Pregnane neurosteroids exert opposite effects on GABA and glycine-induced chloride current in isolated rat neurons
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35703084
DOI
10.1002/hipo.23449
Knihovny.cz E-zdroje
- Klíčová slova
- GABAA receptor, glycine receptor, neurosteroid, pregnane, structure-activity relationship study,
- MeSH
- 5alfa-dihydroprogesteron farmakologie MeSH
- chloridy farmakologie MeSH
- GABA MeSH
- glycin farmakologie MeSH
- krysa rodu Rattus MeSH
- neurony fyziologie MeSH
- neurosteroidy * MeSH
- potkani Wistar MeSH
- pregnanolon * farmakologie MeSH
- pregnany farmakologie MeSH
- receptory GABA-A fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5alfa-dihydroprogesteron MeSH
- chloridy MeSH
- GABA MeSH
- glycin MeSH
- neurosteroidy * MeSH
- pregnanolon * MeSH
- pregnany MeSH
- receptory GABA-A MeSH
The ability of endogenous neurosteroids (NSs) with pregnane skeleton modified at positions C-3 and C-5 to modulate the functional activity of inhibitory glycine receptors (GlyR) and ionotropic ɣ-aminobutyric acid receptors (GABAA R) was estimated. The glycine and GABA-induced chloride current (IGly and IGABA ) were measured in isolated pyramidal neurons of the rat hippocampus and in isolated rat cerebellar Purkinje cells, respectively. Our experiments demonstrated that pregnane NSs affected IGABA and IGly in a different manner. At low concentrations (up to 5 μM), tested pregnane NSs increased or did not change the peak amplitude of the IGABA , but reduced the IGly by decreasing the peak amplitude and/or accelerating desensitization. Namely, allopregnanolone (ALLO), epipregnanolone (EPI), pregnanolone (PA), pregnanolone sulfate (PAS) and 5β-dihydroprogesterone (5β-DHP) enhanced the IGABA in Purkinje cells. Dose-response curves plotted in the concentration range from 1 nM to 100 μM were smooth for EPI and 5β-DHP, but bell-shaped for ALLO, PA and PAS. The peak amplitude of the IGly was reduced by PA, PAS, and 5α- and 5β-DHP. In contrast, ALLO, ISO and EPI did not modulate it. Dose-response curves for the inhibition of the IGly peak amplitude were smooth for all active compounds. All NSs accelerated desensitization of the IGly . The dose-response relationship for this effect was smooth for ALLO, PA, PAS and 5β-DHP, but it was U-shaped for EPI, 5α-DHP and ISO. These results, together with our previous results on NSs with androstane skeleton, offer comprehensive overview for understanding the mechanisms of effects of NSs on IGly and IGABA .
Zobrazit více v PubMed
Alvarez, L. D., & Pecci, A. (2019). Mapping the neurosteroid binding sites on glycine receptors. The Journal of Steroid Biochemistry and Molecular Biology, 192, 105388. https://doi.org/10.1016/j.jsbmb.2019.105388
Aroeira, R. I., Ribeiro, J. A., Sebastiao, A. M., & Valente, C. A. (2011). Age-related changes of glycine receptor at the rat hippocampus: From the embryo to the adult. Journal of Neurochemistry, 118(3), 339-353. https://doi.org/10.1111/j.1471-4159.2011.07197.x
Ayoola, C., Hwang, S. M., Hong, S. J., Rose, K. E., Boyd, C., Bozic, N., Park, J.-Y., Osuru, H. P., DiGruccio, M. R., Covey, D. F., Jevtovic-Todorovic, V., & Todorovic, S. M. (2014). Inhibition of CaV3.2 T-type calcium channels in peripheral sensory neurons contributes to analgesic properties of epipregnanolone. Psychopharmacology, 231(17), 3503-3515. https://doi.org/10.1007/s00213-014-3588-0
Bai, D., Zhu, G., Pennefather, P., Jackson, M. F., Mac Donald, J. F., & Orser, B. A. (2001). Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid (A) receptors in hippocampal neurons. Molecular Pharmacology, 59(4), 814-824. https://doi.org/10.1124/mol.59.4.814
Baulieu, E. E. (1998). Neurosteroids: A novel function of the brain. Psychoneuroendocrinology, 23(8), 963-987. https://doi.org/10.1016/s0306-4530(98)00071-7
Belelli, D., Harrison, N. L., Maguire, J., Macdonald, R. L., Walker, M. C., & Cope, D. W. (2009). Extrasynaptic GABAA receptors: Form, pharmacology, and function. The Journal of Neuroscience, 29(41), 12757-12763. https://doi.org/10.1523/JNEUROSCI.3340-09.2009
Belelli, D., & Herd, M. B. (2003). The contraceptive agent Provera enhances GABA (A) receptor-mediated inhibitory neurotransmission in the rat hippocampus: Evidence for endogenous neurosteroids? The Journal of Neuroscience, 23(31), 10013-10020.
