The Benefits and Risks of Switching from Fingolimod to Siponimod for the Treatment of Relapsing-Remitting and Secondary Progressive Multiple Sclerosis
Jazyk angličtina Země Nový Zéland Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Cooperatio Program
Charles University in Prague, Czech Republic
research area NEUR
Charles University in Prague, Czech Republic
FN HK 00179906
grant projects of the Ministry of Health of the Czech Republic
PubMed
37640862
PubMed Central
PMC10676342
DOI
10.1007/s40268-023-00434-6
PII: 10.1007/s40268-023-00434-6
Knihovny.cz E-zdroje
- MeSH
- chronicko-progresivní roztroušená skleróza * farmakoterapie chemicky indukované MeSH
- fingolimod hydrochlorid škodlivé účinky MeSH
- hodnocení rizik MeSH
- imunosupresiva škodlivé účinky MeSH
- lidé MeSH
- neurodegenerativní nemoci * chemicky indukované farmakoterapie MeSH
- recidiva MeSH
- roztroušená skleróza * farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fingolimod hydrochlorid MeSH
- imunosupresiva MeSH
- siponimod MeSH Prohlížeč
Multiple sclerosis (MS) is a chronic neurodegenerative disease that affects the central nervous system (CNS). Currently, MS treatment is limited to several Food and Drug Administration (FDA)- and European Medicines Agency (EMA)-approved medications that slow disease progression by immunomodulatory action. Fingolimod and siponimod have similar mechanisms of action, and consequently, their therapeutic effects may be comparable. However, while fingolimod is mainly used for relapsing-remitting MS (RRMS), siponimod, according to EMA label, is recommended for active secondary progressive MS (SPMS). Clinicians and scientists are analysing whether patients can switch from fingolimod to siponimod and identifying the advantages or disadvantages of such a switch from a therapeutic point of view. In this review, we aim to discuss the therapeutic effects of these two drugs and the advantages/disadvantages of switching treatment from fingolimod to siponimod in patients with the most common forms of MS, RRMS and SPMS.
1st Faculty of Medicine Charles University Prague Prague Czech Republic
Brain and Mind Center University of Sydney Sydney Australia
Department of Neurology Medical School Heinrich Heine University Düsseldorf Düsseldorf Germany
Multiple Sclerosis Center Sheba Medical Center Tel Hashomer Israel
Neurology Department Sheba Medical Center Tel Hashomer Israel
Sackler School of Medicine Tel Aviv University Tel Aviv Israel
Zobrazit více v PubMed
Ghasemi N, Razavi S, Nikzad E. Multiple sclerosis: pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 2017;19:1–10. PubMed PMC
Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83:278–286. doi: 10.1212/WNL.0000000000000560. PubMed DOI PMC
Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol [Internet]. 2022. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35508809. PubMed
Lublin FD, Coetzee T, Cohen JA, Marrie RA, Thompson AJ, International Advisory Committee on Clinical Trials in MS The 2013 clinical course descriptors for multiple sclerosis: a clarification. Neurology. 2020;94:1088–1092. doi: 10.1212/WNL.0000000000009636. PubMed DOI PMC
Lassmann H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front Immunol. 2018;9:3116. doi: 10.3389/fimmu.2018.03116. PubMed DOI PMC
Iaffaldano P, Lucisano G, Guerra T, Patti F, Onofrj M, Brescia Morra V, et al. Towards a validated definition of the clinical transition to secondary progressive multiple sclerosis: a study from the Italian MS Register. Mult Scler [Internet]. 2022;13524585221114008. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35971322. PubMed
Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 2015;14:406–419. doi: 10.1016/S1474-4422(14)70305-9. PubMed DOI
Macaron G, Ontaneda D. Diagnosis and management of progressive multiple sclerosis. Biomedicines [Internet]. 2019;7:56. Available from: https://www.mdpi.com/2227-9059/7/3/56. PubMed PMC
Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI
Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol [Internet]. 2012;8:647–56. Available from: https://www.nature.com/articles/nrneurol.2012.168. PubMed
Kaczmarek JL, Thompson SV, Holscher HD. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr Rev. 2017;75:673–682. doi: 10.1093/nutrit/nux036. PubMed DOI PMC
Hart FM, Bainbridge J. Current and emerging treatment of multiple sclerosis. Am J Manag Care. 2016;22:s159–s170. PubMed
Willis MA, Cohen JA. Fingolimod therapy for multiple sclerosis. Semin Neurol. 2013;33(1):37–44. doi: 10.1055/s-0033-1343794. PubMed DOI
Goodman AD, Anadani N, Gerwitz L. Siponimod in the treatment of multiple sclerosis. Expert Opin Investig Drugs. 2019;28:1051–1057. doi: 10.1080/13543784.2019.1676725. PubMed DOI
No Title. p. https://www.ema.europa.eu/en/documents/overview/ma.
