Practical Considerations for the Clinical Application of Bone Turnover Markers in Osteoporosis

. 2023 Feb ; 112 (2) : 148-157. [epub] 20211130

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34846540
Odkazy

PubMed 34846540
DOI 10.1007/s00223-021-00930-4
PII: 10.1007/s00223-021-00930-4
Knihovny.cz E-zdroje

Bone turnover markers (BTMs) are released during the bone remodelling cycle and are measurable in blood or urine, reflecting bone remodelling rate. They have been useful in elucidating the pharmacodynamics and effectiveness of osteoporosis medication in clinical trials and are increasingly used in routine clinical management of osteoporosis, especially for monitoring therapy, in addition to their use in other metabolic bone disease such as Paget's disease of bone and osteomalacia. Serum β isomerised C-terminal telopeptide of type I collagen and pro-collagen I N-terminal propeptide have been designated as reference BTMs for use in osteoporosis. In addition, bone-specific isoenzyme of alkaline phosphatase (B-ALP) secreted by osteoblasts and tartrate-resistant acid phosphatase 5b (TRACP-5b) secreted by osteoclasts are also found to be specific markers of bone formation and resorption, respectively. The concentrations of the latter enzymes in blood measured by immunoassay provide reliable measures of bone turnover even in the presence of renal failure. B-ALP is recommended for use in the assessment of renal bone disease of chronic kidney disease, and TRACP-5b shows promise as a marker of bone resorption in that condition. BTMs in blood do not suffer from biological variation to the same extent as the older BTMs that were measured in urine. Appropriate patient preparation and sample handling are important in obtaining accurate measures of BTMs for clinical use. Reference change values and treatment targets have been determined for the reference BTMs for their use in monitoring osteoporosis treatment. Further ongoing studies will enhance their clinical applications.

Zobrazit více v PubMed

Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J (2000) The use of biochemical markers of bone turnover in osteoporosis. Osteoporos Int 11:S2–S17 DOI

Vasikaran S, Cooper C, Eastell R et al (2011) International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med 49:1271–1274 DOI

Ralston SH, Corral-Gudino L, Cooper C et al (2019) Diagnosis and management of Paget’s disease of bone in adults: a clinical guideline. J Bone Miner Res 34:579–604 DOI

Peach H, Compston JE, Vedi S, Horton LWJ (1982) Value of plasma calcium, phosphate, and alkaline phosphatase measurements in the diagnosis of histological osteomalacia. Clin Pathol 35:625–630. https://doi.org/10.1210/jcem.77.4.8104954 DOI

Nizet A, Cavalier E, Stenvinkel P, Haarhaus M, Magnusson P (2020) Bone alkaline phosphatase: an important biomarker in chronic kidney disease—mineral and bone disorder. Clin Chim Acta 501:198–206. https://doi.org/10.1016/j.cca.2019.11.012 DOI

Li CY, Yam LT, Lam KW (1970) Acid phosphatase isoenzyme in human leukocytes in normal and pathologic conditions. J Histochem Cytochem 18:473–481. https://doi.org/10.1177/18.7.473 DOI

Halleen JM, Ylipahkala H, Alatalo SL et al (2002) Serum tartrate-resistant acid phosphatase 5b, but not 5a, correlates with other markers of bone turnover and bone mineral density. Calcif Tissue Int 71(1):20–25. https://doi.org/10.1007/s00223-001-2122-7 DOI

Janckila AJ, Yam LT (2009) Biology and clinical significance of tartrate-resistant acid phosphatases: new perspectives on an old enzyme. Calcif Tissue Int 85:465–483. https://doi.org/10.1007/s00223-009-9309-8 DOI

Vääräniemi J, Halleen JM, Kaarlonen K et al (2004) Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res 19:1432–1440. https://doi.org/10.1359/JBMR.040603 DOI

Power MJ, Fottrell PF (1991) Osteocalcin: diagnostic methods and clinical applications. Crit Rev Clin Lab Sci 28(4):287–335. https://doi.org/10.3109/10408369109106867 DOI

Wei J, Karsenty G (2015) An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord 16:93–98. https://doi.org/10.1007/s11154-014-9307-7 DOI

Siebel MJ (2005) Biochemical markers of bone turnover part I: biochemistry and variability. Clin Biochem Rev 26:97–122

Koivula MK, Risteli L, Risteli J (2012) Measurement of aminoterminal propeptide of type I procollagen (PINP) in serum. Clin Biochem 45:920–927. https://doi.org/10.1016/j.clinbiochem.2012.03.023 DOI

