The Benefits and Risks of Switching from Fingolimod to Siponimod for the Treatment of Relapsing-Remitting and Secondary Progressive Multiple Sclerosis

. 2023 Dec ; 23 (4) : 331-338. [epub] 20230828

Jazyk angličtina Země Nový Zéland Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37640862

Grantová podpora
Cooperatio Program Charles University in Prague, Czech Republic
research area NEUR Charles University in Prague, Czech Republic
FN HK 00179906 grant projects of the Ministry of Health of the Czech Republic

Odkazy

PubMed 37640862
PubMed Central PMC10676342
DOI 10.1007/s40268-023-00434-6
PII: 10.1007/s40268-023-00434-6
Knihovny.cz E-zdroje

Multiple sclerosis (MS) is a chronic neurodegenerative disease that affects the central nervous system (CNS). Currently, MS treatment is limited to several Food and Drug Administration (FDA)- and European Medicines Agency (EMA)-approved medications that slow disease progression by immunomodulatory action. Fingolimod and siponimod have similar mechanisms of action, and consequently, their therapeutic effects may be comparable. However, while fingolimod is mainly used for relapsing-remitting MS (RRMS), siponimod, according to EMA label, is recommended for active secondary progressive MS (SPMS). Clinicians and scientists are analysing whether patients can switch from fingolimod to siponimod and identifying the advantages or disadvantages of such a switch from a therapeutic point of view. In this review, we aim to discuss the therapeutic effects of these two drugs and the advantages/disadvantages of switching treatment from fingolimod to siponimod in patients with the most common forms of MS, RRMS and SPMS.

Zobrazit více v PubMed

Ghasemi N, Razavi S, Nikzad E. Multiple sclerosis: pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 2017;19:1–10. PubMed PMC

Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83:278–286. doi: 10.1212/WNL.0000000000000560. PubMed DOI PMC

Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol [Internet]. 2022. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35508809. PubMed

Lublin FD, Coetzee T, Cohen JA, Marrie RA, Thompson AJ, International Advisory Committee on Clinical Trials in MS The 2013 clinical course descriptors for multiple sclerosis: a clarification. Neurology. 2020;94:1088–1092. doi: 10.1212/WNL.0000000000009636. PubMed DOI PMC

Lassmann H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front Immunol. 2018;9:3116. doi: 10.3389/fimmu.2018.03116. PubMed DOI PMC

Iaffaldano P, Lucisano G, Guerra T, Patti F, Onofrj M, Brescia Morra V, et al. Towards a validated definition of the clinical transition to secondary progressive multiple sclerosis: a study from the Italian MS Register. Mult Scler [Internet]. 2022;13524585221114008. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35971322. PubMed

Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 2015;14:406–419. doi: 10.1016/S1474-4422(14)70305-9. PubMed DOI

Macaron G, Ontaneda D. Diagnosis and management of progressive multiple sclerosis. Biomedicines [Internet]. 2019;7:56. Available from: https://www.mdpi.com/2227-9059/7/3/56. PubMed PMC

Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI

Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol [Internet]. 2012;8:647–56. Available from: https://www.nature.com/articles/nrneurol.2012.168. PubMed

Kaczmarek JL, Thompson SV, Holscher HD. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr Rev. 2017;75:673–682. doi: 10.1093/nutrit/nux036. PubMed DOI PMC

Hart FM, Bainbridge J. Current and emerging treatment of multiple sclerosis. Am J Manag Care. 2016;22:s159–s170. PubMed

Willis MA, Cohen JA. Fingolimod therapy for multiple sclerosis. Semin Neurol. 2013;33(1):37–44. doi: 10.1055/s-0033-1343794. PubMed DOI

Goodman AD, Anadani N, Gerwitz L. Siponimod in the treatment of multiple sclerosis. Expert Opin Investig Drugs. 2019;28:1051–1057. doi: 10.1080/13543784.2019.1676725. PubMed DOI

No Title. p. https://www.ema.europa.eu/en/documents/overview/ma.

