Neurosteroids as Selective Inhibitors of Glycine Receptor Activity: Structure-Activity Relationship Study on Endogenous Androstanes and Androstenes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32265652
PubMed Central
PMC7098970
DOI
10.3389/fnmol.2020.00044
Knihovny.cz E-zdroje
- Klíčová slova
- GABA receptor, androstane, androstene, glycine receptor, neurosteroid, structure-activity relationship,
- Publikační typ
- časopisecké články MeSH
The ability of androstane and androstene neurosteroids with modifications at C-17, C-5, and C-3 (compounds 1-9) to influence the functional activity of inhibitory glycine and γ-aminobutyric acid (GABA) receptors was estimated. The glycine- and GABA-induced chloride current (I Gly and I GABA) were measured in isolated pyramidal neurons of the rat hippocampus and isolated rat cerebellar Purkinje cells, correspondingly, using the patch-clamp technique. Our results demonstrate that all the nine neurosteroids display similar biological activity, namely, they strongly inhibited I Gly and weakly inhibited I GABA. The threshold concentration of neurosteroids inducing effects on I Gly was 0.1 μM, and for effects on I GABA was 10-50 μM. Moreover, our compounds accelerated desensitization of the I Gly with the IC50 values varying from 0.12 to 0.49 μM and decreased the peak amplitude with IC50 values varying from 16 to 22 μM. Interestingly, our study revealed that only compounds 4 (epiandrosterone) and 8 (dehydroepiandrosterone) were able to cause a significant change in I GABA in 10 μM concentration. Moreover, compounds 3 (testosterone), 5 (epitestosterone), 6 (dihydroandrostenedione), and 9 (etiocholanedione) did not modulate I GABA up to the concentration of 50 μM. Thus, we conclude that compounds 3, 5, 6, and 9 may be identified as selective modulators of I Gly. Our results offer new avenues of investigation in the field of drug-like selective modulators of I Gly.
Zobrazit více v PubMed
Aroeira R. I., Ribeiro J. A., Sebastião A. M., Valente C. A. (2011). Age-related changes of glycine receptor at the rat hippocampus: from the embryo to the adult. J. Neurochem. 118 339–353. 10.1111/j.1471-4159.2011.07197.x PubMed DOI
Baulieu E. E. (1998). Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23 963–987. 10.1016/s0306-4530(98)00071-7 PubMed DOI
Belelli D., Lambert J. J. (2005). Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci. 6 565–575. 10.1038/nrn1703 PubMed DOI
Borovska J., Vyklicky V., Stastna E., Kapras V., Slavikova B., Horak M., et al. (2012). Access of inhibitory neurosteroids to the NMDA receptor. Br. J. Pharmacol. 166 1069–1083. 10.1111/j.1476-5381.2011.01816.x PubMed DOI PMC
Bukanova J. V., Solntseva E. I., Kolbaev S. N., Kudova E. (2018). Modulation of GABA and glycine receptors in rat pyramidal hippocampal neurons by 3α5β-pregnanolone derivates. Neurochem. Int. 118 145–151. 10.1016/j.neuint.2018.06.002 PubMed DOI
Burnell E. S., Irwin M., Fang G., Sapkota K., Jane D. E., Monaghan D. T. (2019). Positive and negative allosteric modulators of N-methyl-D-aspartate (n.d.) receptors: structure-activity relationships and mechanisms of action. J. Med. Chem. 62 3–23. 10.1021/acs.jmedchem.7b01640 PubMed DOI PMC
Chen Z. W., Bracamontes J. R., Budelier M. M., Germann A. L., Shin D. J., Kathiresan K., et al. (2019). Multiple functional neurosteroid binding sites on GABAA receptors. PLoS Biol. 17:e3000157. 10.1371/journal.pbio.3000157 PubMed DOI PMC
Do Rego J. L., Seong J. Y., Burel D., Leprince J., Luu-The V., Tsutsui K., et al. (2009). Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front. Neuroendocrinol. 30:259–301. 10.1016/j.yfrne.2009.05.006 PubMed DOI
Dougherty J. D., Maloney S. E., Wozniak D. F., Rieger M. A., Sonnenblick L., Coppola G., et al. (2013). The disruption of Celf6, a gene identified by translational profiling of serotonergic neurons, results in autism-related behaviors. J. Neurosci. 33 2732–2753. 10.1523/JNEUROSCI.4762-12.2013 PubMed DOI PMC