Huwiler A, Zangemeister-Wittke U. The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: recent findings and new perspectives. Pharmacol Ther. 2018;185:34–49. doi: 10.1016/j.pharmthera.2017.11.001. PubMed DOI
Hjorth M, Dandu N, Mellergård J. Treatment effects of fingolimod in multiple sclerosis: selective changes in peripheral blood lymphocyte subsets. Kim CH, editor. PLoS ONE. 2020;15:e0228380. doi: 10.1371/journal.pone.0228380. PubMed DOI PMC
Sanford M. Fingolimod: a review of its use in relapsing–remitting multiple sclerosis. Drugs. 2014;74:1411–1433. doi: 10.1007/s40265-014-0264-y. PubMed DOI
Haas J, Jeffery D, Silva D, Meier DP, Meinert R, Cohen J, et al. Early initiation of fingolimod reduces the rate of severe relapses over the long term: post hoc analysis from the FREEDOMS, FREEDOMS II, and TRANSFORMS studies. Mult Scler Relat Disord. 2019;36:101335. doi: 10.1016/j.msard.2019.07.011. PubMed DOI
Kleiter I, Ayzenberg I, Hoepner R. Fingolimod for multiple sclerosis and emerging indications: appropriate patient selection, safety precautions, and special considerations. Ther Clin Risk Manag. 2016;261. Available from: https://www.dovepress.com/fingolimod-for-multiple-sclerosis-and-emerging-indications-appropriate-peer-reviewed-article-TCRM. PubMed PMC
Comi G, Hartung H-P, Bakshi R, Williams IM, Wiendl H. Benefit-risk profile of sphingosine-1-phosphate receptor modulators in relapsing and secondary progressive multiple sclerosis. Drugs. 2017;77:1755–1768. doi: 10.1007/s40265-017-0814-1. PubMed DOI PMC
Chun J, Giovannoni G, Hunter SF. Sphingosine 1-phosphate receptor modulator therapy for multiple sclerosis: differential downstream receptor signalling and clinical profile effects. Drugs. 2021;81:207–231. doi: 10.1007/s40265-020-01431-8. PubMed DOI PMC
Lublin F, Miller DH, Freedman MS, Cree BAC, Wolinsky JS, Weiner H, et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2016;387:1075–1084. doi: 10.1016/S0140-6736(15)01314-8. PubMed DOI
Roos I, Leray E, Casey R, Horakova D, Havrdova E, Izquierdo G, et al. Effects of high- and low-efficacy therapy in secondary progressive multiple sclerosis. Neurology. 2021;97:e869–e880. doi: 10.1212/WNL.0000000000012354. PubMed DOI
Al-Izki S, Pryce G, Jackson SJ, Giovannoni G, Baker D. Immunosuppression with FTY720 is insufficient to prevent secondary progressive neurodegeneration in experimental autoimmune encephalomyelitis. Mult Scler J. 2011;17:939–948. doi: 10.1177/1352458511400476. PubMed DOI
Cohen JA, Chun J. Mechanisms of fingolimod’s efficacy and adverse effects in multiple sclerosis. Ann Neurol. 2011;69:759–777. doi: 10.1002/ana.22426. PubMed DOI
Frau J, Sormani MP, Signori A, Realmuto S, Baroncini D, Annovazzi P, et al. Clinical activity after fingolimod cessation: disease reactivation or rebound? Eur J Neurol. 2018;25:1270–1275. doi: 10.1111/ene.13694. PubMed DOI
Litwin T, Smoliński Ł, Członkowka A. Substantial disease exacerbation in a patient with relapsing–remitting multiple sclerosis after withdrawal from siponimod. Neurol Neurochir Pol. 2018;52:98–101. doi: 10.1016/j.pjnns.2017.10.001. PubMed DOI
Al-Salama ZT. Siponimod: first global approval. Drugs. 2019;79:1009–1015. doi: 10.1007/s40265-019-01140-x. PubMed DOI
Scott LJ. Siponimod: a review in secondary progressive multiple sclerosis. CNS Drugs. 2020;34:1191–1200. doi: 10.1007/s40263-020-00771-z. PubMed DOI PMC
Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018;391:1263–1273. doi: 10.1016/S0140-6736(18)30475-6. PubMed DOI
Selmaj K, Li DKB, Hartung H-P, Hemmer B, Kappos L, Freedman MS, et al. Siponimod for patients with relapsing–remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 2013;12:756–767. doi: 10.1016/S1474-4422(13)70102-9. PubMed DOI
Roy R, Alotaibi AA, Freedman MS. Sphingosine 1-phosphate receptor modulators for multiple sclerosis. CNS Drugs. 2021;35:385–402. doi: 10.1007/s40263-021-00798-w. PubMed DOI
