Steroid Sulfation in Neurodegenerative Diseases
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35281259
PubMed Central
PMC8904904
DOI
10.3389/fmolb.2022.839887
PII: 839887
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, Parkinson's disease, brain, multiple sclerosis, neuroactive steroids, neurosteroids, steroid sulfatase, steroid sulfotransferases,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Steroid sulfation and desulfation participates in the regulation of steroid bioactivity, metabolism and transport. The authors focused on sulfation and desulfation balance in three neurodegenerative diseases: Alzheimer´s disease (AD), Parkinson´s disease (PD), and multiple sclerosis (MS). Circulating steroid conjugates dominate their unconjugated counterparts, but unconjugated steroids outweigh their conjugated counterparts in the brain. Apart from the neurosteroid synthesis in the central nervous system (CNS), most brain steroids cross the blood-brain barrier (BBB) from the periphery and then may be further metabolized. Therefore, steroid levels in the periphery partly reflect the situation in the brain. The CNS steroids subsequently influence the neuronal excitability and have neuroprotective, neuroexcitatory, antidepressant and memory enhancing effects. They also exert anti-inflammatory and immunoprotective actions. Like the unconjugated steroids, the sulfated ones modulate various ligand-gated ion channels. Conjugation by sulfotransferases increases steroid water solubility and facilitates steroid transport. Steroid sulfates, having greater half-lives than their unconjugated counterparts, also serve as a steroid stock pool. Sulfotransferases are ubiquitous enzymes providing massive steroid sulfation in adrenal zona reticularis and zona fasciculata.. Steroid sulfatase hydrolyzing the steroid conjugates is exceedingly expressed in placenta but is ubiquitous in low amounts including brain capillaries of BBB which can rapidly hydrolyze the steroid sulfates coming across the BBB from the periphery. Lower dehydroepiandrosterone sulfate (DHEAS) plasma levels and reduced sulfotransferase activity are considered as risk factors in AD patients. The shifted balance towards unconjugated steroids can participate in the pathophysiology of PD and anti-inflammatory effects of DHEAS may counteract the MS.
Zobrazit více v PubMed
Aggelakopoulou M., Kourepini E., Paschalidis N., Simoes D. C. M., Kalavrizioti D., Dimisianos N., et al. (2016). Erβ-Dependent Direct Suppression of Human and Murine Th17 Cells and Treatment of Established Central Nervous System Autoimmunity by a Neurosteroid. J. Immunol. 197 (7), 2598–2609. 10.4049/jimmunol.1601038 PubMed DOI
Aldred S., Mecocci P. (2010). Decreased Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone Sulfate (DHEAS) Concentrations in Plasma of Alzheimer's Disease (AD) Patients. Arch. Gerontol. Geriatr. 51 (1), e16–e18. 10.1016/j.archger.2009.07.001 PubMed DOI
Altemus M. (2019). Neuroendocrine Networks and Functionality. Med. Clin. North America 103 (4), 601–612. 10.1016/j.mcna.2019.03.003 PubMed DOI
Azcoitia I., Barreto G. E., Garcia-Segura L. M. (2019). Molecular Mechanisms and Cellular Events Involved in the Neuroprotective Actions of Estradiol. Analysis of Sex Differences. Front. Neuroendocrinology 55, 100787. 10.1016/j.yfrne.2019.100787 PubMed DOI
