Safety and Efficacy of New Oximes to Reverse Low Dose Diethyl-Paraoxon-Induced Ventilatory Effects in Rats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32635368
PubMed Central
PMC7411965
DOI
10.3390/molecules25133056
PII: molecules25133056
Knihovny.cz E-zdroje
- Klíčová slova
- BI-6, KO-27, diethyl-paraoxon, oximes, plethysmography, pralidoxime, rats, ventilatory effects,
- MeSH
- antidota farmakologie MeSH
- bezpečnost MeSH
- cholinesterasové inhibitory toxicita MeSH
- dýchání účinky léků MeSH
- krysa rodu Rattus MeSH
- otrava organofosfáty farmakoterapie etiologie MeSH
- oximy farmakologie MeSH
- paraoxon toxicita MeSH
- potkani Sprague-Dawley MeSH
- větrání metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antidota MeSH
- cholinesterasové inhibitory MeSH
- oximy MeSH
- paraoxon MeSH
BACKGROUND: Oximes are used in addition to atropine to treat organophosphate poisoning. However, the efficiency of oximes is still a matter of debate. In vitro experiments suggested than new oximes are more potent than the commercial oximes. However, the antidotal activity of new oximes has not been assessed in vivo. METHODS: The aim of this work was to assess the safety and efficiency of new oximes compared to pralidoxime in a rat model of diethyl paraoxon-induced non-lethal respiratory toxicity. RESULTS: Safety study of oximes showed no adverse effects on ventilation in rats. KO-33, KO-48, KO-74 oximes did not exhibit significant antidotal effect in vivo. In contrast, KO-27 and BI-6 showed evidence of antidotal activity by normalization of respiratory frequency and respiratory times. KO-27 became inefficient only during the last 30 min of the study. In contrast, pralidoxime demonstrated to be inefficient at 30 min post injection. Inversely, the antidotal activity of BI-6 occurred lately, within the last 90 min post injection. CONCLUSION: This study showed respiratory safety of new oximes. Regarding, the efficiency, KO-27 revealed to be a rapid acting antidote toward diethylparaoxon-induced respiratory toxicity, meanwhile BI-6 was a late-acting antidote. Simultaneous administration of these two oximes might result in a complete and prolonged antidotal efficiency.
Zobrazit více v PubMed
Satoh T. Global epidemiology of organophosphate and carbamate poisonings. In: Gupta R.C., editor. Toxicology of Organophosphate and Carbamate Compounds. 1st ed. Academic Press; New York, NY, USA: 2006. pp. 89–100.
Kayouka M., Houze P., Debray M., Baud F.J. Acute renal failure enhances the antidotal activity of pralidoxime towards paraoxon-induced respiratory toxicity. Toxicol. Lett. 2009;189:48–56. doi: 10.1016/j.toxlet.2009.04.020. PubMed DOI
Lerman Y., Gutman H. The use of respiratory stimulants in organophosphates’ intoxication. Med. Hypotheses. 1988;26:267–269. doi: 10.1016/0306-9877(88)90132-6. PubMed DOI
Yamashita M., Tanaka J., Ando Y. Human mortality in organophosphate poisonings. Vet. Hum. Toxicol. 1997;39:84–85. PubMed
Pawar K.S., Bhoite R.R., Pillay C.P., Chavan S.C., Malshikare D.S., Garad S.G. Continuous pralidoxime infusion versus repeated bolus injection to treat organophosphorus pesticide poisoning: A randomised controlled trial. Lancet. 2006;368:2136–2141. doi: 10.1016/S0140-6736(06)69862-0. PubMed DOI
Bartholomew P.M., Gianutsos G., Cohen S.D. Differential cholinesterase inhibition and muscarinic receptor changes in CD-1 mice made tolerant to malathion. Toxicol. Appl. Pharmacol. 1985;81:147–155. doi: 10.1016/0041-008X(85)90129-2. PubMed DOI