Belelli, D., Pistis, M., Peters, J. A., & Lambert, J. J. (1999). The interaction of general anaesthetics and neurosteroids with GABA(A) and glycine receptors. Neurochemistry International, 34, 447-452.
Biagini, G., Rustichelli, C., Curia, G., Vinet, J., Lucchi, C., Pugnaghi, M., & Meletti, S. (2013). Neurosteroids and epileptogenesis. Journal of Neuroendocrinology, 25(11), 980-990. https://doi.org/10.1111/jne.12063
Bukanova, J., Solntseva, E., Kondratenko, R., & Kudova, E. (2021). Epipregnanolone as a positive modulator of GABA(A) receptor in rat cerebellar and hippocampus neurons. Biomolecules, 11(6), 791. https://doi.org/10.3390/biom11060791
Bukanova, J. V., Solntseva, E. I., Kolbaev, S. N., & Kudova, E. (2018). Modulation of GABA and glycine receptors in rat pyramidal hippocampal neurones by 3alpha5beta-pregnanolone derivatives. Neurochemistry International, 118, 145-151. https://doi.org/10.1016/j.neuint.2018.06.002
Bukanova, J. V., Solntseva, E. I., & Kudova, E. (2020). Neurosteroids as selective inhibitors of glycine receptor activity: Structure-activity relationship study on endogenous Androstanes and Androstenes. Frontiers in Molecular Neuroscience, 13, 44. https://doi.org/10.3389/fnmol.2020.00044
Burgos, C. F., Yevenes, G. E., & Aguayo, L. G. (2016). Structure and pharmacologic modulation of inhibitory glycine receptors. Molecular Pharmacology, 90(3), 318-325. https://doi.org/10.1124/mol.116.105726
Chattipakorn, S. C., & McMahon, L. L. (2002). Pharmacological characterization of glycine-gated chloride currents recorded in rat hippocampal slices. Journal of Neurophysiology, 87(3), 1515-1525. https://doi.org/10.1152/jn.00365.2001
Chen, Z. W., Bracamontes, J. R., Budelier, M. M., Germann, A. L., Shin, D. J., Kathiresan, K., Qian, M.-X., Manion, B., Cheng, W. W. L., Reichert, D. E., Akk, G., Covey, D. F., & Evers, A. S. (2019). Multiple functional neurosteroid binding sites on GABAA receptors. PLoS Biology, 17(3), e3000157. https://doi.org/10.1371/journal.pbio.3000157
Cheney, D. L., Uzunov, D., Costa, E., & Guidotti, A. (1995). Gas chromatographic-mass fragmentographic quantitation of 3 alpha-hydroxy-5 alpha-pregnan-20-one (allopregnanolone) and its precursors in blood and brain of adrenalectomized and castrated rats. The Journal of Neuroscience, 15(6), 4641-4650.
