of CrossFitⓇ participants as well as the ingestion of ergogenic aids. In addition, a meta-analysis was conducted to examine the impacts of dietary habits and ergogenic aids on performance. RESULTS: Forty-nine studies met the eligibility criteria and were included in the current review. Carbohydrate intake was below the recommendations for athletes, although protein ingestion remains adequate. High-carbohydrate diets had a positive effect on CrossFitⓇ performance. The evidence concerning the effects of a ketogenic diet on performance is limited. When used prior to or during the workout, the impact of carbohydrates on CrossFitⓇ performance was negligible, whereas the effect of caffeine was significant. Ergogenic aids, particularly creatine and protein, are commonly used by CrossFitⓇ participants. CONCLUSION: The standard diets recommended to CrossFitⓇ participants need to be revised because they are characterized by lower values of carbohydrates. Caffeine should be used prior to or during the CrossFitⓇ sessions. Regarding the impact of ergogenic aids on recovery, future studies are needed.

Charles University Sport Sciences Biomedical Department Prague Czechia

COD Center of Sports Optimization Sporting Clube de Portugal Lisboa Portugal

Florida State University Department of Health Nutrition and Food Sciences Tallahassee FL USA

Florida State University Institute of Sports Sciences and Medicine Tallahassee FL USA

Gdansk University of Physical Education and Sport Gdańsk Poland

Instituto Politécnico de Viana do Castelo Rua Escola Industrial e Comercial de Nun'Álvares Escola Superior Desporto e Lazer Viana do Castelo Portugal

Laboratory of Robotics and Engineering Systems Interactive Technologies Institute Funchal Portugal

Manchester Metropolitan University Department of Sport and Exercise Science Institute of Sport Manchester UK

Poznan University of Physical Education Department of Sports Dietetics Poznan Poland

Sport Physical Activity and Health Research and Innovation Center Viana do Castelo Portugal

Universidade Lusófona CIDEFES Centro de Investigação em Desporto Educação Física e Exercício e Saúde Lisboa Portugal

University of Arkansas for Medical Sciences Center for Aging and Longevity Geriatrics Little Rock AR USA

University of Coimbra CIPER FCDEFUC Coimbra Portugal

University of Coimbra Faculty of Sport Sciences and Physical Education Coimbra Portugal

University of KwaZulu Natal Discipline of Biokinetics Exercise and Leisure Sciences Durban South Africa

University of Madeira Department of Physical Education and Sport Funchal Portugal

University of North Paraná Research Group in Physiology and Physical Activity Londrina Brazil

University of the Sunshine Coast School of Health Petrie Queensland Australia

Zobrazit více v PubMed

CrossFit® Growth Statistics: Global Reach, Revenue and Participation Soar . https://worldmetrics.org/crossfit-growth-statistics/consulted2024

Claudino JG, Gabbett TJ, Bourgeois F, et al. CrossFit overview: systematic review and meta-analysis. Sports Med Open. 2018;4(1):11. doi: 10.1186/s40798-018-0124-5 PMID: 29484512; PMCID: PMC5826907. PubMed DOI PMC

Schlegel P. CrossFit® training strategies from the perspective of concurrent training: a systematic review. J Sports Sci Med. 2020;19(4):670–38. PMID: 33239940; PMCID: PMC7675627. PubMed PMC

Rios M, Becker KM, Monteiro AS, et al. Effect of the fran CrossFit workout on oxygen uptake kinetics, energetics, and postexercise muscle function in trained CrossFitters. Int J Sports Physiol Perform. 2024;19(3):299–306. doi: 10.1123/ijspp.2023-0201 PMID: 38194958. PubMed DOI

Mangine GT, Cebulla B, Feito Y.. Normative values for self-reported benchmark workout scores in CrossFit® practitioners. Sports Med Open. 2018;4(1):39. doi: 10.1186/s40798-018-0156-x PMID: 30128825; PMCID: PMC6102159. PubMed DOI PMC

Schlegel P, Režný L, Fialová D. Pilot study: performance-ranking relationship analysis in Czech crossfiters. J Hum Sport Exerc. 2021;16(1):187–198. doi: 10.14198/jhse.2021.161.17 DOI

Fernández JF, Solana RS, Moya D, et al. Acute physiological responses during CrossFit® workouts. Eur J Hum Mov. 2015;35:114–124.

Rios M, Zacca R, Azevedo R, et al. Bioenergetic analysis and fatigue assessment during the fran workout in experienced crossfitters. Int J Sports Physiol Perform. 2023;18(7):786–792. doi: 10.1123/ijspp.2022-0411 PMID: 37225165. PubMed DOI

de Sousa Neto IV, de Sousa NMF, Neto FR, et al. Time course of recovery following CrossFit® Karen benchmark workout in trained men. Front Physiol. 2022;13:899652. doi: 10.3389/fphys.2022.899652 PMID: 36060700; PMCID: PMC9438894. PubMed DOI PMC

Forte LDM, Freire YGC, Júnior JSDS, et al. Physiological responses after two different CrossFit workouts. Biol Sport. 2022;39(2):231–236. doi: 10.5114/biolsport.2021.102928 Epub 2021 Apr 9. PMID: 35309530; PMCID: PMC8919890. PubMed DOI PMC