Kipp M. Does siponimod exert direct effects in the central nervous system? Cells [Internet]. 2020;9:1771. Available from: https://www.mdpi.com/2073-4409/9/8/1771. PubMed PMC
Gentile A, Musella A, Bullitta S, Fresegna D, De Vito F, Fantozzi R, et al. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflammation. 2016;13:207. doi: 10.1186/s12974-016-0686-4. PubMed DOI PMC
Dietrich M, Hecker C, Martin E, Langui D, Gliem M, Stankoff B, et al. Increased remyelination and proregenerative microglia under siponimod therapy in mechanistic models. Neurol Neuroimmunol Neuroinflamm [Internet]. 2022;9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35354603. PubMed PMC
Colombo E, Bassani C, De Angelis A, Ruffini F, Ottoboni L, Comi G, et al. Siponimod (BAF312) activates Nrf2 while hampering NFκB in human astrocytes, and protects from astrocyte-induced neurodegeneration. Front Immunol. 2020 doi: 10.3389/fimmu.2020.00635/full. PubMed DOI PMC
O’Sullivan C, Schubart A, Mir AK, Dev KK. The dual S1PR1/S1PR5 drug BAF312 (siponimod) attenuates demyelination in organotypic slice cultures. J Neuroinflammation. 2016;13:31. doi: 10.1186/s12974-016-0494-x. PubMed DOI PMC
Mannioui A, Vauzanges Q, Fini JB, Henriet E, Sekizar S, Azoyan L, et al. The Xenopus tadpole: an in vivo model to screen drugs favoring remyelination. Mult Scler J. 2018;24:1421–1432. doi: 10.1177/1352458517721355. PubMed DOI
Cao L, Li M, Yao L, Yan P, Wang X, Yang Z, et al. Siponimod for multiple sclerosis. Cochrane database Syst Rev. 2021;11:CD013647. PubMed PMC
Samjoo IA, Worthington E, Haltner A, Spin P, Drudge C, Cameron C, et al. Indirect comparisons of siponimod with fingolimod and ofatumumab in multiple sclerosis: assessing the feasibility of propensity score matching analyses. Curr Med Res Opin. 2021;37:1933–1944. doi: 10.1080/03007995.2021.1968362. PubMed DOI
Kappos L, Li DKB, Stüve O, Hartung H-P, Freedman MS, Hemmer B, et al. Safety and efficacy of siponimod (BAF312) in patients with relapsing–remitting multiple sclerosis: dose-blinded, randomized extension of the phase 2 BOLD study. JAMA Neurol. 2016;73:1089–1098. doi: 10.1001/jamaneurol.2016.1451. PubMed DOI
Bayas A, Christ M, Faissner S, Klehmet J, Pul R, Skripuletz T, et al. Disease-modifying therapies for relapsing/active secondary progressive multiple sclerosis—a review of population-specific evidence from randomized clinical trials. Ther Adv Neurol Disord. 2023;16:17562864221146836. doi: 10.1177/17562864221146836. PubMed DOI PMC
Yang S, Li X, Wang J, Wang T, Xu Z, Gao H, et al. Sphingosine-1-phosphate receptor modulators versus interferon beta for the treatment of relapsing–remitting multiple sclerosis: findings from randomized controlled trials. Neurol Sci. 2022;43:3565–3581. doi: 10.1007/s10072-022-05988-y. PubMed DOI
Schur N, Gudala K, Vudumula U, Vadapalle S, Bhadhuri A, Casanova A, et al. Cost effectiveness and budget impact of siponimod compared to interferon beta-1a in the treatment of adult patients with secondary progressive multiple sclerosis with active disease in Switzerland. Pharmacoeconomics. 2021;39:563–577. doi: 10.1007/s40273-021-01023-8. PubMed DOI PMC
Montgomery S, Woodhouse F, Vudumula U, Gudala K, Duddy M, Kroes M. Stick or twist? Cost-effectiveness of siponimod compared with continuing existing disease-modifying therapies in the treatment of active secondary progressive multiple sclerosis in the UK. J Med Econ. 2022;25:669–678. doi: 10.1080/13696998.2022.2078103. PubMed DOI
Senzaki K, Ochi H, Ochi M, Okada Y, Miura S, Ohyagi Y. Disease reactivation in a patient with secondary progressive multiple sclerosis after switching treatment from fingolimod to siponimod. eNeurologicalSci. 2021;23:100346. doi: 10.1016/j.ensci.2021.100346. PubMed DOI PMC
Hussain R, O’Leary S, Pacheco FM, Zacharias TE, Litvak P, Sguigna P, et al. Acute relapse after initiation of siponimod in a patient with secondary progressive MS. J Neurol. 2016;263:606–610. doi: 10.1007/s00415-015-7999-6. PubMed DOI
