Individual reproductive success in Norway spruce natural populations depends on growth rate, age and sensitivity to temperature

. 2020 Jun ; 124 (6) : 685-698. [epub] 20200316

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32203247
Odkazy

PubMed 32203247
PubMed Central PMC7239854
DOI 10.1038/s41437-020-0305-0
PII: 10.1038/s41437-020-0305-0
Knihovny.cz E-zdroje

Quantifying the individual reproductive success and understanding its determinants is a central issue in evolutionary research for the major consequences that the transmission of genetic variation from parents to offspring has on the adaptive potential of populations. Here, we propose to distil the myriad of information embedded in tree-ring time series into a set of tree-ring-based phenotypic traits to be investigated as potential drivers of reproductive success in forest trees. By using a cross-disciplinary approach that combines parentage analysis and a thorough dendrophenotypic characterisation of putative parents, we assessed sex-specific relationships between such dendrophenotypic traits (i.e., age, growth rate and parameters describing sensitivity to climate and to extreme climatic events) and reproductive success in Norway spruce. We applied a full probability method for reconstructing parent-offspring relationships between 604 seedlings and 518 adult trees sampled within five populations from southern and central Europe. We found that individual female and male reproductive success was positively associated with tree growth rate and age. Female reproductive success was also positively influenced by the correlation between growth and the mean temperature of the previous vegetative season. Overall, our results showed that Norway spruce individuals with the highest fitness are those who are able to keep high-growth rates despite potential growth limitations caused by reproductive costs and climatic limiting conditions. Identifying such functional links between the individual ecophysiological behaviour and its evolutionary gain would increase our understanding on how natural selection shapes the genetic composition of forest tree populations over time.

Zobrazit více v PubMed

Aho K, Derryberry D, Peterson T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology. 2014;95:631–636. PubMed

Avanzi C, Piermattei A, Piotti A, Büntgen U, Heer K, Opgenoorth L, et al. Disentangling the effects of spatial proximity and genetic similarity on individual growth performances in Norway spruce natural populations. Sci Total Environ. 2019;650:493–504. PubMed

Babushkina EA, Vaganov EA, Grachev AM, Oreshkova NV, Belokopytova LV, Kostyakova TV, et al. The effect of individual genetic heterozygosity on general homeostasis, heterosis and resilience in Siberian larch (Larix sibirica Ledeb.) using dendrochronology and microsatellite loci genotyping. Dendrochronologia. 2016;38:26–37.

Barringer BC, Koenig WD, Knops JMH. Interrelationships among life-history traits in three California oaks. Oecologia. 2013;171:129–139. PubMed

Barton K (2018) MuMIn: Multi-Model Inference. R package version 1.40.4. https://CRAN.R-project.org/package=MuMIn

Bernasconi G. Seed paternity in flowering plants: an evolutionary perspective. Perspect Plant Ecol Evol Syst. 2003;6:149–158.

Biondi F, Qeadan F. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Res. 2008;64:81–96.

Black BA, Colbert JJ, Pederson N. Relationships between radial growth rates and lifespan within North American tree species. Ecoscience. 2008;15:349–357.

Bontemps A, Davi H, Lefèvre F, Rozenberg P, Oddou-Muratorio S. How do functional traits syndromes covary with growth and reproductive performance in a water-stressed population of Fagus sylvatica? Oikos. 2017;126:1472–1483.

Bunn AG. A dendrochronology program library in R (dplR) Dendrochronologia. 2008;26:115–124.

Büntgen U. Re-thinking the boundaries of dendrochronology. Dendrochronologia. 2019;53:1–4.

Büntgen U, Frank DC, Schmidhalter M, Neuwirth B, Seifert M, Esper J. Growth/climate response shift in a long subalpine spruce chronology. Trees. 2006;20:99–110.

Burczyk J, Adams WT, Birkes DS, Chybicki IJ. Using gegnetic markers to directly estimate gene flow and reproductive success parameters in plants on the basis of naturally regenerated seedlings. Genetics. 2006;173:363–372. PubMed PMC

Burd M, Allen TFH. Sexual allocation strategy in wind-pollinated plants. Evolution. 1988;42:403–407. PubMed

Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. Berlin: Springer Verlag; 2002.

Carrer M, von Arx G, Castagneri D, Petit G. Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture. Tree Physiol. 2015;35:27–33. PubMed

Carrer M, Motta R, Nola P. Significant mean and extreme climate sensitivity of Norway spruce and silver fir at mid-elevation mesic sites in the Alps. PLoS ONE. 2012;7:e50755. PubMed PMC

Carrer M. Individualistic and time-varying tree-ring growth to climate sensitivity. PLoS ONE. 2011;6:e22813. PubMed PMC

Chalupka W, Giertych M, Krolikowski Z. The effect of cone crops on growth of Norway spruce (Picea abies (L.) Karst.) Arbor Kornickie. 1975;20:201–212.