Fodor L., Boros A., Dezso P., Maksay G. (2006). Expression of heteromeric glycine receptor-channels in rat spinal cultures and inhibition by neuroactive steroids. Neurochem. Int. 49 577–583. 10.1016/j.neuint.2006.04.013 PubMed DOI
Ganser L. R., Dallman J. E. (2009). Glycinergic synapse development, plasticity, and homeostasis in zebrafish. Front. Mol. Neurosci. 2:30. 10.3389/neuro.02.030.2009 PubMed DOI PMC
Gibbs T. T., Russek S. J., Farb D. H. (2006). Sulfated steroids as endogenous neuromodulators. Pharmacol. Biochem. Behav. 84 555–567. 10.1016/j.pbb.2006.07.031 PubMed DOI
Gielen M., Thomas P., Smart T. G. (2015). The desensitization gate of inhibitory Cys-loop receptors. Nat. Commun. 6:6829. 10.1038/ncomms7829 PubMed DOI PMC
Jiang P., Kong Y., Zhang X. B., Wang W., Liu C. F., Xu T. L. (2009). Glycine receptor in rat hippocampal and spinal cord neurons as a molecular target for rapid actions of 17-beta-estradiol. Mol. Pain 5:2. 10.1186/1744-8069-5-2 PubMed DOI PMC
Jiang P., Yang C. X., Wang Y. T., Xu T. L. (2006). Mechanisms of modulation of pregnanolone on glycinergic response in cultured spinal dorsal horn neurons of rat. Neuroscience 141 2041–2050. 10.1016/j.neuroscience.2006.05.009 PubMed DOI
Katona B. W., Krishnan K., Cai Z. Y., Manion B. D., Benz A., Taylor A., et al. (2008). Neurosteroid analogues. 12. Potent enhancement of GABA-mediated chloride currents at GABAA receptors by ent-androgens. Eur. J. Med. Chem. 43 107–113. 10.1016/j.ejmech.2007.02.017 PubMed DOI
Keck T., White J. A. (2009). Glycinergic inhibition in the hippocampus. Rev. Neurosci. 20 13–22. 10.1515/revneuro.2009.20.1.13 PubMed DOI
Kelley M. H., Ortiz J., Shimizu K., Grewal H., Quillinan N., Herson P. S. (2013). Alterations in Purkinje cell GABAA receptor pharmacology following oxygen and glucose deprivation and cerebral ischemia reveal novel contribution of β1-subunit-containing receptors. Eur. J. Neurosci. 37 555–563. 10.1111/ejn.12064 PubMed DOI PMC
King S. R. (2013). Neurosteroids and the Nervous System. New York, NY: Springer-Verlag, 125 10.1007/978-1-4614-5559-2 DOI
Korinek M., Kapras V., Vyklicky V., Adamusova E., Borovska J., Vales K., et al. (2011). Neurosteroid modulation of N-methyl-D-aspartate receptors: molecular mechanism and behavioral effects. Steroids 76 1409–1418. 10.1016/j.steroids.2011.09.002 PubMed DOI
Kung A. Y., Rick C., O’Shea S., Harrison N. L., McGehee D. S. (2001). Expression of glycine receptors in rat sensory neurons vs. HEK293 cells yields different functional properties. Neurosci. Lett. 309 202–206. 10.1016/s0304-3940(01)02066-3 PubMed DOI
Laurie D. J., Wisden W., Seeburg P. H. (1992). The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci. 12 4151–4572. PubMed PMC
Li W., Jin X., Covey D. F., Steinbach J. H. (2007). Neuroactive steroids and human recombinant rho1 GABAC receptors. J. Pharmacol. Exp. Ther. 323 236–247. 10.1124/jpet.107.127365 PubMed DOI
Liu X. K., Ye B. J., Wu Y., Nan J. X., Lin Z. H., Piao H. R. (2012). Synthesis and antitumor activity of dehydroepiandrosterone derivatives on Es-2, A549, and HepG2 cells in vitro. Chem. Biol. Drug Des. 79 523–529. 10.1111/j.1747-0285.2011.01311.x PubMed DOI
Lynch J. W. (2004). Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 84 1051–1095. 10.1152/physrev.00042.2003 PubMed DOI
Lynch J. W. (2009). Native glycine receptor subtypes and their physiological roles. Neuropharmacology 56 303–309. 10.1016/j.neuropharm.2008.07.034 PubMed DOI
Lynch J. W., Zhang Y., Talwar S., Estrada-Mondragon A. (2017). Glycine receptor drug discovery. Adv. Pharmacol. 79 225–253. 10.1016/bs.apha.2017.01.003 PubMed DOI
Majewska M. D., Mienville J. M., Vicini S. (1988). Neurosteroid pregnenolone sulfate antagonizes electrophysiological responses to GABA in neurons. Neurosci. Lett. 90 279–284. 10.1016/0304-3940(88)90202-9 PubMed DOI
Maksay G., Laube B., Betz H. (2001). Subunit-specific modulation of glycine receptors by neurosteroids. Neuropharmacology 41 369–376. 10.1016/s0028-3908(01)00071-5 PubMed DOI
Möhler H. (2006). GABAA receptors in central nervous system disease: anxiety, epilepsy, and insomnia. J. Recept. Signal Transduct. Res. 26 731–740. 10.1080/10799890600920035 PubMed DOI