Sparaco M, Miele G, Bonavita S. Severe lymphopenia switching from fingolimod to siponimod. Neurol Sci. 2021;42:4837–4838. doi: 10.1007/s10072-021-05546-y. PubMed DOI
Abbadessa G, Maida E, Miele G, Bile F, Lavorgna L, Bonavita S. Disease reactivation in secondary progressive multiple sclerosis patients switching from fingolimod to siponimod: a case series. J Clin Med [Internet]. 2022;11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/36294354. PubMed PMC
Van Doorn R, Van Horssen J, Verzijl D, Witte M, Ronken E, Van Het Hof B, et al. Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia. 2010;58:1465–1476. doi: 10.1002/glia.21021. PubMed DOI
Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2018;19:175–191. doi: 10.1038/nrm.2017.107. PubMed DOI PMC
Therond P, Chapman MJ. Sphingosine-1-phosphate: metabolism, transport, atheroprotection and effect of statin treatment. Curr Opin Lipidol. 2022;33:199–207. doi: 10.1097/MOL.0000000000000825. PubMed DOI
O’Sullivan S, Dev KK. Sphingosine-1-phosphate receptor therapies: advances in clinical trials for CNS-related diseases. Neuropharmacology. 2017;113:597–607. doi: 10.1016/j.neuropharm.2016.11.006. PubMed DOI
Roggeri A, Schepers M, Tiane A, Rombaut B, van Veggel L, Hellings N, et al. Sphingosine-1-phosphate receptor modulators and oligodendroglial cells: beyond immunomodulation. Int J Mol Sci [Internet]. 2020;21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33066042. PubMed PMC
Spampinato SF, Merlo S, Sano Y, Kanda T, Sortino MA. Protective effect of the sphingosine-1 phosphate receptor agonist siponimod on disrupted blood brain barrier function. Biochem Pharmacol. 2021;186:114465. doi: 10.1016/j.bcp.2021.114465. PubMed DOI
Hundehege P, Cerina M, Eichler S, Thomas C, Herrmann AM, Göbel K, et al. The next-generation sphingosine-1 receptor modulator BAF312 (siponimod) improves cortical network functionality in focal autoimmune encephalomyelitis. Neural Regen Res. 2019;14:1950–1960. doi: 10.4103/1673-5374.259622. PubMed DOI PMC
Sanna MG, Vincent KP, Repetto E, Nguyen N, Brown SJ, Abgaryan L, et al. Bitopic sphingosine 1-phosphate receptor 3 (S1P3) antagonist rescue from complete heart block: pharmacological and genetic evidence for direct S1P3 regulation of mouse cardiac conduction. Mol Pharmacol. 2016;89:176–186. doi: 10.1124/mol.115.100222. PubMed DOI PMC
Gajofatto A. Spotlight on siponimod and its potential in the treatment of secondary progressive multiple sclerosis: the evidence to date. Drug Des Dev Ther. 2017;11:3153–3157. doi: 10.2147/DDDT.S122249. PubMed DOI PMC
Egom EE, Kruzliak P, Rotrekl V, Lei M. The effect of the sphingosine-1-phosphate analogue FTY720 on atrioventricular nodal tissue. J Cell Mol Med. 2015;19:1729–1734. doi: 10.1111/jcmm.12549. PubMed DOI PMC
Cugati S, Chen CS, Lake S, Lee AW. Fingolimod and macular edema: pathophysiology, diagnosis, and management. Neurol Clin Pract. 2014;4:402–409. doi: 10.1212/CPJ.0000000000000027. PubMed DOI PMC
Muñoz-Ortiz J, Reyes-Guanes J, Zapata-Bravo E, Mora-Muñoz L, Reyes-Hurtado JA, Tierradentro-García LO, et al. Ocular adverse events from pharmacological treatment in patients with multiple sclerosis—a systematic review of the literature. Syst Rev. 2021;10:280. doi: 10.1186/s13643-021-01782-7. PubMed DOI PMC
Chaudhry BZ, Cohen JA, Conway DS. Sphingosine 1-phosphate receptor modulators for the treatment of multiple sclerosis. Neurotherapeutics. 2017;14:859–873. doi: 10.1007/s13311-017-0565-4. PubMed DOI PMC
Bigaud M, Rudolph B, Briard E, Beerli C, Hofmann A, Hermes E, et al. Siponimod (BAF312) penetrates, distributes, and acts in the central nervous system: preclinical insights. Mult Scler J Exp Transl Clin. 2021;7:20552173211049170. PubMed PMC
Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25:1737–1750. doi: 10.1007/s11095-007-9502-2. PubMed DOI PMC