Charnov EL. The theory of sex allocation. New Jersey: Princeton University Press; 1982. PubMed

Chen Z-Q, Baison J, Pan J, Karlsson B, Andersson B, Westin J, et al. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce. BMC Genomics. 2018;19:946. PubMed PMC

Chybicki IJ. NMπ-improved re-implementation of NM+, a software for estimating gene dispersal and mating patterns. Mol Ecol Resour. 2018;18:159–168. PubMed

Chybicki IJ, Oleksa A. Seed and pollen gene dispersal in Taxus baccata, a dioecious conifer in the face of strong population fragmentation. Ann Bot. 2018;122:409–421. PubMed PMC

Chybicki IJ, Burczyk J. Realized gene flow within mixed stands of Quercus robur L. and Q. petraea (Matt.) L. revealed at the stage of naturally established seedling. Mol Ecol. 2010;19:2137–2151. PubMed

Cook ER, Kairiukstis LA. Methods of dendrochronology: applications in the environmental sciences. Dondrecht: Kluwer Academic Publishers; 1990.

Davi H, Cailleret M, Restoux G, Amm A, Pichot C, Fady B. Disentangling the factors driving tree reproduction. Ecosphere. 2016;7:1–16.

Eis S, Garman EH, Ebell LF. Relation between cone production and diameter increment of Douglas fir (Pseudotsuga menziesii (mirb.) Franco), grand fir (Abies grandis (dougl.) Lindl.), and western white pine (Pinus monticola Dougl.) Can J Bot. 1965;43:1553–1559.

Eklund B. Annual ring variation of spruce in central Norrland and its relation to climate. Medd Statens Skogsforskningsinst. 1957;47:1–63.

Evans MEK, Gugger PF, Lynch AM, Guiterman CH, Fowler JC, Klesse S, et al. Dendroecology meets genomics in the common garden: new insights into climate adaptation. N. Phytol. 2018;218:401–403. PubMed

Fink AH, Brucher T, Kruger A, Leckebusch GC, Pinto JG, Ulbrich U. The 2003 European summer heat waves and drought- synoptic diagnosis and impact. Weather. 2004;59:209–216.

Fluch S, Burg A, Kopecky D, Homolka A, Spiess N, Vendramin GG. Characterization of variable EST SSR markers for Norway spruce (Picea abies L.) BMC Res Notes. 2011;4:401. PubMed PMC

Fonti P, Von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 2010;185:42–53. PubMed

Fox JF. Size and sex allocation in monoecious woody plants. Oecologia. 1993;94:110–113. PubMed

Fox J, Weisberg S. An R Companion to Applied Regression. Thousand Oaks: Sage; 2011.

Freeman DC, Harper KT, Charnov EL. Sex change in plants: old and new observations and new hypotheses. Oecologia. 1980;47:222–232. PubMed

Galván JD, Camarero JJ, Gutiérrez E. Seeing the trees for the forest: drivers of individual growth responses to climate in Pinus uncinata mountain forests. J Ecol. 2014;102:1244–1257.

Gerber S, Chabrier P, Kremer A. FAMOZ: A software for parentage analysis using dominant, codominant and uniparentally inherited markers. Mol Ecol Notes. 2003;3:479–481.

Gerzabek G, Oddou-Muratorio S, Hampe A. Temporal change and determinants of maternal reproductive success in an expanding oak forest stand. J Ecol. 2017;105:39–48.

González-Martínez SC, Burczyk J, Nathan R, Nanos N, Gil L, Alí aR. Effective gene dispersal and female reproductive success in Mediterranean maritime pine (Pinus pinaster Aiton) Mol Ecol. 2006;15:4577–4588. PubMed

Hacket-Pain A, Ascoli D, Berretti R, Mencuccini M, Motta R, Nola P, et al. Temperature and masting control Norway spruce growth, but with high individual tree variability. Ecol Manag. 2019;438:142–150.

Hamann A, Wang T, Spittlehouse DL, Murdock TQ. A comprehensive, high-resolution database of historical and projected climate surfaces for western north America. Bull Am Meteorol Soc. 2013;94:1307–1309.

Hannrup B, Cahalan C, Chantre G, Grabner M, Karlsson B, Le Bayon I, et al. Genetic parameters of growth and wood quality traits in Picea abies. Scand J Res. 2004;19:14–29.

Harris I, Jones PD, Osborn TJ, Lister DH. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol. 2014;34:623–642.

Hartig F (2019) DHARMa: Residual diagnostics for hierarchical regression models. R package version 0.2.6. https://CRAN.R-project.org/package=DHARMa

Heer K, Behringer D, Piermattei A, Bässler C, Brandl R, Fady B, et al. Linking dendroecology and association genetics in natural populations: stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.) Mol Ecol. 2018;27:1428–1438. PubMed

Hember RA, Kurz WA, Metsaranta JM. Ideas and perspectives: use of tree-ring width as an indicator of tree growth. Biogeosci Discuss. 2015;12:8341–8352.