Danglot, L., Rostaing, P., Triller, A., & Bessis, A. (2004). Morphologically identified glycinergic synapses in the hippocampus. Molecular and Cellular Neurosciences, 27(4), 394-403. https://doi.org/10.1016/j.mcn.2004.05.007
Durisic, N., Godin, A. G., Wever, C. M., Heyes, C. D., Lakadamyali, M., & Dent, J. A. (2012). Stoichiometry of the human glycine receptor revealed by direct subunit counting. The Journal of Neuroscience, 32(37), 12915-12920. https://doi.org/10.1523/JNEUROSCI.2050-12.2012
Ebner, M. J., Corol, D. I., Havlikova, H., Honour, J. W., & Fry, J. P. (2006). Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain. Endocrinology, 147(1), 179-190. https://doi.org/10.1210/en.2005-1065
Fodor, L., Boros, A., Dezso, P., & Maksay, G. (2006). Expression of heteromeric glycine receptor-channels in rat spinal cultures and inhibition by neuroactive steroids. Neurochemistry International, 49(6), 577-583. https://doi.org/10.1016/j.neuint.2006.04.013
Gielen, M., Thomas, P., & Smart, T. G. (2015). The desensitization gate of inhibitory Cys-loop receptors. Nature Communications, 6, 6829. https://doi.org/10.1038/ncomms7829
Gunduz-Bruce, H., Takahashi, K., & Huang, M. Y. (2021). Development of neuroactive steroids for the treatment of postpartum depression. Journal of Neuroendocrinology, 34, e13019. https://doi.org/10.1111/jne.13019
Harney, S. C., Frenguelli, B. G., & Lambert, J. J. (2003). Phosphorylation influences neurosteroid modulation of synaptic GABAA receptors in rat CA1 and dentate gyrus neurons. Neuropharmacology, 45, 873-883. https://doi.org/10.1016/s0028-3908(03)00251-x
Harrison, N. L., Majewska, M. D., Harrington, J. W., & Barker, J. L. (1987). Structure-activity relationships for steroid interaction with the gamma-aminobutyric acid a receptor complex. Journal of Pharmacology and Experimental Therapeutics, 241, 346-353.
Herd, M. B., Belelli, D., & Lambert, J. J. (2007). Neurosteroid modulation of synaptic and extrasynaptic GABA (A) receptors. Pharmacology & Therapeutics, 116(1), 20-34. https://doi.org/10.1016/j.pharmthera.2007.03.007
Irwin, R. W., & Brinton, R. D. (2014). Allopregnanolone as regenerative therapeutic for Alzheimer's disease: Translational development and clinical promise. Progress in Neurobiology, 113, 40-55.
Jiang, P., Yang, C. X., Wang, Y. T., & Xu, T. L. (2006). Mechanisms of modulation of pregnanolone on glycinergic response in cultured spinal dorsal horn neurons of rat. Neuroscience, 141(4), 2041-2050. https://doi.org/10.1016/j.neuroscience.2006.05.009
Jin, X., Covey, D. F., & Steinbach, J. H. (2009). Kinetic analysis of voltage-dependent potentiation and block of the glycine α3 receptor by a neuroactive steroid analogue. The Journal of Physiology, 587(Pt 5), 981-997. https://doi.org/10.1113/jphysiol.2008.159343
Joksimovic, S. L., Donald, R. R., Park, J.-Y., & Todorovic, S. M. (2019). Inhibition of multiple voltage-gated calcium channels may contribute to spinally mediated analgesia by epipregnanolone in a rat model of surgical paw incision. Channels, 13, 48-61.