Huwiler A, Zangemeister-Wittke U. The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: recent findings and new perspectives. Pharmacol Ther. 2018;185:34–49. doi: 10.1016/j.pharmthera.2017.11.001. PubMed DOI

Hjorth M, Dandu N, Mellergård J. Treatment effects of fingolimod in multiple sclerosis: selective changes in peripheral blood lymphocyte subsets. Kim CH, editor. PLoS ONE. 2020;15:e0228380. doi: 10.1371/journal.pone.0228380. PubMed DOI PMC

Sanford M. Fingolimod: a review of its use in relapsing–remitting multiple sclerosis. Drugs. 2014;74:1411–1433. doi: 10.1007/s40265-014-0264-y. PubMed DOI

Haas J, Jeffery D, Silva D, Meier DP, Meinert R, Cohen J, et al. Early initiation of fingolimod reduces the rate of severe relapses over the long term: post hoc analysis from the FREEDOMS, FREEDOMS II, and TRANSFORMS studies. Mult Scler Relat Disord. 2019;36:101335. doi: 10.1016/j.msard.2019.07.011. PubMed DOI

Kleiter I, Ayzenberg I, Hoepner R. Fingolimod for multiple sclerosis and emerging indications: appropriate patient selection, safety precautions, and special considerations. Ther Clin Risk Manag. 2016;261. Available from: https://www.dovepress.com/fingolimod-for-multiple-sclerosis-and-emerging-indications-appropriate-peer-reviewed-article-TCRM. PubMed PMC

Comi G, Hartung H-P, Bakshi R, Williams IM, Wiendl H. Benefit-risk profile of sphingosine-1-phosphate receptor modulators in relapsing and secondary progressive multiple sclerosis. Drugs. 2017;77:1755–1768. doi: 10.1007/s40265-017-0814-1. PubMed DOI PMC

Chun J, Giovannoni G, Hunter SF. Sphingosine 1-phosphate receptor modulator therapy for multiple sclerosis: differential downstream receptor signalling and clinical profile effects. Drugs. 2021;81:207–231. doi: 10.1007/s40265-020-01431-8. PubMed DOI PMC

Lublin F, Miller DH, Freedman MS, Cree BAC, Wolinsky JS, Weiner H, et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2016;387:1075–1084. doi: 10.1016/S0140-6736(15)01314-8. PubMed DOI

Roos I, Leray E, Casey R, Horakova D, Havrdova E, Izquierdo G, et al. Effects of high- and low-efficacy therapy in secondary progressive multiple sclerosis. Neurology. 2021;97:e869–e880. doi: 10.1212/WNL.0000000000012354. PubMed DOI

Al-Izki S, Pryce G, Jackson SJ, Giovannoni G, Baker D. Immunosuppression with FTY720 is insufficient to prevent secondary progressive neurodegeneration in experimental autoimmune encephalomyelitis. Mult Scler J. 2011;17:939–948. doi: 10.1177/1352458511400476. PubMed DOI

Cohen JA, Chun J. Mechanisms of fingolimod’s efficacy and adverse effects in multiple sclerosis. Ann Neurol. 2011;69:759–777. doi: 10.1002/ana.22426. PubMed DOI

Frau J, Sormani MP, Signori A, Realmuto S, Baroncini D, Annovazzi P, et al. Clinical activity after fingolimod cessation: disease reactivation or rebound? Eur J Neurol. 2018;25:1270–1275. doi: 10.1111/ene.13694. PubMed DOI

Litwin T, Smoliński Ł, Członkowka A. Substantial disease exacerbation in a patient with relapsing–remitting multiple sclerosis after withdrawal from siponimod. Neurol Neurochir Pol. 2018;52:98–101. doi: 10.1016/j.pjnns.2017.10.001. PubMed DOI

Al-Salama ZT. Siponimod: first global approval. Drugs. 2019;79:1009–1015. doi: 10.1007/s40265-019-01140-x. PubMed DOI

Scott LJ. Siponimod: a review in secondary progressive multiple sclerosis. CNS Drugs. 2020;34:1191–1200. doi: 10.1007/s40263-020-00771-z. PubMed DOI PMC

Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018;391:1263–1273. doi: 10.1016/S0140-6736(18)30475-6. PubMed DOI

Selmaj K, Li DKB, Hartung H-P, Hemmer B, Kappos L, Freedman MS, et al. Siponimod for patients with relapsing–remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 2013;12:756–767. doi: 10.1016/S1474-4422(13)70102-9. PubMed DOI

Roy R, Alotaibi AA, Freedman MS. Sphingosine 1-phosphate receptor modulators for multiple sclerosis. CNS Drugs. 2021;35:385–402. doi: 10.1007/s40263-021-00798-w. PubMed DOI

Kipp M. Does siponimod exert direct effects in the central nervous system? Cells [Internet]. 2020;9:1771. Available from: https://www.mdpi.com/2073-4409/9/8/1771. PubMed PMC

Gentile A, Musella A, Bullitta S, Fresegna D, De Vito F, Fantozzi R, et al. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflammation. 2016;13:207. doi: 10.1186/s12974-016-0686-4. PubMed DOI PMC

