Corticosteroids as Selective and Effective Modulators of Glycine Receptors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37584305
PubMed Central
PMC10485894
DOI
10.1021/acschemneuro.3c00287
Knihovny.cz E-zdroje
- Klíčová slova
- GABAA receptor, corticosteroids, glycine receptor, structure−activity relationship study,
- MeSH
- GABA farmakologie MeSH
- glycin * farmakologie MeSH
- hormony kůry nadledvin farmakologie MeSH
- krysa rodu Rattus MeSH
- neurony MeSH
- receptory GABA-A MeSH
- receptory glycinu * fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GABA MeSH
- glycin * MeSH
- hormony kůry nadledvin MeSH
- receptory GABA-A MeSH
- receptory glycinu * MeSH
The mechanism of the negative impact of corticosteroids on the induction and progress of mental illness remains unclear. In this work, we studied the effects of corticosteroids on the activity of neuronal glycine receptors (GlyR) and GABA-A receptors (GABAAR) by measuring the chloride current induced by the application of GABA (2 or 5 μM) to isolated cerebellar Purkinje cells (IGABA) and by the application of glycine (100 μM) to pyramidal neurons of the rat hippocampus (IGly). It was found that corticosterone, 5α-dihydrodeoxycorticosterone, allotetrahydrocorticosterone, cortisol, and 17α,21-dihydroxypregnenolone were able to accelerate the desensitization of the IGly at physiological concentrations (IC50 values varying from 0.39 to 0.72 μM). Next, cortisone, 11-deoxycortisol, 11-deoxycorticosterone, 5β-dihydrodeoxycorticosterone, and tetrahydrocorticosterone accelerated the desensitization of IGly with IC50 values varying from 10.3 to 15.2 μM. Allotetrahydrocorticosterone and tetrahydrocorticosterone potentiated the IGABA albeit with high EC50 values (18-23 μM). The rest of the steroids had no effect on IGABA in the range of concentrations of 1-100 μM. Finally, our study has suggested a structural relationship of the 3β-hydroxyl group/3-oxo group with the selective modulatory activity on GlyRs in contrast to the 3α-hydroxyl group that is pivotal for GABAARs. In summary, our results suggest that increased GlyR desensitization by corticosteroids may contribute to brain dysfunction under chronic stress and identify corticosteroids for further development as selective modulators of GlyRs.
Zobrazit více v PubMed
Zorn J. V.; Schur R. R.; Boks M. P.; Kahn R. S.; Joels M.; Vinkers C. H. Cortisol stress reactivity across psychiatric disorders: A systematic review and meta-analysis. Psychoneuroendocrinology 2017, 77, 25–36. 10.1016/j.psyneuen.2016.11.036. PubMed DOI
Zell V.; Juif P. E.; Hanesch U.; Poisbeau P.; Anton F.; Darbon P. Corticosterone analgesia is mediated by the spinal production of neuroactive metabolites that enhance GABAergic inhibitory transmission on dorsal horn rat neurons. Eur. J. Neurosci 2015, 41 (3), 390–7. 10.1111/ejn.12796. PubMed DOI
Miziak B.; Chroscinska-Krawczyk M.; Czuczwar S. J. Neurosteroids and Seizure Activity. Front Endocrinol (Lausanne) 2020, 11, 541802.10.3389/fendo.2020.541802. PubMed DOI PMC
Joels M. Corticosteroids and the brain. J. Endocrinol 2018, 238 (3), R121–R130. 10.1530/JOE-18-0226. PubMed DOI
Kennis M.; Gerritsen L.; van Dalen M.; Williams A.; Cuijpers P.; Bockting C. Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Mol. Psychiatry 2020, 25 (2), 321–338. 10.1038/s41380-019-0585-z. PubMed DOI PMC