Melkko J, Hellevik T, Risteli L, Risteli J, Smedsrød B (1994) Clearance of NH DOI

Saunders PTK, Renegar RH, Raub TJ et al (1985) The carbohydrate structure of porcine uteroferrin and the role of the high mannose chains in promoting uptake by the reticuloendothelial cells of the fetal liver. J Biol Chem 260:3658–3665 DOI

Halleen J, Hentunen TA, Hellman J, Väänänen HK (1996) Tartrate-resistant acid phosphatase from human bone: purification and development of an immunoassay. J Bone Miner Res 11:1444–1452. https://doi.org/10.1002/jbmr.5650111011 DOI

Chu P, Chao TY, Lin YF, Janckila AJ, Yam LT (2003) Correlation between histomorphometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am J Kidney Dis 41:1052–1059. https://doi.org/10.1016/S0272-6386(03)00203-8 DOI

Hannon RA, Clowes JA, Eagleton AC, Al Hadari A, Eastell R, Blumsohn A (2004) Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone 34:187–194. https://doi.org/10.1016/j.bone.2003.04.002 DOI

Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group (2011) KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 7(1):1–59. https://doi.org/10.1016/j.kisu.2017.04.001 DOI

Fukumoto S, Ozono K, Michigami T et al (2015) Pathogenesis and diagnostic criteria for rickets and osteomalacia—proposal by an expert panel supported by the Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research, and the Japan Endocrine Society. J Bone Miner Metab 33(5):467–473. https://doi.org/10.1007/s00774-015-0698-7 DOI

Camacho PM, Petak SM, Binkley N et al (2020) American Association of Clinical Endocrinologists/American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis—2020 update. Endocr Pract 26(Suppl 1):1–46 DOI

National Kidney Foundation (2007) KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis 49(Suppl 2):S12-154

Vasikaran SD, McCloskey EV, Kahn S, Kanis JA (1994) Intra-individual variation in fasting urinary calcium- and hydroxyproline-creatinine ratios measured in metabolic bone clinic patients as both outpatients and inpatients. Ann Clin Biochem 31:272–276. https://doi.org/10.1177/000456329403100310 DOI

Beck-Jensen JE, Kollerup G, Sørensen HA, Pors Nielsen S, Sørensen OH (1997) A single measurement of biochemical markers of bone turnover has limited utility in the individual person. Scand J Clin Lab Invest 57(4):351–359. https://doi.org/10.3109/00365519709099408 DOI

Cavalier E, Lukas P, Bottani M, European Federation of Clinical Chemistry and Laboratory Medicine Working Group on Biological Variation and IOF-IFCC Committee on Bone Metabolism et al (2020) European Biological Variation Study (EuBIVAS): within- and between-subject biological variation estimates of β-isomerized C-terminal telopeptide of type I collagen (β-CTX), N-terminal propeptide of type I collagen (PINP), osteocalcin, intact fibroblast growth factor 23 and uncarboxylated-unphosphorylated matrix-Gla protein—a cooperation between the EFLM Working Group on Biological Variation and the International Osteoporosis Foundation-International Federation of Clinical Chemistry Committee on Bone Metabolism. Osteoporos Int 31:1461–1470. https://doi.org/10.1007/s00198-020-05362-8 DOI

Szulc P, Naylor K, Hoyle NR et al (2017) Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int 28:2541–2556 DOI

Bhattoa HP, Cavalier E, Eastell R, IFCC-IOF Committee for Bone Metabolism et al (2021) Analytical considerations and plans to standardize or harmonize assays for the reference bone turnover markers PINP and β-CTX in blood. Clin Chim Acta 515:16–20. https://doi.org/10.1016/j.cca.2020.12.023 DOI

Ohashi T, Igarashi Y, Mochizuki Y et al (2007) Development of a novel fragments absorbed immunocapture enzyme assay system for tartrate-resistant acid phosphatase 5b. Clin Chim Acta 376(1–2):205–20512. https://doi.org/10.1016/j.cca.2006.08.021 DOI

Nakanishi M, Yoh K, Miura T, Ohasi T, Rai SK, Uchida K (2000) Development of a kinetic assay for band 5b tartrate-resistant acid phosphatase activity in serum. Clin Chem 46(4):469–473 DOI

Halleen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Väänänen HK (2000) Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 15:1337–1345. https://doi.org/10.1359/jbmr.2000.15.7.1337 DOI

Ylipahkala H, Fagerlund KM, Janckila AJ, Houston B, Laurie D, Halleen JM (2009) Specificity and clinical performance of two commercial TRACP 5b immunoassays. Clin Lab 55:223–228