Azevedo C. J., Kornak J., Chu P., Sampat M., Okuda D. T., Cree B. A., et al. (2014). In Vivo evidence of Glutamate Toxicity in Multiple Sclerosis. Ann. Neurol. 76 (2), 269–278. 10.1002/ana.24202 PubMed DOI PMC
Balan I., Beattie M. C., O’Buckley T. K., Aurelian L., Morrow A. L. (2019). Endogenous Neurosteroid (3α,5α)3-Hydroxypregnan-20-One Inhibits Toll-Like-4 Receptor Activation and Pro-inflammatory Signaling in Macrophages and Brain. Sci. Rep. 9 (1), 1220. 10.1038/s41598-018-37409-6 PubMed DOI PMC
Baranzini S. E., Srinivasan R., Khankhanian P., Okuda D. T., Nelson S. J., Matthews P. M., et al. (2010). Genetic Variation Influences Glutamate Concentrations in Brains of Patients with Multiple Sclerosis. Brain 133 (9), 2603–2611. 10.1093/brain/awq192 PubMed DOI PMC
Beyenburg S., Stoffel-Wagner B., Bauer J., Watzka M., Blümcke I., Bidlingmaier F., et al. (2001). Neuroactive Steroids and Seizure Susceptibility. Epilepsy Res. 44 (2-3), 141–153. 10.1016/s0920-1211(01)00194-2 PubMed DOI
Bianchi V. E., Rizzi L., Bresciani E., Omeljaniuk R. J., Torsello A. (2020). Androgen Therapy in Neurodegenerative Diseases. J. Endocr. Soc. 4 (11), bvaa120. 10.1210/jendso/bvaa120 PubMed DOI PMC
Bixo M., Andersson A., Winblad B., Purdy R. H., Bäckström T. (1997). Progesterone, 5alpha-Pregnane-3,20-Dione and 3alpha-Hydroxy-5alpha-Pregnane-20-One in Specific Regions of the Human Female Brain in Different Endocrine States. Brain Res. 764 (1-2), 173–178. 10.1016/s0006-8993(97)00455-1 PubMed DOI
Bixo M., Bäckström T., Winblad B., Andersson A. (1995). Estradiol and Testosterone in Specific Regions of the Human Female Brain in Different Endocrine States. J. Steroid Biochem. Mol. Biol. 55 (3-4), 297–303. 10.1016/0960-0760(95)00179-4 PubMed DOI
Boghozian R., McKenzie B. A., Saito L. B., Mehta N., Branton W. G., Lu J., et al. (2017). Suppressed Oligodendrocyte Steroidogenesis in Multiple Sclerosis: Implications for Regulation of Neuroinflammation. Glia 65 (10), 1590–1606. 10.1002/glia.23179 PubMed DOI
Braak H., Braak E., Bohl J. (1993). Staging of Alzheimer-Related Cortical Destruction. Eur. Neurol. 33 (6), 403–408. 10.1159/000116984 PubMed DOI
Brcic L., Underwood J. F., Kendall K. M., Caseras X., Kirov G., Davies W. (2020). Medical and Neurobehavioural Phenotypes in Carriers of X-Linked Ichthyosis-Associated Genetic Deletions in the UK Biobank. J. Med. Genet. 57 (10), 692–698. 10.1136/jmedgenet-2019-106676 PubMed DOI PMC
Brewer L. D., Dowling A. L. S., Curran-Rauhut M. A., Landfield P. W., Porter N. M., Blalock E. M. (2009). Estradiol Reverses a Calcium-Related Biomarker of Brain Aging in Female Rats. J. Neurosci. 29 (19), 6058–6067. 10.1523/jneurosci.5253-08.2009 PubMed DOI PMC
Bukanova J. V., Solntseva E. I., Kudova E. (2020). Neurosteroids as Selective Inhibitors of Glycine Receptor Activity: Structure-Activity Relationship Study on Endogenous Androstanes and Androstenes. Front. Mol. Neurosci. 13, 44. 10.3389/fnmol.2020.00044 PubMed DOI PMC
Carlson L. E., Sherwin B. B., Chertkow H. M. (1999). Relationships between Dehydroepiandrosterone Sulfate (DHEAS) and Cortisol (CRT) Plasma Levels and Everyday Memory in Alzheimer's Disease Patients Compared to Healthy Controls. Horm. Behav. 35 (3), 254–263. 10.1006/hbeh.1999.1518 PubMed DOI
Caruso D., Melis M., Fenu G., Giatti S., Romano S., Grimoldi M., et al. (2014). Neuroactive Steroid Levels in Plasma and Cerebrospinal Fluid of Male Multiple Sclerosis Patients. J. Neurochem. 130 (4), 591–597. 10.1111/jnc.12745 PubMed DOI
