Safety and Efficacy of New Oximes to Reverse Low Dose Diethyl-Paraoxon-Induced Ventilatory Effects in Rats

. 2020 Jul 03 ; 25 (13) : . [epub] 20200703

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32635368

BACKGROUND: Oximes are used in addition to atropine to treat organophosphate poisoning. However, the efficiency of oximes is still a matter of debate. In vitro experiments suggested than new oximes are more potent than the commercial oximes. However, the antidotal activity of new oximes has not been assessed in vivo. METHODS: The aim of this work was to assess the safety and efficiency of new oximes compared to pralidoxime in a rat model of diethyl paraoxon-induced non-lethal respiratory toxicity. RESULTS: Safety study of oximes showed no adverse effects on ventilation in rats. KO-33, KO-48, KO-74 oximes did not exhibit significant antidotal effect in vivo. In contrast, KO-27 and BI-6 showed evidence of antidotal activity by normalization of respiratory frequency and respiratory times. KO-27 became inefficient only during the last 30 min of the study. In contrast, pralidoxime demonstrated to be inefficient at 30 min post injection. Inversely, the antidotal activity of BI-6 occurred lately, within the last 90 min post injection. CONCLUSION: This study showed respiratory safety of new oximes. Regarding, the efficiency, KO-27 revealed to be a rapid acting antidote toward diethylparaoxon-induced respiratory toxicity, meanwhile BI-6 was a late-acting antidote. Simultaneous administration of these two oximes might result in a complete and prolonged antidotal efficiency.

Zobrazit více v PubMed

Satoh T. Global epidemiology of organophosphate and carbamate poisonings. In: Gupta R.C., editor. Toxicology of Organophosphate and Carbamate Compounds. 1st ed. Academic Press; New York, NY, USA: 2006. pp. 89–100.

Kayouka M., Houze P., Debray M., Baud F.J. Acute renal failure enhances the antidotal activity of pralidoxime towards paraoxon-induced respiratory toxicity. Toxicol. Lett. 2009;189:48–56. doi: 10.1016/j.toxlet.2009.04.020. PubMed DOI

Lerman Y., Gutman H. The use of respiratory stimulants in organophosphates’ intoxication. Med. Hypotheses. 1988;26:267–269. doi: 10.1016/0306-9877(88)90132-6. PubMed DOI

Yamashita M., Tanaka J., Ando Y. Human mortality in organophosphate poisonings. Vet. Hum. Toxicol. 1997;39:84–85. PubMed

Pawar K.S., Bhoite R.R., Pillay C.P., Chavan S.C., Malshikare D.S., Garad S.G. Continuous pralidoxime infusion versus repeated bolus injection to treat organophosphorus pesticide poisoning: A randomised controlled trial. Lancet. 2006;368:2136–2141. doi: 10.1016/S0140-6736(06)69862-0. PubMed DOI

Bartholomew P.M., Gianutsos G., Cohen S.D. Differential cholinesterase inhibition and muscarinic receptor changes in CD-1 mice made tolerant to malathion. Toxicol. Appl. Pharmacol. 1985;81:147–155. doi: 10.1016/0041-008X(85)90129-2. PubMed DOI

Eddleston M., Buckley N., Eyer P., Dawson A. Management of acute organophosphorus pesticide poisoning. Lancet. 2008;371:597–607. doi: 10.1016/S0140-6736(07)61202-1. PubMed DOI PMC

Vale A., Lotti M. Organophosphorus and carbamate insecticide poisoning. Handb. Clin. Neurol. 2015;131:149–168. PubMed

King A.M., Aaron C.K. Organophosphate and carbamate poisoning. Emerg. Med. Clin. North Am. 2015;33:133–151. doi: 10.1016/j.emc.2014.09.010. PubMed DOI

Worek F., Thiermann H., Wille T. Oximes in organophosphate poisoning: 60 years of hope and despair. Chem. Biol. Interact. 2016;259:93–98. doi: 10.1016/j.cbi.2016.04.032. PubMed DOI

Eddleston M., Chowdhury F.R. Pharmacological treatment of organophosphorus insecticide poisoning: The old and the (possible) new. Br. J. Clin. Pharmacol. 2016;81:462–470. doi: 10.1111/bcp.12784. PubMed DOI PMC