Tibana RA, De Sousa NMF, Prestes J, et al. Lactate, heart rate and rating of perceived exertion responses to shorter and longer duration CrossFit® training sessions. J Funct Morphol Kinesiol. 2018;3(4):60. doi: 10.3390/jfmk3040060 PMID: 33466988; PMCID: PMC7739245. PubMed DOI PMC

Alsamir Tibana R, Manuel Frade de Sousa N, Prestes J, et al. Is perceived exertion a useful indicator of the metabolic and cardiovascular responses to a metabolic conditioning session of functional fitness? Sports (Basel). 2019;7(7):161. doi: 10.3390/sports7070161 PMID: 31277360; PMCID: PMC6681255. PubMed DOI PMC

Thomas DT, Erdman KA, Burke LM. American college of sports medicine joint position statement. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48(3):543–568. doi: 10.1249/MSS.0000000000000852 Erratum in: Med Sci Sports Exerc. 2017 Jan;49(1):222. PMID: 26891166. PubMed DOI

Gonzalez DE, McAllister MJ, Waldman HS, et al. International society of sports nutrition position stand: tactical athlete nutrition. J Int Soc Sports Nutr. 2022;19(1):267–315. doi: 10.1080/15502783.2022.2086017 PMID: 35813846; PMCID: PMC9261739. PubMed DOI PMC

Maxwell C, Ruth K, Friesen C. Sports nutrition knowledge, perceptions, resources, and advice given by certified CrossFit trainers. Sports (Basel). 2017;5(2):21. doi: 10.3390/sports5020021 PMID: 29910381; PMCID: PMC5968988. PubMed DOI PMC

Coulston AM, Liu GC, Reaven GM. Plasma glucose, insulin and lipid responses to high-carbohydrate low-fat diets in normal humans. Metabolism. 1983;32(1):52–56. doi: 10.1016/0026-0495(83)90155-5 PMID: 6336816. PubMed DOI

Cordain L, Friel J. The paleo diet for athletes: the ancient nutritional formula for peak athletic performance. Harmony/Rodale/Convergent: Rodale Books; 2012.

Burke LM, Cox GR, Culmmings NK, et al. Guidelines for daily carbohydrate intake: do athletes achieve them? Sports Med. 2001;31(4):267–299. doi: 10.2165/00007256-200131040-00003 PMID: 11310548. PubMed DOI

Cermak NM, van Loon LJ. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013;43(11):1139–1155. doi: 10.1007/s40279-013-0079-0 PMID: 23846824. PubMed DOI

Jeukendrup A. A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Med. 2014;44(Suppl S1):S25–33. doi: 10.1007/s40279-014-0148-z PMID: 24791914; PMCID: PMC4008807. PubMed DOI PMC

Santos Quaresma Mvl D, Guazzelli Marques C, Nakamoto FP. Effects of diet interventions, dietary supplements, and performance-enhancing substances on the performance of CrossFit-trained individuals: a systematic review of clinical studies. Nutrition. 2021;82:110994. doi: 10.1016/j.nut.2020.110994 Epub 2020 Aug 28. PMID: 33051114. PubMed DOI

de Souza RAS, da Silva AG, de Souza MF, et al. A systematic review of CrossFit® workouts and dietary and supplementation interventions to Guide nutritional strategies and future research in CrossFit®. Int J Sport Nutr Exerc Metab. 2021;31(2):187–205. doi: 10.1123/ijsnem.2020-0223 Epub 2021 Jan 29. PMID: 33513565. PubMed DOI

Higgins JP, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions. Chichester (UK): John Wiley & Sons; 2019.

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71 PMID: 33782057; PMCID: PMC8005924. PubMed DOI PMC

Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–473. doi: 10.7326/M18-0850 Epub 2018 Sep 4. PMID: 30178033. PubMed DOI

Lefebvre C, Glanville J, Briscoe S, et al. Technical supplement to chapter 4: searching for and selecting studies. In: Higgins J; Thomas J; Chandler J; Cumpston M; Li T; Page MWelch V, editors. Cochrane handbook for systematic reviews of interventions version 6.4 (updated February 2024). Cochrane; 2024. Available from: www.training.cochrane.org/handbook

Wojtyniak JG, Britz H, Selzer D, et al. Data digitizing: accurate and precise data extraction for quantitative systems pharmacology and physiologically-based pharmacokinetic modeling. CPT Pharmacometrics Syst Pharmacol. 2020;9(6):322–331. doi: 10.1002/psp4.12511 Epub 2020 Jun 16. PMID: 32543786; PMCID: PMC7306621. PubMed DOI PMC

Hopkins WG, Marshall SW, Batterham AM, et al. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. doi: 10.1249/MSS.0b013e31818cb278 PMID: 19092709. PubMed DOI

López-López JA, Page MJ, Lipsey MW, et al. Dealing with effect size multiplicity in systematic reviews and meta-analyses. Res Synth Methods. 2018;9(3):336–351. doi: 10.1002/jrsm.1310 Epub 2018 Jul 3. PMID: 29971966. PubMed DOI

Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–1558. doi: 10.1002/sim.1186 PMID: 12111919. PubMed DOI

Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–463. doi: 10.1111/j.0006-341x.2000.00455.x PMID: 10877304. PubMed DOI

National Heart, Lung, and Blood Institute . Quality assessment tool for observational cohort and cross-sectional studies. 2019. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools

Cashin AG, McAuley JH. Clinimetrics: physiotherapy evidence database (PEDro) scale. J Physiother. 2020;66(1):59. doi: 10.1016/j.jphys.2019.08.005 Epub 2019 Sep 11. PMID: 31521549. PubMed DOI

de Jesus MGM, de Melo TD, Bassoli BK, et al. Nutritional intervention to improve anthropometric profile in CrossFit® athletes. Revista Brasileira De Nutricao Esportiva. 2024;18:23–30.

Brustolin MR, Souza CT, Souza DT, et al. Assessment of the pre- and post-workout dietary profile of Crossfit® practitioners. Rbne-Revista Brasileira De Nutricao Esportiva. 2024;18:13–22.

Santos Quaresma Mvl D, Marques CG, Magalhães ACO, et al. Prevalence of dietary supplement consumption among CrossFit practitioners. Nutrire. 2023;48(1):9. doi: 10.1186/s41110-023-00193-z Epub 2023 Feb 13. PMID: 38625281; PMCID: PMC9924833. PubMed DOI PMC

Rezende CB, Junqueira ACP, Braga TM. Macronutrient intake, nutritional knowledge and motivation to practice physical activity in two modalities of physical activity. Rbne-Revista Brasileira De Nutricao Esportiva. 2023;17:488.

de Faria CHK, Yamaguchi GD. Use of nutritional ergogenic resources in CrossFit® practitioners. Rbne-Revista Brasileira De Nutricao Esportiva. 2023;17:101–108.

Comerlatto V, Zanella PB, Hoefel AL. Crossfit® practitioners profile with regard to the prevalence of use of dietary supplements and anabolic androgenic steroids as ergogenic resources. Rbne-Revista Brasileira De Nutricao Esportiva. 2023;17(106):575–584.

Rebouças Filho M, Mendonça LP. Perfil alimentar e utilização de suplementos nutricionais de praticantes de cross training do box Crossfit® sertão no município de mossoró. RBNE-Revista Brasileira de Nutrição Esportiva. 2022;16(101):466–474.

Pearson RC, Jenkins NT. Dietary intake of adults who participate in CrossFit® exercise regimens. Sports (Basel). 2022;10(3):38. doi: 10.3390/sports10030038 PMID: 35324647; PMCID: PMC8954808. PubMed DOI PMC

Gonçalves YT, Costa EE, Caetano M, et al. BODY COMPOSITION and DIETARY INTAKE in BRAZILIAN CROSSFIT® ATHLETES: a DESCRIPTIVE STUDY: 1979. Med Sci Sports Exerc. 2022;54(9S):590–590. doi: 10.1249/01.mss.0000882456.75459.cc DOI

Mesquita MHS, Cavalcanti DR. Food profile associated with the nutritional status of Crossfit® practitioners. Rbne-Revista Brasileira De Nutricao Esportiva. 2022;16:247–253.

Brisebois M, Kramer S, Lindsay KG, et al. Dietary practices and supplement use among CrossFit® participants. J Int Soc Sports Nutr. 2022;19(1):316–335. doi: 10.1080/15502783.2022.2086016 PMID: 35813850; PMCID: PMC9261745. PubMed DOI PMC

Vieira IC, Soares Nunes AA, Iori M, et al. Dietary calories and macronutrients intake in Crossfit® practitioners. Med Sci Sports Exerc. 2021;53(8S):275–275. doi: 10.1249/01.mss.0000762284.86696.ff DOI

Higino DD, Freitas RF. Prevalência e fatores associados ao uso de suplementos alimentares e esteroides anabólicos androgênicos em praticantes de CrossFIT®. Rbne-Revista Brasileira De Nutricao Esportiva. 2021;15(90):9–23.

Kuch A. Recreational female CrossFit® athletes and low energy availability [master’s dissertation]. South Dakota State University; 2021.

Gogojewicz A, Śliwicka E, Durkalec-Michalski K. Assessment of dietary intake and nutritional status in CrossFit-trained individuals: a descriptive study. Int J Environ Res Public Health. 2020;17(13):4772. doi: 10.3390/ijerph17134772 PMID: 32630749; PMCID: PMC7369802. PubMed DOI PMC

Zaykova D. Evaluation of diet of people training crossfit®. In: Iancheva T, Djobova S, Kuleva M, editors. International scientific congress on applied sports sciences (Icass)/Balkan scientific congress on physical education. BULGARIA: Sports, Health, Sofia; 2019. p. 20–24.

Brescansin BM, Naziazeno RFT, de Miranda TV. Análise do perfil alimentar de praticantes de CrossFit® na região de belém do pará. Rbne-Revista Brasileira De Nutricao Esportiva. 2019;13(81):830–838.