Dietrich M, Hecker C, Martin E, Langui D, Gliem M, Stankoff B, et al. Increased remyelination and proregenerative microglia under siponimod therapy in mechanistic models. Neurol Neuroimmunol Neuroinflamm [Internet]. 2022;9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35354603. PubMed PMC

Colombo E, Bassani C, De Angelis A, Ruffini F, Ottoboni L, Comi G, et al. Siponimod (BAF312) activates Nrf2 while hampering NFκB in human astrocytes, and protects from astrocyte-induced neurodegeneration. Front Immunol. 2020 doi: 10.3389/fimmu.2020.00635/full. PubMed DOI PMC

O’Sullivan C, Schubart A, Mir AK, Dev KK. The dual S1PR1/S1PR5 drug BAF312 (siponimod) attenuates demyelination in organotypic slice cultures. J Neuroinflammation. 2016;13:31. doi: 10.1186/s12974-016-0494-x. PubMed DOI PMC

Mannioui A, Vauzanges Q, Fini JB, Henriet E, Sekizar S, Azoyan L, et al. The Xenopus tadpole: an in vivo model to screen drugs favoring remyelination. Mult Scler J. 2018;24:1421–1432. doi: 10.1177/1352458517721355. PubMed DOI

Cao L, Li M, Yao L, Yan P, Wang X, Yang Z, et al. Siponimod for multiple sclerosis. Cochrane database Syst Rev. 2021;11:CD013647. PubMed PMC

Samjoo IA, Worthington E, Haltner A, Spin P, Drudge C, Cameron C, et al. Indirect comparisons of siponimod with fingolimod and ofatumumab in multiple sclerosis: assessing the feasibility of propensity score matching analyses. Curr Med Res Opin. 2021;37:1933–1944. doi: 10.1080/03007995.2021.1968362. PubMed DOI

Kappos L, Li DKB, Stüve O, Hartung H-P, Freedman MS, Hemmer B, et al. Safety and efficacy of siponimod (BAF312) in patients with relapsing–remitting multiple sclerosis: dose-blinded, randomized extension of the phase 2 BOLD study. JAMA Neurol. 2016;73:1089–1098. doi: 10.1001/jamaneurol.2016.1451. PubMed DOI

Bayas A, Christ M, Faissner S, Klehmet J, Pul R, Skripuletz T, et al. Disease-modifying therapies for relapsing/active secondary progressive multiple sclerosis—a review of population-specific evidence from randomized clinical trials. Ther Adv Neurol Disord. 2023;16:17562864221146836. doi: 10.1177/17562864221146836. PubMed DOI PMC

Yang S, Li X, Wang J, Wang T, Xu Z, Gao H, et al. Sphingosine-1-phosphate receptor modulators versus interferon beta for the treatment of relapsing–remitting multiple sclerosis: findings from randomized controlled trials. Neurol Sci. 2022;43:3565–3581. doi: 10.1007/s10072-022-05988-y. PubMed DOI

Schur N, Gudala K, Vudumula U, Vadapalle S, Bhadhuri A, Casanova A, et al. Cost effectiveness and budget impact of siponimod compared to interferon beta-1a in the treatment of adult patients with secondary progressive multiple sclerosis with active disease in Switzerland. Pharmacoeconomics. 2021;39:563–577. doi: 10.1007/s40273-021-01023-8. PubMed DOI PMC

Montgomery S, Woodhouse F, Vudumula U, Gudala K, Duddy M, Kroes M. Stick or twist? Cost-effectiveness of siponimod compared with continuing existing disease-modifying therapies in the treatment of active secondary progressive multiple sclerosis in the UK. J Med Econ. 2022;25:669–678. doi: 10.1080/13696998.2022.2078103. PubMed DOI

Senzaki K, Ochi H, Ochi M, Okada Y, Miura S, Ohyagi Y. Disease reactivation in a patient with secondary progressive multiple sclerosis after switching treatment from fingolimod to siponimod. eNeurologicalSci. 2021;23:100346. doi: 10.1016/j.ensci.2021.100346. PubMed DOI PMC

Hussain R, O’Leary S, Pacheco FM, Zacharias TE, Litvak P, Sguigna P, et al. Acute relapse after initiation of siponimod in a patient with secondary progressive MS. J Neurol. 2016;263:606–610. doi: 10.1007/s00415-015-7999-6. PubMed DOI