Lorke D.E., Petroianu G.A. The Experimental Oxime KO-27-A Promising Protector from Organophosphate Pesticide Poisoning. A Review Comparing KO-27, KO-48, Pralidoxime, and Obidoxime. Front. Neurosci. 2019;13:427. doi: 10.3389/fnins.2019.00427. PubMed DOI PMC

Barelli A., Soave P.M., Del Vicario M., Barelli R. New experimental Oximes in the management of organophosphorus pesticides poisoning. Minerva Anestesiol. 2011;77:1197–1203. PubMed

Gorecki L., Korabecny J., Musilek K., Malinak D., Nepovimova E., Dolezal R., Jun D., Soukup O., Kuca K. SAR Study to Find Optimal Cholinesterase Reactivator Against Organophosphorous Nerve Agents and Pesticides. Arch Toxicol. 2016;90:2831–2859. doi: 10.1007/s00204-016-1827-3. PubMed DOI

Buckley N.A., Eddleston M., Szinicz L. Oximes for acute organophosphate pesticide poisoning. Cochrane Database Syst. Rev. 2005;1 doi: 10.1002/14651858.CD005085. PubMed DOI

Buckley N.A., Eddleston M., Li Y., Bevan M., Robertson J. Oximes for acute organophosphate pesticide poisoning. Cochrane Database Syst. Rev. 2011;2 doi: 10.1002/14651858.CD005085.pub2. PubMed DOI

Villa A.F., Houzé P., Monier C., Risede P., Sarhan H., Borron S.W., Megarbane B., Garnier R., Baud F.J. Toxic doses of paraoxon alter the respiratory pattern without causing respiratory failure in rats. Toxicology. 2007;232:37–49. doi: 10.1016/j.tox.2006.12.006. PubMed DOI

Houzé P., Pronzola L., Kayouka M., Villa A., Debray M., Baud F.J. Ventilatory effects of low dose paraoxon result from central muscarinic effects. Toxicol. Appl. Pharmacol. 2008;233:186–192. doi: 10.1016/j.taap.2008.08.006. PubMed DOI

Kayouka M., Houzé P., Risède P., Debray M., Baud F.J. Acute Renal Failure Alters the Kinetics of Pralidoxime in Rats. Toxicol. Lett. 2009;184:61–66. doi: 10.1016/j.toxlet.2008.10.022. PubMed DOI

Kayouka M., Houzé P., Baud F.J., Cisternino S., Debray M., Risède P., Schinkel A.H., Warnet J.M. Does modulation of organic cation transporters improve pralidoxime activity in an animal model of organophosphate poisoning? Crit. Care Med. 2011;9:803–811. doi: 10.1097/CCM.0b013e318206d52f. PubMed DOI

Duarte T., Martin C., Baud F.J., Laprévote O., Houzé P. Follow up studies on the respiratory pattern and total cholinesterase activities in dichlorvos-poisoned rats. Toxicol. Lett. 2012;213:142–150. doi: 10.1016/j.toxlet.2012.06.010. PubMed DOI

Houzé P., Borron S.W., Eric Kercji E., Baud F.J. Dose-effect study of the reversal by antimuscarinic agents of methomyl-induced respiratory toxicity. Asian J. Pharmacol. Toxicol. 2017;5:1–14.

Houzé P., Berthin T., Raphalen J.H., Hutin A., Baud J.F. High Dose of Pralidoxime Reverses Paraoxon-Induced Respiratory Toxicity in Mice. Turk. J. Anaesthesiol. Reanim. 2018;46:131–138. doi: 10.5152/TJAR.2018.29660. PubMed DOI PMC

Houzé P., Hutin A., Lejay M., Baud F.J. Comparison of the Respiratory Toxicity and Total Cholinesterase Activities in Dimethyl Versus Diethyl Paraoxon-Poisoned Rats. Toxics. 2019;7:23. doi: 10.3390/toxics7020023. PubMed DOI PMC

Kassa J., Kuca K., Karasova J., Musilek K. The development of new oximes and the evaluation of their reactivating, therapeutic and neuroprotective efficacy against tabun. Mini Rev. Med. Chem. 2008;8:1134–1143. doi: 10.2174/138955708785909871. PubMed DOI