Terry MS. The relationship of dietary intakes of calcium, magnesium, and zinc on Body composition in female and male athletes of various sports [master’s dissertation]. Drexel Univ. 2019.

Fayad D. A influência da estratégia nutricional no rendimento de atletas competitivos de Crossfit® [Undergraduate thesis]. Centro Universitário de Brasília, Faculdade de Ciências da Educação E Saúde. 2019.

Lins TCL, de Souza LPV. Dieta pré e pós treino em praticantes de crossfit®: um perfil qualitativo do consumo de alimentos e suplementos. Rbne-Revista Brasileira De Nutricao Esportiva. 2019;13(82):946–953.

Pacheco ASR. Nutrição e Crossfit®: características da realidade portuguesa [master’s dissertation]. Faculdade de Medicina Universidade de Coimbra. 2018.

Bueno BA, Ribas MR, Bassan JC. Determination of micro and macronutrients intake for CrossFit® practitions. Rbne-Revista Brasileira De Nutricao Esportiva. 2016;10:579–586.

Freitas JCRDSO. Potencial ergogénico e uso da creatinina e da beta-alanina no contexto do crossFit® e da musculação [master’s dissertation]. Escola Superior de Desporto E Lazer Inst Politécnico de Viana Do Castelo. 2016.

Eroglu MN, Rodríguez-Longobardo C, Ramírez-Adrados A, et al. The effects of 24-h fasting on exercise performance and metabolic parameters in a Pilot study of female CrossFit athletes. Nutrients. 2023;15(22):4841. doi: 10.3390/nu15224841 PMID: 38004236; PMCID: PMC10674902. PubMed DOI PMC

Ficarra S, Di Raimondo D, Navarra GA, et al. Effects of Mediterranean Diet combined with CrossFit training on trained Adults’ performance and body composition. J Pers Med. 2022;12(8):1238. doi: 10.3390/jpm12081238 PMID: 36013187; PMCID: PMC9409826. PubMed DOI PMC

Durkalec-Michalski K, Domagalski A, Główka N, et al. Effect of a four-week vegan diet on performance, training efficiency and blood biochemical indices in CrossFit-trained participants. Nutrients. 2022;14(4):894. doi: 10.3390/nu14040894 PMID: 35215544; PMCID: PMC8878731. PubMed DOI PMC

Durkalec-Michalski K, Nowaczyk PM, Główka N, et al. Is a four-week ketogenic Diet an effective nutritional strategy in CrossFit-trained female and male athletes? Nutrients. 2021;13(3):864. doi: 10.3390/nu13030864 PMID: 33800770; PMCID: PMC8001376. PubMed DOI PMC

Kephart WC, Pledge CD, Roberson PA, et al. The three-month effects of a ketogenic Diet on Body composition, blood parameters, and performance metrics in CrossFit trainees: a Pilot study. Sports (Basel). 2018;6(1):1. doi: 10.3390/sports6010001 PMID: 29910305; PMCID: PMC5969192. PubMed DOI PMC

Escobar KA, Morales J, Vandusseldorp TA. The effect of a moderately Low and high carbohydrate intake on crossfit performance. Int J Exerc Sci. 2016;9(3):460–470. doi: 10.70252/IZLO1608 PMID: 27766133; PMCID: PMC5065325. PubMed DOI PMC

Gregory RM. A low-carbohydrate ketogenic diet combined with six weeks of crossfit® training improves body composition and performance [master’s dissertation]. James Madison Univ. 2016.

Grijota FJ, Toro-Román V, Bartolomé I, et al. Acute effects of 30 g cyclodextrin intake during CrossFit® training on performance and fatigue. J Funct Morphol Kinesiol. 2024;9(1):27. doi: 10.3390/jfmk9010027 PMID: 38390927; PMCID: PMC10885023. PubMed DOI PMC

Główka N, Malik J, Podgórski T, et al. The dose-dependent effect of caffeine supplementation on performance, reaction time and postural stability in CrossFit - a randomized placebo-controlled crossover trial. J Int Soc Sports Nutr. 2024;21(1):2301384. doi: 10.1080/15502783.2023.2301384 Epub 2024 Jan 16. PMID: 38226646; PMCID: PMC10795626. PubMed DOI PMC

Durkalec-Michalski K, Kamińska J, Saunders B, et al. Does sodium bicarbonate based extra-cellular buffering support reduce high intensity exercise-induced fatigue and enhance short-term recovery assessed by selected blood biochemical indices? Biol Sport. 2024;41(1):17–27. doi: 10.5114/biolsport.2024.125591 Epub 2023 May 25. PMID: 38188117; PMCID: PMC10765444. PubMed DOI PMC

Silva de Souza RA, Barreto G, Alves Freire PA, et al. Sodium bicarbonate improved CrossFit® benchmark fran, but not subsequent 500 m rowing performance. Res Sports Med. 2024;32(6):965–980. doi: 10.1080/15438627.2024.2324254 Epub 2024 Mar 14. PMID: 38482841. PubMed DOI