Sparaco M, Miele G, Bonavita S. Severe lymphopenia switching from fingolimod to siponimod. Neurol Sci. 2021;42:4837–4838. doi: 10.1007/s10072-021-05546-y. PubMed DOI

Abbadessa G, Maida E, Miele G, Bile F, Lavorgna L, Bonavita S. Disease reactivation in secondary progressive multiple sclerosis patients switching from fingolimod to siponimod: a case series. J Clin Med [Internet]. 2022;11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/36294354. PubMed PMC

Van Doorn R, Van Horssen J, Verzijl D, Witte M, Ronken E, Van Het Hof B, et al. Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia. 2010;58:1465–1476. doi: 10.1002/glia.21021. PubMed DOI

Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2018;19:175–191. doi: 10.1038/nrm.2017.107. PubMed DOI PMC

Therond P, Chapman MJ. Sphingosine-1-phosphate: metabolism, transport, atheroprotection and effect of statin treatment. Curr Opin Lipidol. 2022;33:199–207. doi: 10.1097/MOL.0000000000000825. PubMed DOI

O’Sullivan S, Dev KK. Sphingosine-1-phosphate receptor therapies: advances in clinical trials for CNS-related diseases. Neuropharmacology. 2017;113:597–607. doi: 10.1016/j.neuropharm.2016.11.006. PubMed DOI

Roggeri A, Schepers M, Tiane A, Rombaut B, van Veggel L, Hellings N, et al. Sphingosine-1-phosphate receptor modulators and oligodendroglial cells: beyond immunomodulation. Int J Mol Sci [Internet]. 2020;21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33066042. PubMed PMC

Spampinato SF, Merlo S, Sano Y, Kanda T, Sortino MA. Protective effect of the sphingosine-1 phosphate receptor agonist siponimod on disrupted blood brain barrier function. Biochem Pharmacol. 2021;186:114465. doi: 10.1016/j.bcp.2021.114465. PubMed DOI

Hundehege P, Cerina M, Eichler S, Thomas C, Herrmann AM, Göbel K, et al. The next-generation sphingosine-1 receptor modulator BAF312 (siponimod) improves cortical network functionality in focal autoimmune encephalomyelitis. Neural Regen Res. 2019;14:1950–1960. doi: 10.4103/1673-5374.259622. PubMed DOI PMC

Sanna MG, Vincent KP, Repetto E, Nguyen N, Brown SJ, Abgaryan L, et al. Bitopic sphingosine 1-phosphate receptor 3 (S1P3) antagonist rescue from complete heart block: pharmacological and genetic evidence for direct S1P3 regulation of mouse cardiac conduction. Mol Pharmacol. 2016;89:176–186. doi: 10.1124/mol.115.100222. PubMed DOI PMC

Gajofatto A. Spotlight on siponimod and its potential in the treatment of secondary progressive multiple sclerosis: the evidence to date. Drug Des Dev Ther. 2017;11:3153–3157. doi: 10.2147/DDDT.S122249. PubMed DOI PMC

Egom EE, Kruzliak P, Rotrekl V, Lei M. The effect of the sphingosine-1-phosphate analogue FTY720 on atrioventricular nodal tissue. J Cell Mol Med. 2015;19:1729–1734. doi: 10.1111/jcmm.12549. PubMed DOI PMC

Cugati S, Chen CS, Lake S, Lee AW. Fingolimod and macular edema: pathophysiology, diagnosis, and management. Neurol Clin Pract. 2014;4:402–409. doi: 10.1212/CPJ.0000000000000027. PubMed DOI PMC

Muñoz-Ortiz J, Reyes-Guanes J, Zapata-Bravo E, Mora-Muñoz L, Reyes-Hurtado JA, Tierradentro-García LO, et al. Ocular adverse events from pharmacological treatment in patients with multiple sclerosis—a systematic review of the literature. Syst Rev. 2021;10:280. doi: 10.1186/s13643-021-01782-7. PubMed DOI PMC

Chaudhry BZ, Cohen JA, Conway DS. Sphingosine 1-phosphate receptor modulators for the treatment of multiple sclerosis. Neurotherapeutics. 2017;14:859–873. doi: 10.1007/s13311-017-0565-4. PubMed DOI PMC

Bigaud M, Rudolph B, Briard E, Beerli C, Hofmann A, Hermes E, et al. Siponimod (BAF312) penetrates, distributes, and acts in the central nervous system: preclinical insights. Mult Scler J Exp Transl Clin. 2021;7:20552173211049170. PubMed PMC

Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25:1737–1750. doi: 10.1007/s11095-007-9502-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...