Zajkowska Z.; Gullett N.; Walsh A.; Zonca V.; Pedersen G. A.; Souza L.; Kieling C.; Fisher H. L.; Kohrt B. A.; Mondelli V. Cortisol and development of depression in adolescence and young adulthood - a systematic review and meta-analysis. Psychoneuroendocrinology 2022, 136, 105625.10.1016/j.psyneuen.2021.105625. PubMed DOI PMC
Reddy D. S.; Thompson W.; Calderara G. Does Stress Trigger Seizures? Evidence from Experimental Models. Curr. Top Behav Neurosci 2020, 55, 41–64. 10.1007/7854_2020_191. PubMed DOI
Pereira G. M.; Soares N. M.; Souza A. R.; Becker J.; Finkelsztejn A.; Almeida R. M. M. Basal cortisol levels and the relationship with clinical symptoms in multiple sclerosis: a systematic review. Arq Neuropsiquiatr 2018, 76 (9), 622–634. 10.1590/0004-282x20180091. PubMed DOI
Soares N. M.; Pereira G. M.; Altmann V.; de Almeida R. M. M.; Rieder C. R. M. Cortisol levels, motor, cognitive and behavioral symptoms in Parkinson’s disease: a systematic review. J. Neural Transm (Vienna) 2019, 126 (3), 219–232. 10.1007/s00702-018-1947-4. PubMed DOI
Creutzberg K. C.; Sanson A.; Viola T. W.; Marchisella F.; Begni V.; Grassi-Oliveira R.; Riva M. A. Long-lasting effects of prenatal stress on HPA axis and inflammation: A systematic review and multilevel meta-analysis in rodent studies. Neurosci Biobehav Rev. 2021, 127, 270–283. 10.1016/j.neubiorev.2021.04.032. PubMed DOI
Belelli D.; Lambert J. J. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci 2005, 6 (7), 565–75. 10.1038/nrn1703. PubMed DOI
Gunn B. G.; Brown A. R.; Lambert J. J.; Belelli D. Neurosteroids and GABA(A) Receptor Interactions: A Focus on Stress. Front Neurosci 2011, 5, 131.10.3389/fnins.2011.00131. PubMed DOI PMC
Levesque M.; Biagini G.; Avoli M. Neurosteroids and Focal Epileptic Disorders. Int. J. Mol. Sci. 2020, 21 (24), 9391.10.3390/ijms21249391. PubMed DOI PMC
Mellon S. H.; Griffin L. D. Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab 2002, 13 (1), 35–43. 10.1016/S1043-2760(01)00503-3. PubMed DOI
Yang Z.; Taran E.; Webb T. I.; Lynch J. W. Stoichiometry and subunit arrangement of alpha1beta glycine receptors as determined by atomic force microscopy. Biochemistry 2012, 51 (26), 5229–31. 10.1021/bi300063m. PubMed DOI
Lynch J. W. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 2004, 84 (4), 1051–95. 10.1152/physrev.00042.2003. PubMed DOI
Kudova E. Rapid effects of neurosteroids on neuronal plasticity and their physiological and pathological implications. Neurosci. Lett. 2021, 750, 135771.10.1016/j.neulet.2021.135771. PubMed DOI
Lynch J. W.; Zhang Y.; Talwar S.; Estrada-Mondragon A. Glycine Receptor Drug Discovery. Adv. Pharmacol. 2017, 79, 225–253. 10.1016/bs.apha.2017.01.003. PubMed DOI
Fodor L.; Boros A.; Dezso P.; Maksay G. Expression of heteromeric glycine receptor-channels in rat spinal cultures and inhibition by neuroactive steroids. Neurochem. Int. 2006, 49 (6), 577–83. 10.1016/j.neuint.2006.04.013. PubMed DOI
Jiang P.; Yang C. X.; Wang Y. T.; Xu T. L. Mechanisms of modulation of pregnanolone on glycinergic response in cultured spinal dorsal horn neurons of rat. Neuroscience 2006, 141 (4), 2041–50. 10.1016/j.neuroscience.2006.05.009. PubMed DOI