Ziyaiyan A, Shabkhiz F, Hofmeister M. Supplementation of caffeine and sodium bicarbonate together could not improve performance and performance-related factors in CrossFit participants: a randomized, double-blind, placebo-controlled study. J Int Soc Sports Nutr. 2023;20(1):2206390. doi: 10.1080/15502783.2023.2206390 PMID: 37151086; PMCID: PMC10167875. PubMed DOI PMC

Zawieja E, Durkalec-Michalski K, Sadowski M, et al. Betaine supplementation improves CrossFit performance and increases testosterone levels, but has no influence on Wingate power: randomized crossover trial. J Int Soc Sports Nutr. 2023;20(1):2231411. doi: 10.1080/15502783.2023.2231411 PMID: 37409757; PMCID: PMC10327519. PubMed DOI PMC

Mattos MES, Vieira Camargo MK, Santos JR, et al. Respostas bioquímicas e de percepção subjetiva de esforço pós suplementação alimentar em praticantes de Crossfit®: um estudo crossover. Rbne-Revista Brasileira De Nutricao Esportiva. 2023;17:705–713.

Oliveira MDSM, Macêdo PR, Santana NL, et al. Dose-response of acute capsiate supplementation on muscle endurance performance during CrossFit® in trained men: a randomized, crossover and double-blind study. Nutr Metab (Lond). 2023;33:200215. doi: 10.1016/j.hnm.2023.200215 DOI

Martin RAXJ, Hilton NP, Sparks SA, et al. The effects of enteric-coated sodium bicarbonate supplementation on 2 km rowing performance in female CrossFit® athletes. Eur J Appl Physiol. 2023;123(6):1191–1198. doi: 10.1007/s00421-023-05140-4 Epub 2023 Jan 27. PMID: 36705750; PMCID: PMC10191925. PubMed DOI PMC

Gomes GC, Ribeiro P, Binoti ML. Effect of acute sodium bicarbonate supplementation on performance, subjective perception of effort and gastrointestinal discomfort in CrossFit® male practitioners. Rbne-Revista Brasileira De Nutricao Esportiva. 2023;17:439–449.

Caetano ML, Souza MLR, Loureiro LL, et al. The effects of acute caffeine supplementation on performance in trained CrossFit® athletes: a randomized, double-blind, placebo-controlled, and crossover trial. Sci Sports. 2023;38(7):701–707. doi: 10.1016/j.scispo.2022.04.007 PubMed PMID: 172043316. DOI

Silvestre JC. Efeitos da suplementação crônica com β-alanina sobre o desempenho físico e a recuperação em praticantes de Crossfit®: um estudo clínico randomizado e duplo cego [master’s dissertation]. Universidade Federal de São Paulo. 2023.

Fernández-Lázaro D, Seco-Calvo J, Pascual-Fernández J, et al. 6-week supplementation with Tribulus terrestris L. to trained Male CrossFit® athletes on muscle, inflammation, and antioxidant biomarkers: a randomized, single-blind, placebo-controlled trial. Int J Environ Res Public Health. 2022;19(23):16158. doi: 10.3390/ijerph192316158 PMID: 36498228; PMCID: PMC9736311. PubMed DOI PMC

Maroufi K, Razavi R, Gaeini AA, et al. The effects of acute consumption of carbohydrate-protein supplement in varied ratios on CrossFit athletes’ performance in two CrossFit exercises: a randomized cross-over trial. J Sports Med Phys Fitness. 2021;61(10):1362–1368. doi: 10.23736/S0022-4707.20.11774-2 Epub 2020 Dec 14. PMID: 33314886. PubMed DOI

Fernández-Lázaro D, Mielgo-Ayuso J, Del Valle Soto M, et al. The effects of 6 weeks of Tribulus terrestris L. Supplementation on body composition, hormonal response, perceived exertion, and CrossFit® performance: a randomized, single-blind, placebo-controlled study. Nutrients. 2021;13(11):3969. doi: 10.3390/nu13113969 PMID: 34836225; PMCID: PMC8623187. PubMed DOI PMC

Toledo LP, Vieira JG, Dias MR. Acute effect of sodium bicarbonate supplementation on the performance during CrossFit® training. Motriz Revista de Educacao Fis. 2020;26(4). doi: 10.1590/S1980-6574202000040075 DOI

Stein JA, Ramirez M, Heinrich KM. Acute caffeine supplementation does not improve performance in trained CrossFit® athletes. Sports (Basel). 2020;8(4):54. doi: 10.3390/sports8040054 PMID: 32340121; PMCID: PMC7240695. PubMed DOI PMC

Moro T, Badiali F, Fabbri I, et al. Betaine supplementation does not improve muscle hypertrophy or strength Following 6 weeks of cross-fit training. Nutrients. 2020;12(6):1688. doi: 10.3390/nu12061688 PMID: 32516959; PMCID: PMC7352895. PubMed DOI PMC

Lima Ricordi M, da Silva Rodrigues I, Barbosa de Oliveira V, et al. Acute nitrate supplementation does not improve crossfit’s physical performance, a double-blind cross-over study. Revista Brasileira de Nutrição E Esportiva. 2020;14(89):551–559. PubMed PMID: 152050795.