Eddleston M., Buckley N., Eyer P., Dawson A. Management of acute organophosphorus pesticide poisoning. Lancet. 2008;371:597–607. doi: 10.1016/S0140-6736(07)61202-1. PubMed DOI PMC
Vale A., Lotti M. Organophosphorus and carbamate insecticide poisoning. Handb. Clin. Neurol. 2015;131:149–168. PubMed
King A.M., Aaron C.K. Organophosphate and carbamate poisoning. Emerg. Med. Clin. North Am. 2015;33:133–151. doi: 10.1016/j.emc.2014.09.010. PubMed DOI
Worek F., Thiermann H., Wille T. Oximes in organophosphate poisoning: 60 years of hope and despair. Chem. Biol. Interact. 2016;259:93–98. doi: 10.1016/j.cbi.2016.04.032. PubMed DOI
Eddleston M., Chowdhury F.R. Pharmacological treatment of organophosphorus insecticide poisoning: The old and the (possible) new. Br. J. Clin. Pharmacol. 2016;81:462–470. doi: 10.1111/bcp.12784. PubMed DOI PMC
Lorke D.E., Petroianu G.A. The Experimental Oxime KO-27-A Promising Protector from Organophosphate Pesticide Poisoning. A Review Comparing KO-27, KO-48, Pralidoxime, and Obidoxime. Front. Neurosci. 2019;13:427. doi: 10.3389/fnins.2019.00427. PubMed DOI PMC
Barelli A., Soave P.M., Del Vicario M., Barelli R. New experimental Oximes in the management of organophosphorus pesticides poisoning. Minerva Anestesiol. 2011;77:1197–1203. PubMed
Gorecki L., Korabecny J., Musilek K., Malinak D., Nepovimova E., Dolezal R., Jun D., Soukup O., Kuca K. SAR Study to Find Optimal Cholinesterase Reactivator Against Organophosphorous Nerve Agents and Pesticides. Arch Toxicol. 2016;90:2831–2859. doi: 10.1007/s00204-016-1827-3. PubMed DOI
Buckley N.A., Eddleston M., Szinicz L. Oximes for acute organophosphate pesticide poisoning. Cochrane Database Syst. Rev. 2005;1 doi: 10.1002/14651858.CD005085. PubMed DOI
Buckley N.A., Eddleston M., Li Y., Bevan M., Robertson J. Oximes for acute organophosphate pesticide poisoning. Cochrane Database Syst. Rev. 2011;2 doi: 10.1002/14651858.CD005085.pub2. PubMed DOI
Villa A.F., Houzé P., Monier C., Risede P., Sarhan H., Borron S.W., Megarbane B., Garnier R., Baud F.J. Toxic doses of paraoxon alter the respiratory pattern without causing respiratory failure in rats. Toxicology. 2007;232:37–49. doi: 10.1016/j.tox.2006.12.006. PubMed DOI
Houzé P., Pronzola L., Kayouka M., Villa A., Debray M., Baud F.J. Ventilatory effects of low dose paraoxon result from central muscarinic effects. Toxicol. Appl. Pharmacol. 2008;233:186–192. doi: 10.1016/j.taap.2008.08.006. PubMed DOI
Kayouka M., Houzé P., Risède P., Debray M., Baud F.J. Acute Renal Failure Alters the Kinetics of Pralidoxime in Rats. Toxicol. Lett. 2009;184:61–66. doi: 10.1016/j.toxlet.2008.10.022. PubMed DOI
Kayouka M., Houzé P., Baud F.J., Cisternino S., Debray M., Risède P., Schinkel A.H., Warnet J.M. Does modulation of organic cation transporters improve pralidoxime activity in an animal model of organophosphate poisoning? Crit. Care Med. 2011;9:803–811. doi: 10.1097/CCM.0b013e318206d52f. PubMed DOI
Duarte T., Martin C., Baud F.J., Laprévote O., Houzé P. Follow up studies on the respiratory pattern and total cholinesterase activities in dichlorvos-poisoned rats. Toxicol. Lett. 2012;213:142–150. doi: 10.1016/j.toxlet.2012.06.010. PubMed DOI
Houzé P., Borron S.W., Eric Kercji E., Baud F.J. Dose-effect study of the reversal by antimuscarinic agents of methomyl-induced respiratory toxicity. Asian J. Pharmacol. Toxicol. 2017;5:1–14.