Keck, T., & White, J. A. (2009). Glycinergic inhibition in the hippocampus. Reviews in the Neurosciences, 20(1), 13-22. https://doi.org/10.1515/revneuro.2009.20.1.13
Kelley, M. H., Taguchi, N., Ardeshiri, A., Kuroiwa, M., Hurn, P. D., Traystman, R. J., & Herson, P. S. (2008). Ischemic insult to cerebellar Purkinje cells causes diminished GABAA receptor function and allopregnanolone neuroprotection is associated with GABAA receptor stabilization. Journal of Neurochemistry, 107(3), 668-678. https://doi.org/10.1111/j.1471-4159.2008.05617.x
Keramidas, A., & Lynch, J. W. (2013). An outline of desensitization in pentameric ligand-gated ion channel receptors. Cellular and Molecular Life Sciences, 70(7), 1241-1253. https://doi.org/10.1007/s00018-012-1133-z
Khisti, R. T., Chopde, C. T., & Jain, S. P. (2000). Antidepressant-like effect of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in mice forced swim test. Pharmacology, Biochemistry, and Behavior, 67(1), 137-143. https://doi.org/10.1016/s0091-3057(00)00300-2
Kim, J. J., & Hibbs, R. E. (2021). Direct structural insights into GABAA receptor pharmacology. Trends in Biochemical Sciences, 46(6), 502-517. https://doi.org/10.1016/j.tibs.2021.01.011
Koksma, J. J., van Kesteren, R. E., Rosahl, T. W., Zwart, R., Smit, A. B., Luddens, H., & Brussaard, A. B. (2003). Oxytocin regulates neurosteroid modulation of GABA (A) receptors in supraoptic nucleus around parturition. The Journal of Neuroscience, 23(3), 788-797.
Kudova, E. (2021). Rapid effects of neurosteroids on neuronal plasticity and their physiological and pathological implications. Neuroscience Letters, 750, 135771. https://doi.org/10.1016/j.neulet.2021.135771
Laurie, D. J., Wisden, W., & Seeburg, P. H. (1992). The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. The Journal of Neuroscience, 12(11), 4151-4172.
Le Foll, F., Louiset, E., Castel, H., Vaudry, H., & Cazin, L. (1997). Electrophysiological effects of various neuroactive steroids on the GABA (A) receptor in pituitary melanotrope cells. European Journal of Pharmacology, 331, 303-311.
Leppa, E., Linden, A. M., Aller, M. I., Wulff, P., Vekovischeva, O., Luscher, B., Luddens, H., Wisden, W., & Korpi, E. R. (2016). Increased motor-impairing effects of the neuroactive steroid Pregnanolone in mice with targeted inactivation of the GABAA receptor gamma2 subunit in the cerebellum. Frontiers in Pharmacology, 7, 403. https://doi.org/10.3389/fphar.2016.00403
Liu, S., Sjovall, J., & Griffiths, W. J. (2003). Neurosteroids in rat brain: Extraction, isolation, and analysis by nanoscale liquid chromatography-electrospray mass spectrometry. Analytical Chemistry, 75(21), 5835-5846. https://doi.org/10.1021/ac0346297
Luchetti, S., Huitinga, I., & Swaab, D. F. (2011). Neurosteroid and GABA-A receptor alterations in Alzheimer's disease, Parkinson's disease and multiple sclerosis. Neuroscience, 191, 6-21. https://doi.org/10.1016/j.neuroscience.2011.04.010
Lynch, J. W. (2004). Molecular structure and function of the glycine receptor chloride channel. Physiological Reviews, 84(4), 1051-1095. https://doi.org/10.1152/physrev.00042.2003
Lynch, J. W., Zhang, Y., Talwar, S., & Estrada-Mondragon, A. (2017). Glycine receptor drug discovery. Advances in Pharmacology, 79, 225-253. https://doi.org/10.1016/bs.apha.2017.01.003
Mathur, C., Prasad, V. V., Raju, V. S., Welch, M., & Lieberman, S. (1993). Steroids and their conjugates in the mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 90(1), 85-88. https://doi.org/10.1073/pnas.90.1.85