Garnacho-Castaño MV, Palau-Salvà G, Serra-Payá N, et al. Understanding the effects of beetroot juice intake on CrossFit performance by assessing hormonal, metabolic and mechanical response: a randomized, double-blind, crossover design. J Int Soc Sports Nutr. 2020;17(1):56. doi: 10.1186/s12970-020-00388-z PMID: 33187518; PMCID: PMC7666517. PubMed DOI PMC

Fogaça LJ, Santos SL, Soares RC, et al. Effect of caffeine supplementation on exercise performance, power, markers of muscle damage, and perceived exertion in trained CrossFit men: a randomized, double-blind, placebo-controlled crossover trial. J Sports Med Phys Fitness. 2020;60(2):181–188. doi: 10.23736/S0022-4707.19.10043-6 Epub 2019 Oct 25. PMID: 31665873. PubMed DOI

Durkalec-Michalski K, Zawieja EE, Podgórski T, et al. The effect of chronic progressive-dose sodium bicarbonate ingestion on CrossFit-like performance: a double-blind, randomized cross-over trial. PLOS ONE. 2018;13(5):e0197480. doi: 10.1371/journal.pone.0197480 PMID: 29771966; PMCID: PMC5957406. PubMed DOI PMC

Rountree JA, Krings BM, Peterson TJ, et al. Efficacy of carbohydrate ingestion on CrossFit exercise performance. Sports (Basel). 2017;5(3):61. doi: 10.3390/sports5030061 PMID: 29910421; PMCID: PMC5968949. PubMed DOI PMC

Howarth TP, Bozanich R, Bridge M, et al. AD LIBITUM CONSUMPTION of SPORT DRINK DOES NOT IMPROVE PERFORMANCE in CROSSFIT ATHLETES. J Australian Strength Cond. 2017;25(6):30–. PubMed PMID: 135834915.

Kramer SJ, Baur DA, Spicer MT, et al. The effect of six days of dietary nitrate supplementation on performance in trained CrossFit athletes. J Int Soc Sports Nutr. 2016;13(1):39. doi: 10.1186/s12970-016-0150-y PMID: 27822169; PMCID: PMC5093951. PubMed DOI PMC

Outlaw JJ, Wilborn CD, Smith-Ryan AE, et al. Effects of a pre-and post-workout protein-carbohydrate supplement in trained CrossFit individuals. Springerplus. 2014;3(1):369. doi: 10.1186/2193-1801-3-369 PubMed PMID: 25110627; PubMed Central PMCID: PMC4125607. PubMed DOI PMC

Jacobs PL. The acute effects of a commercial pre workout product, wodFuel®, on performance of a CrossFit exercise series, the Cindy. J Int Soc Sports Nutr. 2014;11(sup1):1–2. doi: 10.1186/1550-2783-11-S1-P21 PubMed PMID: 156079320. DOI

Heydenreich J, Kayser B, Schutz Y, et al. Total energy expenditure, energy intake, and body composition in endurance athletes across the training season: a systematic review. Sports Med Open. 2017;3(1):8. doi: 10.1186/s40798-017-0076-1 Epub 2017 Feb 4. PMID: 28161872; PMCID: PMC5292109. PubMed DOI PMC

Magkos F, Yannakoulia M. Methodology of dietary assessment in athletes: concepts and pitfalls. Curr Opin Clin Nutr Metab Care. 2003;6(5):539–549. doi: 10.1097/00075197-200309000-00007 PMID: 12913671. PubMed DOI

Capling L, Beck KL, Gifford JA, et al. Validity of dietary assessment in athletes: a systematic review. Nutrients. 2017;9(12):1313. doi: 10.3390/nu9121313 PMID: 29207495; PMCID: PMC5748763. PubMed DOI PMC

Burke LM, Hawley JA, Wong SH, et al. Carbohydrates for training and competition. J Sports Sci. 2011;29(Suppl 1):S17–27. doi: 10.1080/02640414.2011.585473 Epub 2011 Jun 9. PMID: 21660838. PubMed DOI

Wardenaar F, Brinkmans N, Ceelen I, et al. Macronutrient intakes in 553 Dutch elite and sub-elite endurance, team, and strength athletes: does intake differ between sport disciplines? Nutrients. 2017;9(2):119. doi: 10.3390/nu9020119 PMID: 28208581; PMCID: PMC5331550. PubMed DOI PMC

CROSSFIT® . https://www.sportsdietitians.com.au/factsheets/food-for-your-sport/crossfit/consulted2024

Bytomski JR. Fueling for performance. Sports Health. 2018;10(1):47–53. doi: 10.1177/1941738117743913 Epub 2017 Nov 27. PMID: 29173121; PMCID: PMC5753973. PubMed DOI PMC

Timón R, Olcina G, Camacho-Cardeñosa M, et al. 48-hour recovery of biochemical parameters and physical performance after two modalities of CrossFit workouts. Biol Sport. 2019;36(3):283–289. doi: 10.5114/biolsport.2019.85458 Epub 2019 Jul 31. PMID: 31624423; PMCID: PMC6786329. PubMed DOI PMC