Morris HA, Eastell R, Jorgensen NR, IFCC-IOF Working Group for Standardisation of Bone Marker Assays (WG-BMA), et al (2017) Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clin Chim Acta 467:34–41. https://doi.org/10.1016/j.cca.2016.06.036

Jørgensen NR, Møllehave LT, Hansen YBL, Quardon N, Lylloff L, Linneberg A (2017) Comparison of two automated assays of BTM (CTX and P1NP) and reference intervals in a Danish population. Osteoporos Int 28:2103–2113 DOI

Tokida R, Uehara M, Nakano M et al (2021) Reference values for bone metabolism in a Japanese cohort survey randomly sampled from a basic elderly resident registry. Sci Rep 11(1):7822. https://doi.org/10.1038/s41598-021-87393-7 DOI

Kikuchi W, Ichihara K, Mori K, Shimizu Y (2021) Biological sources of variations of tartrate-resistant acid phosphatase 5b in a healthy Japanese population. Ann Clin Biochem 58(4):358–367. https://doi.org/10.1177/00045632211003941 DOI

Nishizawa Y, Miura M, Ichimura S, from the Japan Osteoporosis Society Bone Turnover Marker Investigation Committee, et al (2019) Executive summary of the Japan Osteoporosis Society Guide for the use of bone turnover markers in the diagnosis and treatment of osteoporosis (2018 edition). Clin Chim Acta 498:101–107. https://doi.org/10.1016/j.cca.2019.08.012

Eastell R, Pigott T, Gossiel F, Naylor KE, Walsh JS, Peel NFA (2018) Diagnosis of endocrine disease: bone turnover markers: are they clinically useful? Eur J Endocrinol 178:R19–R31. https://doi.org/10.1530/EJE-17-0585 DOI

Lorentzon M, Branco J, Brandi ML et al (2019) Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis. Adv Ther 36:2811–2824. https://doi.org/10.1007/s12325-019-01063-9 DOI

Tan RZ, Loh TP, Vasikaran S (2020) Bone turnover marker monitoring in osteoporosis treatment response. Eur J Endocrinol 183:C5–C7. https://doi.org/10.1530/EJE-19-0970 DOI

Naylor KE, Jacques RM, Paggiosi M et al (2016) Response of bone turnover markers to three oral bisphosphonate therapies in postmenopausal osteoporosis: the TRIO study. Osteoporos Int 27:21–31. https://doi.org/10.1007/s00198-015-3145-7 DOI

Krege JH, Lane NE, Harris JM, Miller PD (2014) PINP as a biological response marker during teriparatide treatment for osteoporosis. Osteoporos Int 25:2159–2171. https://doi.org/10.1007/s00198-014-2646-0 DOI

Adler RA, El-Hajj Fuleihan G, Bauer DC et al (2016) Managing osteoporosis in patients on long-term bisphosphonate treatment: report of a Task Force of the American Society for Bone and Mineral Research. J Bone Miner Res 31(1):16–35. https://doi.org/10.1002/jbmr.2708 DOI

Tsourdi E, Zillikens MC, Meier C et al (2020) Fracture risk and management of discontinuation of denosumab therapy: a systematic review and position statement by ECTS. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgaa756 DOI

Kobayakawa T, Suzuki T, Nakano M et al (2021) Real-world effects and adverse events of romosozumab in Japanese osteoporotic patients: a prospective cohort study. Bone Rep 14:101068. https://doi.org/10.1016/j.bonr.2021.101068 DOI

Tsuchiya K, Ishikawa K, Kudo Y et al (2021) Analysis of the subsequent treatment of osteoporosis by transitioning from bisphosphonates to denosumab, using quantitative computed tomography: a prospective cohort study. Bone Rep 14:101090. https://doi.org/10.1016/j.bonr.2021.101090 DOI

Mori Y, Kasai H, Ose A et al (2018) Modeling and simulation of bone mineral density in Japanese osteoporosis patients treated with zoledronic acid using tartrate-resistant acid phosphatase 5b, a bone resorption marker. Osteoporos Int 29:1155–1163. https://doi.org/10.1007/s00198-018-4376-1 DOI

Kasai H, Mori Y, Ose A, Shiraki M, Tanigawara Y (2021) Prediction of fracture risk from early-stage bone markers in patients with osteoporosis treated with once-yearly administered zoledronic acid. J Clin Pharmacol 61:606–613 DOI

Kunizawa K, Hiramatsu R, Hoshino J et al (2020) Denosumab for dialysis patients with osteoporosis: a cohort study. Sci Rep 10:2496. https://doi.org/10.1038/s41598-020-59143-8 DOI

