Supramolecular structures based on regioisomers of cinnamyl-α-cyclodextrins - new media for capillary separation techniques
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26877812
PubMed Central
PMC4734354
DOI
10.3762/bjoc.12.11
Knihovny.cz E-zdroje
- Klíčová slova
- capillary electrophoresis, cyclodextrin derivatives, mono-cinnamyl, regioisomers, supramolecular structures,
- Publikační typ
- časopisecké články MeSH
This work focuses on the preparation and application of supramolecular structures based on mono-cinnamyl-α-cyclodextrins (Cin-α-CD). Pure regioisomers of Cin-α-CD having the cinnamyl moiety at the 2-O- or at the 3-O-position, respectively, were prepared, characterized and applied in capillary electrophoresis as additives to the background electrolyte. These new monomer units with a potential to self-organize into supramolecular structures were synthesized via a straightforward one-step synthetic procedure and purified using preparative reversed-phase chromatography allowing a large scale separation of the regioisomers. The ability of the monomers to self-assemble was proved by various methods including NMR spectroscopy and dynamic light scattering (DLS). The light scattering experiments showed that the monomer units have distinguishable ability to form supramolecular structures in different solvents and the size distribution of the aggregates in water can be easily modulated using different external stimuli, such as temperature or competitive guest molecules. The obtained results indicated that the two regioisomers of Cin-α-CD formed different supramolecular assemblies highlighting the fact that the position of the cinnamyl group plays an important role in the intermolecular complex formation.
CycloLab Cyclodextrin R and D Ltd Budapest H 1097 Illatos út 7 Hungary
Department of Pharmacognosy Semmelweis University Budapest H 1085 Üllői út 26 Hungary
Zobrazit více v PubMed
Brunveld L, Folmer B J B, Meijer E W, Sijbesma R P. Chem Rev. 2001;101:4071–4097. doi: 10.1021/cr990125q. PubMed DOI
Bosman A W, Sijbesma R P, Meijer E W. Mater Today. 2004;7:34–39. doi: 10.1016/S1369-7021(04)00187-7. DOI
Crini G. Chem Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p. PubMed DOI
Szente L, Szemán J. Anal Chem. 2013;85:8024–8030. doi: 10.1021/ac400639y. PubMed DOI
Wenz G, Han B-H, Müller A. Chem Rev. 2006;106:782–817. doi: 10.1021/cr970027+. PubMed DOI
Harada A, Takashima Y, Yamaguchi H. Chem Soc Rev. 2009;38:875–882. doi: 10.1039/b705458k. PubMed DOI
Tran N D, Colesnic D, Adam de Beaumais S, Pembouong G, Portier F, Queijo A A, Tato J V, Zhang Y, Ménand M, Bouteiller L, et al. Org Chem Front. 2014;1:703–706. doi: 10.1039/c4qo00104d. DOI
Miyauchi M, Kawaguchi Y, Harada A. J Inclusion Phenom Macrocyclic Chem. 2004;50:57–62. doi: 10.1007/s10847-004-8839-3. DOI
Tomimasu N, Kanaya A, Takashima Y, Yamaguchi H, Harada A. J Am Chem Soc. 2009;131:12339–12343. doi: 10.1021/ja903988c. PubMed DOI
Řezanka M, Jindřich J. Carbohydr Res. 2011;346:2374–2379. doi: 10.1016/j.carres.2011.08.011. PubMed DOI
Jindřich J, Tislerova I. J Org Chem. 2005;70:9054–9055. doi: 10.1021/jo051339c. PubMed DOI
Eliadou K, Giastas P, Yannakopoulou K, Mavridis M I. J Org Chem. 2003;68:8550–8557. doi: 10.1021/jo034503+. PubMed DOI
Avram L, Cohen Y. J Org Chem. 2002;67:2639–2644. doi: 10.1021/jo016321q. PubMed DOI
González-Gaitano G, Rodríguez P, Isasi J R, Fuentes M, Tardajos G, Sánchez M. J Inclusion Phenom Macrocyclic Chem. 2002;44:101–105. doi: 10.1023/A:1023065823358. DOI
Simic V, Bouteiller L, Jalabert M. J Am Chem Soc. 2003;125:13148–13154. doi: 10.1021/ja037589x. PubMed DOI
Connors K A, Rosanske T W. J Pharm Sci. 1980;69:173–179. doi: 10.1002/jps.2600690215. PubMed DOI