Wu F. S.; Chen S. C.; Tsai J. J. Competitive inhibition of the glycine-induced current by pregnenolone sulfate in cultured chick spinal cord neurons. Brain Res. 1997, 750 (1–2), 318–20. 10.1016/S0006-8993(97)00053-X. PubMed DOI
Jin X.; Covey D. F.; Steinbach J. H. Kinetic analysis of voltage-dependent potentiation and block of the glycine alpha 3 receptor by a neuroactive steroid analogue. J. Physiol 2009, 587, 981–97. 10.1113/jphysiol.2008.159343. PubMed DOI PMC
Weir C. J.; Ling A. T.; Belelli D.; Wildsmith J. A.; Peters J. A.; Lambert J. J. The interaction of anaesthetic steroids with recombinant glycine and GABAA receptors. Br J. Anaesth 2004, 92 (5), 704–11. 10.1093/bja/aeh125. PubMed DOI
Bukanova J. V.; Solntseva E. I.; Kolbaev S. N.; Kudova E. Modulation of GABA and glycine receptors in rat pyramidal hippocampal neurones by 3alpha5beta-pregnanolone derivatives. Neurochem. Int. 2018, 118, 145–151. 10.1016/j.neuint.2018.06.002. PubMed DOI
Bukanova J. V.; Solntseva E. I.; Kudova E. Neurosteroids as Selective Inhibitors of Glycine Receptor Activity: Structure-Activity Relationship Study on Endogenous Androstanes and Androstenes. Front Mol. Neurosci 2020, 13, 44.10.3389/fnmol.2020.00044. PubMed DOI PMC
Solntseva E. I.; Bukanova J. V.; Skrebitsky V. G.; Kudova E. Pregnane neurosteroids exert opposite effects on GABA and glycine-induced chloride current in isolated rat neurons. Hippocampus 2022, 32 (7), 552–563. 10.1002/hipo.23449. PubMed DOI
Mennerick S.; Zeng C. M.; Benz A.; Shen W.; Izumi Y.; Evers A. S.; Covey D. F.; Zorumski C. F. Effects on gamma-aminobutyric acid (GABA)(A) receptors of a neuroactive steroid that negatively modulates glutamate neurotransmission and augments GABA neurotransmission. Mol. Pharmacol. 2001, 60 (4), 732–41. PubMed
Reddy D. S.; Rogawski M. A. Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA(A) receptor function and seizure susceptibility. J. Neurosci. 2002, 22 (9), 3795–805. 10.1523/JNEUROSCI.22-09-03795.2002. PubMed DOI PMC
Womack M. D.; Pyner S.; Barrett-Jolley R. Inhibition by alpha-tetrahydrodeoxycorticosterone (THDOC) of pre-sympathetic parvocellular neurones in the paraventricular nucleus of rat hypothalamus. Br. J. Pharmacol. 2006, 149 (5), 600–7. 10.1038/sj.bjp.0706911. PubMed DOI PMC
Wohlfarth K. M.; Bianchi M. T.; Macdonald R. L. Enhanced neurosteroid potentiation of ternary GABA(A) receptors containing the delta subunit. J. Neurosci. 2002, 22 (5), 1541–9. 10.1523/JNEUROSCI.22-05-01541.2002. PubMed DOI PMC
Modgil A.; Parakala M. L.; Ackley M. A.; Doherty J. J.; Moss S. J.; Davies P. A. Endogenous and synthetic neuroactive steroids evoke sustained increases in the efficacy of GABAergic inhibition via a protein kinase C-dependent mechanism. Neuropharmacology 2017, 113, 314–322. 10.1016/j.neuropharm.2016.10.010. PubMed DOI PMC
Purdy R. H.; Morrow A. L.; Blinn J. R.; Paul S. M. Synthesis, metabolism, and pharmacological activity of 3 alpha-hydroxy steroids which potentiate GABA-receptor-mediated chloride ion uptake in rat cerebral cortical synaptoneurosomes. J. Med. Chem. 1990, 33 (6), 1572–81. 10.1021/jm00168a008. PubMed DOI
Veleiro A. S.; Burton G. Structure-activity relationships of neuroactive steroids acting on the GABAA receptor. Curr. Med. Chem. 2009, 16 (4), 455–72. 10.2174/092986709787315522. PubMed DOI