Houzé P., Berthin T., Raphalen J.H., Hutin A., Baud J.F. High Dose of Pralidoxime Reverses Paraoxon-Induced Respiratory Toxicity in Mice. Turk. J. Anaesthesiol. Reanim. 2018;46:131–138. doi: 10.5152/TJAR.2018.29660. PubMed DOI PMC
Houzé P., Hutin A., Lejay M., Baud F.J. Comparison of the Respiratory Toxicity and Total Cholinesterase Activities in Dimethyl Versus Diethyl Paraoxon-Poisoned Rats. Toxics. 2019;7:23. doi: 10.3390/toxics7020023. PubMed DOI PMC
Kassa J., Kuca K., Karasova J., Musilek K. The development of new oximes and the evaluation of their reactivating, therapeutic and neuroprotective efficacy against tabun. Mini Rev. Med. Chem. 2008;8:1134–1143. doi: 10.2174/138955708785909871. PubMed DOI
Kurt T.L. Epidemiological association in US veterans between Gulf War illness and exposures to anticholinesterases. Toxicol. Lett. 1998;102–103:523–526. doi: 10.1016/S0378-4274(98)00259-8. PubMed DOI
Hulse E.J., Haslam J.D., Emmett S.R., Woolley T. Organophosphorus nerve agent poisoning: Managing the poisoned patient. Br. J. Anaesth. 2019;123:457–463. doi: 10.1016/j.bja.2019.04.061. PubMed DOI
Namba T., Nolte C.T., Jackrel J., Grob D. Poisoning due to organophosphate insecticides. Acute and chronic manifestations. Am. J. Med. 1971;50:475–492. doi: 10.1016/0002-9343(71)90337-8. PubMed DOI
Kumar H. High dose atropine in organophosphorus poisoning. J. Assoc. Physicians India. 1992;40:281–285. PubMed
Houzé P., Mager D.E., Risède P., Baud F.J. Pharmacokinetics and toxicodynamics of pralidoxime effects on paraoxon-induced respiratory toxicity. Toxicol. Sci. 2010;116:660–672. doi: 10.1093/toxsci/kfq152. PubMed DOI
Bohnert S., van den Berg R.M., Mikler J., Klaassen S.D., Joosen M.J. Pharmacokinetics of Three Oximes in a Guinea Pig Model and Efficacy of Combined Oxime Therapy. Toxicol. Lett. 2020;324:86–94. doi: 10.1016/j.toxlet.2020.01.013. PubMed DOI
Thiermann H., Eyer F., Felgenhauer N., Pfab R., Zilker T., Eyer P. Pharmacokinetics of obidoxime in patients poisoned with organophosphorus compounds. Toxicol. Lett. 2010;197:236–242. doi: 10.1016/j.toxlet.2010.06.005. PubMed DOI
Zunec S., Kopjar N., Zeljezić D., Kuca K., Musilek K., Lucić Vrdoljak A. In vivo evaluation of cholinesterase activity, oxidative stress markers, cyto- and genotoxicity of K048 oxime–A promising antidote against organophosphate poisoning. Basic Clin. Pharmacol. Toxicol. 2014;114:344–351. doi: 10.1111/bcpt.12158. PubMed DOI
Petroianu G.A., Nurulain S.M., Shafiullah M., Hasan M.Y., Kuča K., Lorke D.E. Usefulness of administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: Assessment using paraoxon. J. Appl. Toxicol. 2013;33:894–900. doi: 10.1002/jat.2760. PubMed DOI
Lorke D.E., Nurulain S.M., Hasan M.Y., Kuča K., Petroianu G.A. Combined Pre- and Post-treatment of Paraoxon Exposure. Molecules. 2020;25:1521. doi: 10.3390/molecules25071521. PubMed DOI PMC
Baud F.J., Houzé P., Villa A., Borron S.W., Carli P. Toxicodynetics: A new discipline in clinical toxicology. Ann. Pharm. Fr. 2016;74:173–189. doi: 10.1016/j.pharma.2016.02.003. PubMed DOI
Gorecki L., Korabecny J., Musilek K., Nepovimova E., Malinak D., Kucera T., Dolezal R., Jun D., Soukup O., Kuca K. Progress in Acetylcholinesterase Reactivators and in the Treatment of Organophosphorus Intoxication: A Patent Review (2006–2016) Expert Opin. Ther. Pat. 2017;27:971–985. doi: 10.1080/13543776.2017.1338275. PubMed DOI
De Candole C.A., Douglas W.W., Evans C.L., Holmes R., Spencer K.E., Torrance R.W., Wilson K.M. The failure of respiration in death by anticholinesterase poisoning. Br. J. Pharmacol. Chemother. 1953;8:466–475. doi: 10.1111/j.1476-5381.1953.tb01350.x. PubMed DOI PMC
Bartlett D., Jr., Tenney S.M. Control of breathing in experimental anemia. Respir. Physiol. 1970;10:384–395. doi: 10.1016/0034-5687(70)90056-3. PubMed DOI
Tallarida R., Murray R.B. Manual of Pharmacologic Calculations with Computer Programs. Springer; New York, NY, USA: 1981. Area under a curve: Simpson’s Rule; pp. 47–49.
Experimental and Established Oximes as Pretreatment before Acute Exposure to Azinphos-Methyl