Housset JM, Nadeau S, Isabel N, Depardieu C, Duchesne I, Lenz P, et al. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. New Phytol. 2018;218:630–645. PubMed PMC

Housset JM, Carcaillet C, Girardin MP, Xu H, Tremblay F, Bergeron Y. In situ comparison of tree-ring responses to climate and population genetics: the need to control for local climate and site variables. Front Ecol Evol. 2016;4:123.

Jones AG, Small CM, Paczolt KA, Ratterman NL. A practical guide to methods of parentage analysis. Mol Ecol Resour. 2010;10:6–30. PubMed

de Jong TJ, Klinkhamer PG. Size-dependency of sex-allocation in hermaphroditic, monocarpic plants. Funct Ecol. 1989;3:201–206.

Kameyama Y, Isagi Y, Nakagoshi N. Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis. Mol Ecol. 2001;10:205–216. PubMed

Kaufman S, Smouse P, Alvarez-Buylla E. Pollen-mediated gene flow and differential male reproductive success in a tropical pioneer tree, Cecropia obtusifolia Bertol.(Moraceae): a paternity analysis. Heredity. 1998;81:164–173.

Kelly D. The evolutionary ecology of mast seeding. Trends Ecol Evol. 1994;9:465–470. PubMed

King GM, Gugerli F, Fonti P, Frank DC. Tree growth response along an elevational gradient: climate or genetics? Oecologia. 2013;173:1587–1600. PubMed

Klein EK, Desassis N, Oddou-Muratorio S. Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz. IV. Whole interindividual variance of male fecundity estimated jointly with the dispersal kernel. Mol Ecol. 2008;17:3323–3336. PubMed

Kolář T, Čermák P, Trnka M, Žid T, Rybníček M. Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agric Meteorol. 2017;239:24–33.

Latutrie M, Mérian P, Picq S, Bergeron Y, Tremblay F. The effects of genetic diversity, climate and defoliation events on trembling aspen growth performance across Canada. Tree Genet Genomes. 2015;11:96.

Lebourgeois F. Climatic signal in annual growth variation of silver fir (Abies alba Mill.) and spruce (Picea abies Karst.) from the French Permanent Plot Network (RENECOFOR) Ann Sci. 2007;64:333–343.

Leonarduzzi C, Piotti A, Spanu I, Vendramin GG. Effective gene flow in a historically fragmented area at the southern edge of silver fir (Abies alba Mill.) distribution. Tree Genet Genomes. 2016;12:95.

Levanič T, Gričar J, Gagen M, Jalkanen R, Loader NJ, McCarroll D, et al. The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees. 2009;23:169–180.

Lind BM, Menon M, Bolte CE, Faske TM, Eckert AJ. The genomics of local adaptation in trees: are we out of the woods yet? Tree Genet Genomes. 2018;14:29.

Lindgren K, Ekberg I, Eriksson G (1977) External factors influencing female flowering in Picea abies (L.) Karst. Studia Forestalia Suecica 142, Skogshögskolan, Stockholm

Lloret F, Keeling EG, Sala A. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos. 2011;120:1909–1920.

Lloyd DG, Bawa KS. Modification of the gender of seed plants in varying conditions. Evol Biol. 1984;17:255–339.

Makinen H, Nojd P, Kahle H, Neumann U, Tveite B, Mielikainen K, et al. Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Ecol Manag. 2002;171:243–259.

Martinez Meier AG, Sanchez L, Salda G, Pastorino MJM, Gautry J-Y, Gallo LA, et al. Genetic control of the tree-ring response of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) to the 2003 drought and heat-wave in France. Ann Sci. 2008;65:102–102.

Miina J. Dependence of tree-ring, earlywood and latewood indices of Scots pine and Norway spruce on climatic factors in eastern Finland. Ecol Model. 2000;132:259–273.

Moran EV, Clark JS. Causes and consequences of unequal seedling production in forest trees: a case study in red oaks. Ecology. 2012;93:1082–1094. PubMed

Morgan MT, Conner JK. Using genetic markers to directly estimate male selection gradients. Evolution. 2001;55:272–281. PubMed

Obeso JR. The costs of reproduction in plants. N. Phyt. 2002;155:321–348. PubMed

Oddou-Muratorio S, Gauzere J, Bontemps A, Rey J-F, Klein EK. Tree, sex and size: ecological determinants of male vs. female fecundity in three Fagus sylvatica stands. Mol Ecol. 2018;27:3131–3145. PubMed

Oddou-Muratorio S, Petit C, Journé V, Lingrand M, Magdalou JA, Hurson C, et al. (2018b) Crown defoliation decreases reproduction and wood growth in a marginal European beech population. 10.1101/474874 PubMed PMC

Oddou-Muratorio S, Klein EK. Comparing direct vs. indirect estimates of gene flow within a population of a scattered tree species. Mol Ecol. 2008;17:2743–2754. PubMed

Oddou-Muratorio S, Klein EK, Austerlitz F. Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz. II. Pollen dispersal and heterogeneity in mating success inferred from parent-offspring analysis. Mol Ecol. 2005;14:4441–4452. PubMed

Petit RJ, Hampe A. Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst. 2006;37:187–214.