Meltzer-Brody, S., Colquhoun, H., Riesenberg, R., Epperson, C. N., Deligiannidis, K. M., Rubinow, D. R., Li, H., Sankoh, A. J., Clemson, C., Schactere, A., Jonas, J., & Kanes, S. (2018). Brexanolone injection in post-partum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet, 392(10152), 1058-1070. https://doi.org/10.1016/S0140-6736(18)31551-4
Miller, P. S., Scott, S., Masiulis, S., De Colibus, L., Pardon, E., Steyaert, J., & Aricescu, A. R. (2017). Structural basis for GABAA receptor potentiation by neurosteroids. Nature Structural & Molecular Biology, 24(11), 986-992. https://doi.org/10.1038/nsmb.3484
Miller, W. L., & Auchus, R. J. (2011). The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine Reviews, 32(1), 81-151. https://doi.org/10.1210/er.2010-0013
O'Dell, L. E., Purdy, R. H., Covey, D. F., Richardson, H. N., Roberto, M., & Koob, G. F. (2005). Epipregnanolone and a novel synthetic neuroactive steroid reduce alcohol self-administration in rats. Pharmacology, Biochemistry, and Behavior, 81(3), 543-550. https://doi.org/10.1016/j.pbb.2005.03.020
Park, M. H., Rehman, S. U., Kim, I. S., Choi, M. S., & Yoo, H. H. (2017). Stress-induced changes of neurosteroid profiles in rat brain and plasma under immobilized condition. Journal of Pharmaceutical and Biomedical Analysis, 138, 92-99. https://doi.org/10.1016/j.jpba.2017.02.007
Park-Chung, M., Malayev, A., Purdy, R. H., Gibbs, T. T., & Farb, D. H. (1999). Sulfated and unsulfated steroids modulate g-aminobutyric acidA receptor function through distinct sites. Brain Research, 830, 72-87.
Paul, S. M., Pinna, G., & Guidotti, A. (2020). Allopregnanolone: From molecular pathophysiology to therapeutics. A historical perspective. Neurobiology of Stress, 12, 100215. https://doi.org/10.1016/j.ynstr.2020.100215
Puia, G., Santi, M. R., Vicini, S., Pritchett, D. B., Purdy, R. H., Paul, S. M., Seeburg, P. H., & Costa, E. (1990). Neurosteroids act on recombinant human GABAA receptors. Neuron, 4(5), 759-765. https://doi.org/10.1016/0896-6273(90)90202-q
Ratner, M. H., Kumaresan, V., & Farb, D. H. (2019). Neurosteroid actions in memory and neurologic/neuropsychiatric disorders. Frontiers in Endocrinology (Lausanne), 10, 169. https://doi.org/10.3389/fendo.2019.00169
Reddy, D. S. (2011). Role of anticonvulsant and antiepileptogenic neurosteroids in the pathophysiology and treatment of epilepsy. Frontiers in Endocrinology (Lausanne), 2, 38. https://doi.org/10.3389/fendo.2011.00038
Rodgers, R. J., & Johnson, N. J. (1998). Behaviorally selective effects of neuroactive steroids on plus-maze anxiety in mice. Pharmacology, Biochemistry, and Behavior, 59(1), 221-232. https://doi.org/10.1016/s0091-3057(97)00339-0
Schule, C., Nothdurfter, C., & Rupprecht, R. (2014). The role of allopregnanolone in depression and anxiety. Progress in Neurobiology, 113, 79-87. https://doi.org/10.1016/j.pneurobio.2013.09.003
Stastna, E., Chodounska, H., Pouzar, V., Kapras, V., Borovska, J., Cais, O., & Vyklicky, L., Jr. (2009). Synthesis of C3, C5, and C7 pregnane derivatives and their effect on NMDA receptor responses in cultured rat hippocampal neurons. Steroids, 74(2), 256-263. https://doi.org/10.1016/j.steroids.2008.11.011
Stoffel-Wagner, B. (2003). Neurosteroid biosynthesis in the human brain and its clinical implications. Annals of the New York Academy of Sciences, 1007, 64-78. https://doi.org/10.1196/annals.1286.007
Strömberg, J., Haage, D., Taube, M., Bäckström, T., & Lundgren, P. (2006). Neurosteroid modulation of allopregnanolone and GABA 328 effect on the GABA-A receptor. Neuroscience, 143, 73-81.