Akk G.; Li P.; Bracamontes J.; Reichert D. E.; Covey D. F.; Steinbach J. H. Mutations of the GABA-A receptor alpha1 subunit M1 domain reveal unexpected complexity for modulation by neuroactive steroids. Mol. Pharmacol. 2008, 74 (3), 614–27. 10.1124/mol.108.048520. PubMed DOI PMC
Keramidas A.; Lynch J. W. An outline of desensitization in pentameric ligand-gated ion channel receptors. Cell. Mol. Life Sci. 2013, 70 (7), 1241–53. 10.1007/s00018-012-1133-z. PubMed DOI PMC
Gielen M.; Thomas P.; Smart T. G. The desensitization gate of inhibitory Cys-loop receptors. Nat. Commun. 2015, 6, 6829.10.1038/ncomms7829. PubMed DOI PMC
Vyklicky V.; Smejkalova T.; Krausova B.; Balik A.; Korinek M.; Borovska J.; Horak M.; Chvojkova M.; Kleteckova L.; Vales K.; Cerny J.; Nekardova M.; Chodounska H.; Kudova E.; Vyklicky L. Preferential Inhibition of Tonically over Phasically Activated NMDA Receptors by Pregnane Derivatives. J. Neurosci. 2016, 36 (7), 2161–75. 10.1523/JNEUROSCI.3181-15.2016. PubMed DOI PMC
Alvarez L. D.; Pecci A. Mapping the neurosteroid binding sites on glycine receptors. J. Steroid Biochem Mol. Biol. 2019, 192, 105388.10.1016/j.jsbmb.2019.105388. PubMed DOI
Sugasawa Y.; Cheng W. W.; Bracamontes J. R.; Chen Z. W.; Wang L.; Germann A. L.; Pierce S. R.; Senneff T. C.; Krishnan K.; Reichert D. E.; Covey D. F.; Akk G.; Evers A. S. Site-specific effects of neurosteroids on GABA(A) receptor activation and desensitization. Elife 2020, 9, e55331.10.7554/eLife.55331. PubMed DOI PMC
Maksay G.; Laube B.; Betz H. Subunit-specific modulation of glycine receptors by neurosteroids. Neuropharmacology 2001, 41 (3), 369–76. 10.1016/S0028-3908(01)00071-5. PubMed DOI
Bae Y. J.; Zeidler R.; Baber R.; Vogel M.; Wirkner K.; Loeffler M.; Ceglarek U.; Kiess W.; Korner A.; Thiery J.; Kratzsch J. Reference intervals of nine steroid hormones over the life-span analyzed by LC-MS/MS: Effect of age, gender, puberty, and oral contraceptives. J. Steroid Biochem Mol. Biol. 2019, 193, 105409.10.1016/j.jsbmb.2019.105409. PubMed DOI
Vankova M.; Velikova M.; Vejrazkova D.; Vcelak J.; Lukasova P.; Rusina R.; Vankova H.; Jarolimova E.; Kancheva R.; Bulant J.; Horackova L.; Bendlova B.; Hill M. The Role of Steroidomics in the Diagnosis of Alzheimer’s Disease and Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2023, 24 (10), 8575.10.3390/ijms24108575. PubMed DOI PMC
Hána V.; Ježková J.; Kosák M.; Kršek M.; Hána V.; Hill M. Serum steroid profiling in Cushing’s syndrome patients. Journal of Steroid Biochemistry and Molecular Biology 2019, 192, 105410.10.1016/j.jsbmb.2019.105410. PubMed DOI
Leff-Gelman P.; Flores-Ramos M.; Carrasco A. E. A.; Martinez M. L.; Takashima M. F. S.; Coronel F. M. C.; Labonne B. F.; Dosal J. A. Z.; Chavez-Peon P. B.; Morales S. G.; Camacho-Arroyo I. Cortisol and DHEA-S levels in pregnant women with severe anxiety. BMC Psychiatry 2020, 20 (1), 393.10.1186/s12888-020-02788-6. PubMed DOI PMC
Kapugi M.; Cunningham K. Corticosteroids. Orthop Nurs 2019, 38 (5), 336–339. 10.1097/NOR.0000000000000595. PubMed DOI
Burgos C. F.; Yevenes G. E.; Aguayo L. G. Structure and Pharmacologic Modulation of Inhibitory Glycine Receptors. Mol. Pharmacol. 2016, 90 (3), 318–25. 10.1124/mol.116.105726. PubMed DOI PMC
Vorobjev V. S. Vibrodissociation of sliced mammalian nervous tissue. J. Neurosci Methods 1991, 38 (2–3), 145–50. 10.1016/0165-0270(91)90164-U. PubMed DOI