Kurt T.L. Epidemiological association in US veterans between Gulf War illness and exposures to anticholinesterases. Toxicol. Lett. 1998;102–103:523–526. doi: 10.1016/S0378-4274(98)00259-8. PubMed DOI

Hulse E.J., Haslam J.D., Emmett S.R., Woolley T. Organophosphorus nerve agent poisoning: Managing the poisoned patient. Br. J. Anaesth. 2019;123:457–463. doi: 10.1016/j.bja.2019.04.061. PubMed DOI

Namba T., Nolte C.T., Jackrel J., Grob D. Poisoning due to organophosphate insecticides. Acute and chronic manifestations. Am. J. Med. 1971;50:475–492. doi: 10.1016/0002-9343(71)90337-8. PubMed DOI

Kumar H. High dose atropine in organophosphorus poisoning. J. Assoc. Physicians India. 1992;40:281–285. PubMed

Houzé P., Mager D.E., Risède P., Baud F.J. Pharmacokinetics and toxicodynamics of pralidoxime effects on paraoxon-induced respiratory toxicity. Toxicol. Sci. 2010;116:660–672. doi: 10.1093/toxsci/kfq152. PubMed DOI

Bohnert S., van den Berg R.M., Mikler J., Klaassen S.D., Joosen M.J. Pharmacokinetics of Three Oximes in a Guinea Pig Model and Efficacy of Combined Oxime Therapy. Toxicol. Lett. 2020;324:86–94. doi: 10.1016/j.toxlet.2020.01.013. PubMed DOI

Thiermann H., Eyer F., Felgenhauer N., Pfab R., Zilker T., Eyer P. Pharmacokinetics of obidoxime in patients poisoned with organophosphorus compounds. Toxicol. Lett. 2010;197:236–242. doi: 10.1016/j.toxlet.2010.06.005. PubMed DOI

Zunec S., Kopjar N., Zeljezić D., Kuca K., Musilek K., Lucić Vrdoljak A. In vivo evaluation of cholinesterase activity, oxidative stress markers, cyto- and genotoxicity of K048 oxime–A promising antidote against organophosphate poisoning. Basic Clin. Pharmacol. Toxicol. 2014;114:344–351. doi: 10.1111/bcpt.12158. PubMed DOI

Petroianu G.A., Nurulain S.M., Shafiullah M., Hasan M.Y., Kuča K., Lorke D.E. Usefulness of administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: Assessment using paraoxon. J. Appl. Toxicol. 2013;33:894–900. doi: 10.1002/jat.2760. PubMed DOI

Lorke D.E., Nurulain S.M., Hasan M.Y., Kuča K., Petroianu G.A. Combined Pre- and Post-treatment of Paraoxon Exposure. Molecules. 2020;25:1521. doi: 10.3390/molecules25071521. PubMed DOI PMC

Baud F.J., Houzé P., Villa A., Borron S.W., Carli P. Toxicodynetics: A new discipline in clinical toxicology. Ann. Pharm. Fr. 2016;74:173–189. doi: 10.1016/j.pharma.2016.02.003. PubMed DOI

Gorecki L., Korabecny J., Musilek K., Nepovimova E., Malinak D., Kucera T., Dolezal R., Jun D., Soukup O., Kuca K. Progress in Acetylcholinesterase Reactivators and in the Treatment of Organophosphorus Intoxication: A Patent Review (2006–2016) Expert Opin. Ther. Pat. 2017;27:971–985. doi: 10.1080/13543776.2017.1338275. PubMed DOI

De Candole C.A., Douglas W.W., Evans C.L., Holmes R., Spencer K.E., Torrance R.W., Wilson K.M. The failure of respiration in death by anticholinesterase poisoning. Br. J. Pharmacol. Chemother. 1953;8:466–475. doi: 10.1111/j.1476-5381.1953.tb01350.x. PubMed DOI PMC

Bartlett D., Jr., Tenney S.M. Control of breathing in experimental anemia. Respir. Physiol. 1970;10:384–395. doi: 10.1016/0034-5687(70)90056-3. PubMed DOI

Tallarida R., Murray R.B. Manual of Pharmacologic Calculations with Computer Programs. Springer; New York, NY, USA: 1981. Area under a curve: Simpson’s Rule; pp. 47–49.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...