Sugasawa, Y., Cheng, W. W., Bracamontes, J. R., Chen, Z. W., Wang, L., Germann, A. L., Pierce, S. R., Senneff, T. C., Krishnan, K., Reichert, D. E., Covey, D. F., Akk, G., & Evers, A. S. (2020). Site-specific effects of neurosteroids on GABAA receptor activation and desensitization. eLife, 9, e55331. https://doi.org/10.7554/eLife.55331
Tietz, E. I., Kapur, J., & Macdonald, R. L. (1999). Functional GABAA receptor heterogeneity of acutely dissociated hippocampal CA1 pyramidal cells. Journal of Neurophysiology, 81(4), 1575-1586. https://doi.org/10.1152/jn.1999.81.4.1575
Verleye, M., Akwa, Y., Liere, P., Ladurelle, N., Pianos, A., Eychenne, B., Schumacher, M., & Gillardin, J. M. (2005). The anxiolytic etifoxine activates the peripheral benzodiazepine receptor and increases the neurosteroid levels in rat brain. Pharmacology, Biochemistry, and Behavior, 82(4), 712-720. https://doi.org/10.1016/j.pbb.2005.11.013
Vicini, S., Losi, G., & Homanics, G. E. (2002). GABA(A) receptor delta subunit deletion prevents neurosteroid modulation of inhibitory synaptic currents in cerebellar neurons. Neuropharmacology, 43(4), 646-650. https://doi.org/10.1016/s0028-3908(02)00126-0
Vorobjev, V. S. (1991). Vibrodissociation of sliced mammalian nervous tissue. Journal of Neuroscience Methods, 38(2-3), 145-150. https://doi.org/10.1016/0165-0270(91)90164-u
Wang, M., He, Y., Eisenman, L. N., Fields, C., Zeng, C. M., Mathews, J., Benz, A., Fu, T., Zorumski, E., Steinbach, J. H., Covey, D. F., Zorumski, C. F., & Mennerick, S. (2002). 3beta -hydroxypregnane steroids are pregnenolone sulfate-like GABA(A) receptor antagonists. The Journal of Neuroscience, 22(9), 3366-3375.
Weir, C. J., Ling, A. T., Belelli, D., Wildsmith, J. A., Peters, J. A., & Lambert, J. J. (2004). The interaction of anaesthetic steroids with recombinant glycine and GABAA receptors. British Journal of Anaesthesia, 92(5), 704-711. https://doi.org/10.1093/bja/aeh125
Woodward, R. M., Polenzani, L., & Miledi, R. (1992). Effects of steroids on gamma-aminobutyric acid receptors expressed in Xenopus oocytes by poly(A)+ RNA from mammalian brain and retina. Molecular Pharmacology, 41(1), 89-103.
Wu, F. S., Gibbs, T. T., & Farb, D. H. (1990). Inverse modulation of gamma-aminobutyric acid- and glycine-induced currents by progesterone. Molecular Pharmacology, 37(5), 597-602.
Xu, T. L., & Gong, N. (2010). Glycine and glycine receptor signaling in hippocampal neurons: Diversity, function and regulation. Progress in Neurobiology, 91(4), 349-361. https://doi.org/10.1016/j.pneurobio.2010.04.008
Yang, Z., Taran, E., Webb, T. I., & Lynch, J. W. (2012). Stoichiometry and subunit arrangement of alpha1beta glycine receptors as determined by atomic force microscopy. Biochemistry, 51(26), 5229-5231. https://doi.org/10.1021/bi300063m
Ziolkowski, L., Mordukhovich, I., Chen, D. M., Chisari, M., Shu, H. J., Lambert, P. M., Qian, M., Zorumski, C. F., Covey, D. F., & Mennerick, S. (2021). A neuroactive steroid with a therapeutically interesting constellation of actions at GABAA and NMDA receptors. Neuropharmacology, 183, 108358. https://doi.org/10.1016/j.neuropharm.2020.108358
Zorumski, C. F., Paul, S. M., Covey, D. F., & Mennerick, S. (2019). Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond. Neurobiology of Stress, 11, 100196.
Corticosteroids as Selective and Effective Modulators of Glycine Receptors