Pfeiffer A, Olivieri A, Morgante M. Identification and characterization of microsatellites in Norway spruce (Picea abies K.) Genome. 1997;40:411–419. PubMed

Piotti A, Leonardi S, Piovani P, Scalfi M, Menozzi P. Spruce colonization at treeline: where do those seeds come from? Heredity. 2009;103:136–145. PubMed

Piotti A, Leonardi S, Buiteveld J, Geburek T, Gerber S, Kramer K, et al. Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management and evolutionary histories. Heredity. 2012;108:222–231. PubMed PMC

Pukkala T, Hokkanen T, Nikkanen T. Prediction models for the annual seed crop of Norway spruce and Scots pine in Finland. Silva Fenn. 2010;44:629–642.

Pukkala T. Siementuotannon vaikutus kuusen ja männyn vuotuiseen kasvuun (Effect of seed production on the annual growth of Picea abies and Pinus sylvestris) Silva Fenn. 1987;21:145–158.

R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/

Rungis D, Bérubé Y, Zhang J, Ralph S, Ritland CE, Ellis BE, et al. Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor Appl Genet. 2004;109:1283–1294. PubMed

Sato T. Size-dependent sex allocation in hermaphroditic plants: the effects of resource pool and self-incompatibility. J Theor Biol. 2004;227:265–275. PubMed

Schnabel A, Nason JD, Hamrick JL. Understanding the population genetic structure of Gleditsia triacanthos L.: seed dispersal and variation in female reproductive success. Mol Ecol. 1998;7:819–832.

Schoen DJ, Stewart SC. Variation in male reproductive investment and male reproductive success in white spruce. Evolution. 1986;40:1109–1120. PubMed

Scotti I, Magni F, Paglia G, Morgante M. Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers. Theor Appl Genet. 2002;106:40–50. PubMed

Seifert T, Müller-Starck G. Impacts of fructification on biomass production and correlated genetic effects in Norway spruce (Picea abies [L.] Karst.) Eur J Res. 2009;128:155–169.

Silvertown J, Franco M, Perez-Ishiwara R. Evolution of senescence in iteroparous perennial plants. Evol Ecol Res. 2001;3:393–412.

Smouse PE, Sork VL. Measuring pollen flow in forest trees: an exposition of alternative approaches. Ecol Manag. 2004;197:21–38.

Smouse PE, Meagher TR, Lobak CJ. Parentage analysis in Chaemeclirium luteum (L.) Gray (Liliaceae): why do some males have higher contributions? J Evol Biol. 1999;12:1069–1077.

Steffenrem A, Kvaalen H, Høibø OA, Edvardsen ØM, Skrøppa T. Genetic variation of wood quality traits and relationships with growth in Picea abies. Scand J Res. 2009;24:15–27.

Tirén L. Om granens kottsättning, des periodicitet och samband med temperature och nederbörd. Medd från Statens Skogsforskningsinstitut. 1935;28:413–518.

Trujillo-Moya C, George J-P, Fluch S, Geburek T, Grabner M, Karanitsch-Ackerl S, et al. Drought sensitivity of Norway spruce at the species’ warmest fringe: quantitative and molecular analysis reveals high genetic variation among and within provenances. Genes|Genomes|Genet. 2018;8:1225–1245. PubMed PMC

Tuomi J, Hakala T, Haukioja E. Alternative concepts of reproductive efforts, costs of reproduction and selection in life hystory evolution. Am Zool. 1983;23:25–34.

van der Maaten-Theunissen M, Kahle H-P, van der Maaten E. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann Sci. 2013;70:185–193.

Venables WN, Ripley BD. Modern applied statitics with S. NewYork, NY: Springer Ferlag; 2002.

Vendramin GG, Lelli L, Rossi P, Morgante M. A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol. 1996;5:595–598. PubMed

Viglas JN, Brown CD, Johnstone JF. Age and size effects on seed productivity of northern black spruce. Can J Res. 2013;43:534–543.

Younginger BS, Sirová D, Cruzan MB, Ballhorn DJ. Is biomass a reliable estimate of plant fitness? Appl Plant Sci. 2017;5:1600094. PubMed PMC

Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 2010;1:3–14.

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.11845347.v1

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...