Two step synthesis of a non-symmetric acetylcholinesterase reactivator
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17960085
PubMed Central
PMC6149169
DOI
10.3390/12081755
PII: 12081755
Knihovny.cz E-zdroje
- MeSH
- bromované uhlovodíky chemická syntéza MeSH
- pyridinové sloučeniny chemická syntéza MeSH
- reaktivátory cholinesterázy chemická syntéza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- (E)-1-(2-hydroxyiminomethylpyridinium)-4-(4-hydroxyiminomethylpyridinium)-but-2-ene dibromide MeSH Prohlížeč
- bromované uhlovodíky MeSH
- pyridinové sloučeniny MeSH
- reaktivátory cholinesterázy MeSH
The newly developed and very promising acetylcholinesterase reactivator (E)-1-(2-hydroxyiminomethylpyridinium)-4-(4-hydroxyiminomethylpyridinium)-but-2-ene dibromide was prepared using two different pathways via a two-step synthesis involving the appropriate (E)-1-(4-bromobut-2-enyl)-2- or 4-hydroxyiminomethyl-pyridinium bromides. Afterwards, purities and yields of the desired product prepared by both routes were compared. Finally, its potency to reactivate several nerve agent-inhibited acetylcholinesterases was tested.
Zobrazit více v PubMed
Marrs T.C. Organophosphate poisoning. Pharmacol. Therap. 1993;58:51–66. doi: 10.1016/0163-7258(93)90066-M. PubMed DOI
Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. PubMed
Kuca K., Jun D., Musilek K. Structural requirements of acetylcholinesterase reactivators. Mini-Rev. Med. Chem. 2006;6:269–277. PubMed
Pang YP., Kollmeyer TM., Hong F., Lee JC., Hammond PI., Haugabouk SP., Brimijoin S. Rational design of alkylene-linked bis-pyridiniumaldoximes as improved acetylcholinesterase reactivators. Chem. Biol. 2003;10:491–502. doi: 10.1016/S1074-5521(03)00126-1. PubMed DOI
Musilek K., Kuca K., Jun D., Dohnal V., Dolezal M. Synthesis of the novel series of bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against chlorpyrifos-inhibited acetylcholinesterase. Biorg. Med. Chem. Lett. 2006;16:622–627. PubMed
Kim T.H., Kuca K., Jun D., Jung Y.S. Design and synthesis of new bis-pyridinium oximes as cyclosarin-inhibited acetylcholinesterase reactivators. Bioorg. Med. Chem. Lett. 2005;15:2914–2917. doi: 10.1016/j.bmcl.2005.03.060. PubMed DOI
Musilek K., Holas O., Hambalek J., Kuca K., Jun D., Dohnal V., Dolezal M. Synthesis of Bispyridinium Compounds bearing Propane Linker and Evaluation of their Reactivation Activity against Tabun- and Paraoxon-Inhibited Acetylcholinesterase. Lett. Org. Chem. 2006;3:831–835. doi: 10.2174/157017806779117012. PubMed DOI
Musilek K., Kuca K, Jun D., Dolezal M. Progress in synthesis of new acetylcholinesterase reactivators during the period 1990-2004. Curr. Org. Chem. 2007;11:229–238.
Kuca K., Bielavsky J., Cabal J., Bielavska M. Synthesis of a potential reactivator of acetylcholinesterase 1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium)-propane dibromide. Tetrahedron Lett. 2003;44:3123–3125.
Kuca K., Kassa J. In vitro reactivation of acetylcholinesterase using of the oxime K027. Vet. Hum. Toxicol. 2004;46:15–18. PubMed
Kassa J., Kuca K., Cabal J., Paar M. A comparison of the efficacy of new asymmetric bispyridinium oximes (K027, K048) with currently available oximes against tabun by in vitro and in vivo methods. J. Toxicol. Env. Health. 2006;69:1875–1882. PubMed
Calic M., Lucic-Vrdoljak A., Radic B., Jelic D., Jun D., Kuca K., Kovarik Z. In vitro and in vivo evaluation of pyridinium oximes: mode of interaction with acetylcholinesterase, effect on tabun- and soman-poisoned mice and their cytotoxicity. Toxicology. 2006;219:85–96. doi: 10.1016/j.tox.2005.11.003. PubMed DOI
Petroianu GA., Arafat K., Kuca K., Kassa J. Five oximes (K-27, K-33, K-48, BI-6 and methoxime) in comparison with pralidoxime: in vitro reactivation of red blood cell acetylcholinesterase inhibitied by paraoxon. J. Appl. Toxicol. 2006;26:64–71. doi: 10.1002/jat.1108. PubMed DOI
Petroianu GA., Nurulain SM., Nagelkerke N., Al-Sultan MAH., Kuca K., Kassa J. Five oximes (K-27, K-33, K-48, BI-6 and methoxime) in comparison with pralidoxime: survival in rats exposed to the organophosphate paraoxon. J. Appl. Toxicol. 2006;26:262–268. PubMed
Tekes K., Hasan MY., Sheen R., Kuca K., Petroianu G. HPLC determination of the serum concentration of K-27, a novel oxime-type cholinesterase reactivator. J. Chromatogr. A. 2006;1122:84–87. doi: 10.1016/j.chroma.2006.04.016. PubMed DOI
Lucic-Vrdoljak A., Calic M., Radic B., Berend S., Kuca K., Kovarik Z. Pre-treatment with pyridinium oximes improves antidotal therapy against tabun poisoning. Toxicology. 2006;228:41–50. PubMed
Gupta R. Cl Cholinesterase inhibitors as chemical warfare agents: Community preparedness guidelines. Elsevier Academic Press; London: 2006. Toxicology of organophosphate & carbamate compounds; pp. 47–68.
Kuca K., Jun D., Musilek K., Bajgar J. Structure-activity relationship for the reactivators of acetylcholinesterase inhibited by nerve agent VX. Toxicol. Lett. 2006;164:S51–S52. doi: 10.1016/j.toxlet.2006.06.109. PubMed DOI
Kuca K., Cabal J. Evaluation of newly synthesized reactivators of the brain cholinesterase inhibited by sarin-nerve agent. Toxicol. Mech. Meth. 2005;15:247–252. PubMed
Experimental and Established Oximes as Pretreatment before Acute Exposure to Azinphos-Methyl