Stellingwerff T, Boit MK, Res PT. International association of athletics federations. Nutritional strategies to optimize training and racing in middle-distance athletes. J Sports Sci. 2007;25(Suppl 1):S17–28. doi: 10.1080/02640410701607213 Erratum in: J Sports Sci. 2009 Apr;27(6):667. PMID: 18049980. PubMed DOI

Stellingwerff T, Morton JP, Burke LM. A framework for periodized nutrition for athletics. Int J Sport Nutr Exerc Metab. 2019;29(2):141–151. doi: 10.1123/ijsnem.2018-0305 Epub 2019 Apr 3. PMID: 30632439. PubMed DOI

Payne J, Welshans M, Seeland S, et al. Nutritional considerations for the power Athlete. Curr Sports Med Rep. 2022;21(7):224–231. doi: 10.1249/JSR.0000000000000975 PMID: 35801723. PubMed DOI

Jäger R, Kerksick CM, Campbell BI, et al. International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2017;14(1):20. doi: 10.1186/s12970-017-0177-8 PMID: 28642676; PMCID: PMC5477153. PubMed DOI PMC

Morton RW, Murphy KT, McKellar SR, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52(6):376–384. doi: 10.1136/bjsports-2017-097608 Epub 2017 Jul 11. Erratum in: Br J Sports Med. 2020 Oct;54(19):e7.PMID: 28698222; PMCID: PMC5867436. PubMed DOI PMC

Carreker JD, Grosicki GJ. Physiological predictors of performance on the CrossFit “murph” challenge. Sports (Basel). 2020;8(7):92. doi: 10.3390/sports8070092 PMID: 32605265; PMCID: PMC7404702. PubMed DOI PMC

Mangine GT, Tankersley JE, McDougle JM, et al. Predictors of CrossFit open performance. Sports (Basel). 2020;8(7):102. doi: 10.3390/sports8070102 PMID: 32698335; PMCID: PMC7404807. PubMed DOI PMC

Mangine GT, McDougle JM, Feito Y. Relationships between body composition and performance in the High-intensity functional training workout “fran” are modulated by competition class and percentile rank. Front Physiol. 2022;13:893771. doi: 10.3389/fphys.2022.893771 PMID: 35721570; PMCID: PMC9197730. PubMed DOI PMC

Hall M, Trojian TH. Creatine supplementation. Curr Sports Med Rep. 2013;12(4):240–244. doi: 10.1249/JSR.0b013e31829cdff2 PMID: 23851411. PubMed DOI

Kreider RB, Kalman DS, Antonio J, et al. International society of sports nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14(1):18. doi: 10.1186/s12970-017-0173-z PMID: 28615996; PMCID: PMC5469049. PubMed DOI PMC

Wax B, Kerksick CM, Jagim AR, et al. Creatine for exercise and sports performance, with recovery considerations for healthy populations. Nutrients. 2021;13(6):1915. doi: 10.3390/nu13061915 PMID: 34199588; PMCID: PMC8228369. PubMed DOI PMC

Devries MC, Phillips SM. Supplemental protein in support of muscle mass and health: advantage whey. J Food Sci. 2015;80(Suppl1):A8–A15. doi: 10.1111/1750-3841.12802 PMID: 25757896. PubMed DOI

Zare R, Devrim-Lanpir A, Guazzotti S, et al. Effect of soy protein supplementation on muscle adaptations, metabolic and antioxidant status, hormonal response, and exercise performance of active individuals and athletes: a systematic review of Randomised controlled trials. Sports Med. 2023;53(12):2417–2446. doi: 10.1007/s40279-023-01899-w Epub 2023 Aug 21. PMID: 37603200; PMCID: PMC10687132. PubMed DOI PMC

Tipton KD, Wolfe RR. Protein and amino acids for athletes. J Sports Sci. 2004;22(1):65–79. doi: 10.1080/0264041031000140554 PMID: 14971434. PubMed DOI

Wakolbinger-Habel R, Muschitz C. Comment on Kaufman et al. Popular dietary trends’ impact on athletic performance: a critical analysis review. Nutrients. 2023;15(22):4709. doi: 10.3390/nu15224709 PMID: 38004103; PMCID: PMC10675511. PubMed DOI PMC

Volek JS, Freidenreich DJ, Saenz C, et al. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism. 2016;65(3):100–110. doi: 10.1016/j.metabol.2015.10.028 Epub 2015 Nov 2. PMID: 26892521. PubMed DOI

Burke LM. Ketogenic low-CHO, high-fat diet: the future of elite endurance sport? J Physiol. 2021;599(3):819–843. doi: 10.1113/JP278928 Epub 2020 Jun 10. PMID: 32358802; PMCID: PMC7891323. PubMed DOI PMC

Leverve X, Batandier C, Fontaine E. Choosing the right substrate. Novartis Found Symp. 2007;280:108–121; discussion 121–7, 160–4. PMID: 17380791. PubMed

Burke LM, Whitfield J, Heikura IA, et al. Adaptation to a low carbohydrate high fat diet is rapid but impairs endurance exercise metabolism and performance despite enhanced glycogen availability. J Physiol. 2021;599(3):771–790. doi: 10.1113/JP280221 Epub 2020 Aug 19. PMID: 32697366; PMCID: PMC7891450. PubMed DOI PMC