Park-Chung M., Malayev A., Purdy R. H., Gibbs T. T., Farb D. H. (1999). Sulfated and unsulfated steroids modulate γ-aminobutyric acidA receptor function through distinct sites. Brain Res. 830 72–87. 10.1016/s0006-8993(99)01381-5 PubMed DOI
Pirker S., Schwarzer C., Wieselthaler A., Sieghart W., Sperk G. (2000). GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101 815–850. 10.1016/s0306-4522(00)00442-5 PubMed DOI
Rebas E., Radzik T., Boczek T., Zylinska L. (2017). Calcium-engaged mechanisms of nongenomic action of neurosteroids. Curr. Neuropharmacol. 15 1174–1191. 10.2174/1570159X15666170329091935 PubMed DOI PMC
Seljeset S., Laverty D., Smart T. G. (2015). Inhibitory neurosteroids and the GABAA receptor. Adv. Pharmacol. 72 165–187. 10.1016/bs.apha.2014.10.006 PubMed DOI
Sieghart W., Savić M. M. (2018). International union of basic and clinical pharmacology. CVI: GABAA receptor subtype- and function-selective ligands: key issues in translation to humans. Pharmacol. Rev. 70 836–878. 10.1124/pr.117.014449 PubMed DOI
Tanabe M., Nitta A., Ono H. (2010). Neuroprotection via strychnine-sensitive glycine receptors during post-ischemic recovery of excitatory synaptic transmission in the hippocampus. J. Pharmacol. Sci. 113 378–386. 10.1254/jphs.10150fp PubMed DOI
Tapia J. C., Cárdenas A. M., Nualart F., Mentis G. Z., Navarrete R., Aguayo L. G. (2000). Neurite outgrowth in developing mouse spinal cord neurons is modulated by glycine receptors. Neuroreport 11 3007–3010. 10.1097/00001756-200009110-00036 PubMed DOI
Vorobjev V. S. (1991). Vibrodissociation of sliced mammalian nervous tissue. J. Neurosci. Methods 38 145–150. 10.1016/0165-0270(91)90164-u PubMed DOI
Vorobjev V. S., Sharonova I. N., Haas H. L. (1996). A simple perfusion system for patch-clamp studies. J. Neurosci. Methods 68 303–307. 10.1016/0165-0270(96)00097-0 PubMed DOI
Vyklicky V., Smejkalova T., Krausova B., Balik A., Korinek M., Borovska J., et al. (2016). Preferential inhibition of tonically over phasically activated NMDA receptors by pregnane derivatives. J. Neurosci. 36 2161–2175. 10.1523/JNEUROSCI.3181-15.2016 PubMed DOI PMC
Weir C. J., Ling A. T., Belelli D., Wildsmith J. A., Peters J. A., Lambert J. J. (2004). The interaction of anaesthetic steroids with recombinant glycine and GABAA receptors. Br. J. Anaesth. 92 704–711. 10.1093/bja/aeh125 PubMed DOI
Wu F. S., Chen S. C., Tsai J. J. (1997). Competitive inhibition of the glycine-induced current by pregnenolone sulfate in cultured chick spinal cord neurons. Brain Res. 750 318–320. 10.1016/s0006-8993(97)00053-x PubMed DOI
Wu F. S., Gibbs T. T., Farb D. H. (1990). Inverse modulation of gamma-aminobutyric acid- and glycine-induced currents by progesterone. Mol. Pharmacol. 37 597–602. PubMed
Xu T. L., Gong N. (2010). Glycine and glycine receptor signaling in hippocampal neurons: diversity, function and regulation. Prog. Neurobiol. 91 349–361. 10.1016/j.pneurobio.2010.04.008 PubMed DOI
Yevenes G. E., Zeilhofer H. U. (2011). Allosteric modulation of glycine receptors. Br. J. Pharmacol. 164 224–236. 10.1111/j.1476-5381.2011.01471.x PubMed DOI PMC
Zhang Y., Ho T. N. T., Harvey R. J., Lynch J. W., Keramidas A. (2017). Structure-function analysis of the GlyR α2 subunit autism mutation p.R323L reveals a gain-of-function. Front. Mol. Neurosci. 10:158 10.3389/fnmol.2017.00158 PubMed DOI PMC
Ziegler E., Bodusch M., Song Y., Jahn K., Wolfes H., Steinlechner S., et al. (2009). Interaction of androsterone and progesterone with inhibitory ligand-gated ion channels: a patch clamp study. Naunyn Schmiedebergs Arch. Pharmacol. 380 277–291. 10.1007/s00210-009-0440-x PubMed DOI
Zorumski C. F., Paul S. M., Izumi Y., Covey D. F., Mennerick S. (2013). Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci. Biobehav. Rev. 37 109–122. 10.1016/j.neubiorev.2012.10.005 PubMed DOI PMC
Corticosteroids as Selective and Effective Modulators of Glycine Receptors
Steroid Sulfation in Neurodegenerative Diseases