Cerri S., Mus L., Blandini F. (2019). Parkinson's Disease in Women and Men: What's the Difference. J. Parkinsons Dis. 9 (3), 501–515. 10.3233/jpd-191683 PubMed DOI PMC
Chang H.-J., Shi R., Rehse P., Lin S.-X. (2004). Identifying Androsterone (ADT) as a Cognate Substrate for Human Dehydroepiandrosterone Sulfotransferase (DHEA-ST) Important for Steroid Homeostasis. J. Biol. Chem. 279 (4), 2689–2696. 10.1074/jbc.M310446200 PubMed DOI
Chatterjee S., Humby T., Davies W. (2016). Behavioural and Psychiatric Phenotypes in Men and Boys with X-Linked Ichthyosis: Evidence from a Worldwide Online Survey. PLoS One 11 (10), e0164417. 10.1371/journal.pone.0164417 PubMed DOI PMC
Chen S.-C., Chang T.-J., Wu F.-S. (2004). Competitive Inhibition of the Capsaicin Receptor-Mediated Current by Dehydroepiandrosterone in Rat Dorsal Root Ganglion Neurons. J. Pharmacol. Exp. Ther. 311 (2), 529–536. 10.1124/jpet.104.069096 PubMed DOI
Cheng C., Gomez D., McCombe J. A., Smyth P., Giuliani F., Blevins G., et al. (2021). Disability Progression in Multiple Sclerosis Is Associated with Plasma Neuroactive Steroid Profile. Neurol. Sci. 42, 5241–5247. 10.1007/s10072-021-05203-4 PubMed DOI
Cobb W. S., Abercrombie E. D. (2002). Distinct Roles for Nigral GABA and Glutamate Receptors in the Regulation of Dendritic Dopamine Release under normal Conditions and in Response to Systemic Haloperidol. J. Neurosci. 22 (4), 1407–1413. 10.1523/jneurosci.22-04-01407.2002 PubMed DOI PMC
Compagnone N. A., Mellon S. H. (2000). Neurosteroids: Biosynthesis and Function of These Novel Neuromodulators. Front. Neuroendocrinology 21 (1), 1–56. 10.1006/frne.1999.0188 PubMed DOI
Corpéchot C., Robel P., Axelson M., Sjövall J., Baulieu E. E. (1981). Characterization and Measurement of Dehydroepiandrosterone Sulfate in Rat Brain. Proc. Natl. Acad. Sci. 78 (8), 4704–4707. 10.1073/pnas.78.8.4704 PubMed DOI PMC
Corpéchot C., Synguelakis M., Talha S., Axelson M., Sjövall J., Vihko R., et al. (1983). Pregnenolone and its Sulfate Ester in the Rat Brain. Brain Research 270 (1), 119–125. 10.1016/0006-8993(83)90797-7 PubMed DOI
Darnaudéry M., Pallarès M., Piazza P.-V., Le Moal M., Mayo W. (2002). The Neurosteroid Pregnenolone Sulfate Infused into the Medial Septum Nucleus Increases Hippocampal Acetylcholine and Spatial Memory in Rats. Brain Res. 951 (2), 237–242. 10.1016/s0006-8993(02)03166-9 PubMed DOI
di Michele F., Longone P., Romeo E., Lucchetti S., Brusa L., Pierantozzi M., et al. (2003). Decreased Plasma and Cerebrospinal Fluid Content of Neuroactive Steroids in Parkinson's Disease. Neurol. Sci. 24 (3), 172–173. 10.1007/s10072-003-0115-1 PubMed DOI
di Michele F., Luchetti S., Bernardi G., Romeo E., Longone P. (2013). Neurosteroid and Neurotransmitter Alterations in Parkinson's Disease. Front. Neuroendocrinology 34 (2), 132–142. 10.1016/j.yfrne.2013.03.001 PubMed DOI
Dieni C. V., Contemori S., Biscarini A., Panichi R. (2020). De Novo Synthesized Estradiol: A Role in Modulating the Cerebellar Function. Int. J. Mol. Sci. 21 (9), 3316. 10.3390/ijms21093316 PubMed DOI PMC
Diez-Roux G., Ballabio A. (2005). Sulfatases and Human Disease. Annu. Rev. Genom. Hum. Genet. 6, 355–379. 10.1146/annurev.genom.6.080604.162334 PubMed DOI
Diotel N., Charlier T. D., Lefebvre d'Hellencourt C., Couret D., Trudeau V. L., Nicolau J. C., et al. (2018). Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Front. Neurosci. 12, 84. 10.3389/fnins.2018.00084 PubMed DOI PMC