Joshi S, Shi R, Patel J. Risks of the ketogenic diet in CKD - the con part. Clin Kidney J. 2023;17(1):sfad274. doi: 10.1093/ckj/sfad274 PMID: 38186877; PMCID: PMC10768778. PubMed DOI PMC

Williams C, Rollo I. Carbohydrate nutrition and team sport performance. Sports Med. 2015;45(Suppl 1):S13–22. doi: 10.1007/s40279-015-0399-3 PMID: 26553494; PMCID: PMC4672015. PubMed DOI PMC

Rollo I, Williams C. Carbohydrate nutrition and skill performance in soccer. Sports Med. 2023;53(Suppl 1):7–14. doi: 10.1007/s40279-023-01876-3 Epub 2023 Jul 8. PMID: 37421586; PMCID: PMC10721660. PubMed DOI PMC

Russell M, Kingsley M. The efficacy of acute nutritional interventions on soccer skill performance. Sports Med. 2014;44(7):957–970. doi: 10.1007/s40279-014-0184-8 PMID: 24728928. PubMed DOI

Hulton AT, Malone JJ, Clarke ND, et al. Energy requirements and nutritional strategies for male soccer players: a review and suggestions for practice. Nutrients. 2022;14(3):657. doi: 10.3390/nu14030657 PMID: 35277016; PMCID: PMC8838370. PubMed DOI PMC

Jeukendrup AE. Training the gut for athletes. Sports Med. 2017;47(Suppl 1):101–110. doi: 10.1007/s40279-017-0690-6 PMID: 28332114; PMCID: PMC5371619. PubMed DOI PMC

King A, Helms E, Zinn C, et al. The ergogenic effects of acute carbohydrate feeding on resistance exercise performance: a systematic review and meta-analysis. Sports Med. 2022;52(11):2691–2712. doi: 10.1007/s40279-022-01716-w Epub 2022 Jul 9. PMID: 35809162; PMCID: PMC9584980. PubMed DOI PMC

Grgic J. Effects of caffeine on resistance exercise: a review of recent research. Sports Med. 2021;51(11):2281–2298. doi: 10.1007/s40279-021-01521-x Epub 2021 Jul 22. PMID: 34291426. PubMed DOI

Southward K, Rutherfurd-Markwick KJ, Ali A. The effect of acute caffeine ingestion on endurance performance: a systematic review and meta-analysis. Sports Med. 2018;48(8):1913–1928. doi: 10.1007/s40279-018-0939-8 Erratum in: Sports Med. 2018 Oct;48(10):2425–2441. PMID: 29876876. PubMed DOI

Grgic J, Trexler ET, Lazinica B, et al. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15:11. doi: 10.1186/s12970-018-0216-0 PMID: 29527137; PMCID: PMC5839013. PubMed DOI PMC

Grgic J, Mikulic P, Schoenfeld BJ, et al. The influence of caffeine supplementation on resistance exercise: a review. Sports Med. 2019;49(1):17–30. doi: 10.1007/s40279-018-0997-y PMID: 30298476. PubMed DOI

Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31(11):785–807. doi: 10.2165/00007256-200131110-00002 PMID: 11583104. PubMed DOI

Saunders B, de Oliveira LF, da Silva RP, et al. Placebo in sports nutrition: a proof-of-principle study involving caffeine supplementation. Scand J Med Sci Sports. 2017;27(11):1240–1247. doi: 10.1111/sms.12793 Epub 2016 Nov 23. PMID: 27882605. PubMed DOI

Astorino TA, Terzi MN, Roberson DW, et al. Effect of two doses of caffeine on muscular function during isokinetic exercise. Med Sci Sports Exerc. 2010;42(12):2205–2210. doi: 10.1249/MSS.0b013e3181e3a11d PMID: 20421833. PubMed DOI

Warren GL, Park ND, Maresca RD, et al. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010;42(7):1375–1387. doi: 10.1249/MSS.0b013e3181cabbd8 PMID: 20019636. PubMed DOI

Polito M, Souza D, Casonatto J, et al. Acute effect of caffeine consumption on isotonic muscular strength and endurance: a systematic review and meta-analysis. Sci Sports. 2016;31(3):119–128.

Pickering C, Grgic J. Caffeine and exercise: what next? Sports Med. 2019;49(7):1007–1030. doi: 10.1007/s40279-019-01101-0 PMID: 30977054; PMCID: PMC6548757. PubMed DOI PMC

Mitchell L, Wilson L, Duthie G, et al. Methods to assess energy expenditure of resistance exercise: a systematic scoping review. Sports Med. 2024;54(9):2357–2372. doi: 10.1007/s40279-024-02047-8 Epub 2024 Jun 19. PMID: 38896201; PMCID: PMC11393209. PubMed DOI PMC

Martinho DV, Rebelo A, Gouveia ÉR, et al. The physical demands and physiological responses to CrossFit®: a scoping review with evidence gap map and meta-correlation. BMC Sports Sci Med Rehabil. 2024;16(1):196. doi: 10.1186/s13102-024-00986-3 PMID: 39300545; PMCID: PMC11414238. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...