Moe S, Drüeke T, Cunningham J et al (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 69:1945–1953. https://doi.org/10.1038/sj.ki.5000414 DOI

Sprague SM, Bellorin-Font E, Jorgetti V et al (2016) Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis 67:559–566. https://doi.org/10.1053/j.ajkd.2015.06.023 DOI

Salam S, Gallagher O, Gossiel F et al (2018) Diagnostic accuracy of biomarkers and imaging for bone turnover in renal osteodystrophy. J Am Soc Nephrol 29:1557–1565. https://doi.org/10.1681/ASN.2017050584 DOI

Seifert ME, Hruska KA (2016) The kidney-vascular-bone axis in the chronic kidney disease-mineral bone disorder. Transplantation 100:497–505. https://doi.org/10.1097/TP.0000000000000903 DOI

Delanaye P, Souberbielle J-C, Lafage-Proust M-H et al (2014) Can we use circulating biomarkers to monitor bone turnover in CKD haemodialysis patients? Hypotheses and facts. Nephrol Dial Transplant 29:997–1004. https://doi.org/10.1093/ndt/gft275 DOI

Magnusson P, Sharp CA, Magnusson M et al (2001) Effect of chronic renal failure on bone turnover and bone alkaline phosphatase isoforms. Kidney Int 60:257–265. https://doi.org/10.1046/j.1523-1755.2001.00794.x DOI

Tridimas A, Milan A, Marks E (2021) Assessing bone formation in patients with chronic kidney disease using procollagen type I N-terminal propeptide (PINP): the choice of assay makes a difference. Ann Clin Biochem 58:528–536. https://doi.org/10.1177/00045632211025567 DOI

Cavalier E, Lukas P, Carlisi A et al (2013) Aminoterminal propeptide of type I procollagen (PINP) in chronic kidney disease patients: the assay matters. Clin Chim Acta 425:117–118. https://doi.org/10.1016/j.cca.2013.07.016 DOI

Yamada S, Inaba M, Kurajoh M et al (2008) Utility of serum tartrate-resistant acid phosphatase (TRACP5b) as a bone resorption marker in patients with chronic kidney disease: independence from renal dysfunction. Clin Endocrinol 69:189–196. https://doi.org/10.1111/j.1365-2265.2008.03187.x DOI

Malluche HH, Davenport DL, Cantor T, Monier-Faugere M-C (2014) Bone mineral density and serum biochemical predictors of bone loss in patients with CKD on dialysis. Clin J Am Soc Nephrol 9:1254–1262. https://doi.org/10.2215/CJN.09470913 DOI

Yamada S, Tsuruya K, Yoshida H et al (2013) The clinical utility of serum tartrate-resistant acid phosphatase 5b in the assessment of bone resorption in patients on peritoneal dialysis. Clin Endocrinol (Oxf) 78:844–851. https://doi.org/10.1111/cen.1207 DOI

Shidara K, Inaba M, Okuno S et al (2008) Serum levels of TRAP5b, a new bone resorption marker unaffected by renal dysfunction, as a useful marker of cortical bone loss in hemodialysis patients. Calcif Tissue Int 82:278–287. https://doi.org/10.1007/s00223-008-9127-4 DOI

Evenepoel P, Claes K, Meijers B et al (2020) Natural history of mineral metabolism, bone turnover and bone mineral density in de novo renal transplant recipients treated with a steroid minimization immunosuppressive protocol. Nephrol Dial Transplant 35:697–705. https://doi.org/10.1093/ndt/gfy306 DOI

Suzuki H, Kihara M, Mano S et al (2017) Efficacy and safety of denosumab for the treatment of osteoporosis in patients with chronic kidney disease. J Clin Exp Nephrol 2:1–5. https://doi.org/10.21767/2472-5056.100030 DOI

Ruggiero SL, Dodson TB, Fantasia J, American Association of Oral and Maxillofacial Surgeons et al (2014) American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw—2014 update. J Oral Maxillofac Surg 72:1938–1956. https://doi.org/10.1016/j.joms.2014.04.031 DOI

Shane E, Burr D, Ebeling PR et al (2010) Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 25:2267–2294 DOI

Marx RE, Cillo JE Jr, Ulloa JJ (2007) Oral bisphosphonate-induced osteonecrosis: risk factors, prediction of risk using serum CTX testing, prevention, and treatment. J Oral Maxillofac Surg 65:2397–2410. https://doi.org/10.1016/j.joms.2007.08.003 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...