Du C., Khalil M. W., Sriram S. (2001). Administration of Dehydroepiandrosterone Suppresses Experimental Allergic Encephalomyelitis in SJL/J Mice. J. Immunol. 167 (12), 7094–7101. 10.4049/jimmunol.167.12.7094 PubMed DOI
Duong P., Tenkorang M. A. A., Trieu J., McCuiston C., Rybalchenko N., Cunningham R. L. (2020). Neuroprotective and Neurotoxic Outcomes of Androgens and Estrogens in an Oxidative Stress Environment. Biol. Sex. Differ. 11 (1), 12. 10.1186/s13293-020-0283-1 PubMed DOI PMC
Earl D. E., Tietz E. I. (2011). Inhibition of Recombinant L-type Voltage-Gated Calcium Channels by Positive Allosteric Modulators of GABAA Receptors. J. Pharmacol. Exp. Ther. 337 (1), 301–311. 10.1124/jpet.110.178244 PubMed DOI PMC
Falany C. N., Rohn-Glowacki K. J. (2013). SULT2B1: Unique Properties and Characteristics of a Hydroxysteroid Sulfotransferase Family. Drug Metab. Rev. 45 (4), 388–400. 10.3109/03602532.2013.835609 PubMed DOI
Fargo K. N., Foecking E. M., Jones K. J., Sengelaub D. R. (2009). Neuroprotective Actions of Androgens on Motoneurons. Front. Neuroendocrinology 30 (2), 130–141. 10.1016/j.yfrne.2009.04.005 PubMed DOI PMC
Fernandes N. F., Janniger C. K., Schwartz R. A. (2010). X-linked Ichthyosis: an Oculocutaneous Genodermatosis. J. Am. Acad. Dermatol. 62 (3), 480–485. 10.1016/j.jaad.2009.04.028 PubMed DOI
Fodor L., Boros A., Dezso P., Maksay G. (2006). Expression of Heteromeric glycine Receptor-Channels in Rat Spinal Cultures and Inhibition by Neuroactive Steroids. Neurochem. Int. 49 (6), 577–583. 10.1016/j.neuint.2006.04.013 PubMed DOI
Foroughipour A., Norbakhsh V., Najafabadi S. H., Meamar R. (2012). Evaluating Sex Hormone Levels in Reproductive Age Women with Multiple Sclerosis and Their Relationship with Disease Severity. J. Res. Med. Sci. 17 (9), 882–885. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697216/pdf/JRMS-17-882.pdf. PubMed PMC
Foster P. A. (2021). Steroid Sulphatase and its Inhibitors: Past, Present and Future. Molecules 26 (10), 2852. 10.3390/molecules26102852 PubMed DOI PMC
Foster S. C., Daniels C., Bourdette D. N., Bebo B. F., Jr. (2003). Dysregulation of the Hypothalamic-Pituitary-Gonadal axis in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. J. Neuroimmunol. 140 (1-2), 78–87. 10.1016/s0165-5728(03)00177-2 PubMed DOI
Foy M. R., Xu J., Xie X., Brinton R. D., Thompson R. F., Berger T. W. (1999). 17β-Estradiol Enhances NMDA Receptor-Mediated EPSPs and Long-Term Potentiation. J. Neurophysiol. 81 (2), 925–929. 10.1152/jn.1999.81.2.925 PubMed DOI
Fraldi A., Biffi A., Lombardi A., Visigalli I., Pepe S., Settembre C., et al. (2007). SUMF1 Enhances Sulfatase Activities In Vivo in Five Sulfatase Deficiencies. Biochem. J. 403 (2), 305–312. 10.1042/bj20061783 PubMed DOI PMC
Frick K. M. (2015). Molecular Mechanisms Underlying the Memory-Enhancing Effects of Estradiol. Horm. Behav. 74, 4–18. 10.1016/j.yhbeh.2015.05.001 PubMed DOI PMC
Frye C. A. (1995). The Neurosteroid 3 Alpha, 5 Apha-THP Has Antiseizure and Possible Neuroprotective Effects in an Animal Model of Epilepsy. Brain Res. 696 (1-2), 113–120. 10.1016/0006-8993(95)00793-p PubMed DOI
Frye C. A. (2001). The Role of Neurosteroids and Non-genomic Effects of Progestins and Androgens in Mediating Sexual Receptivity of Rodents. Brain Res. Brain Res. Rev. 37 (1-3), 201–222. 10.1016/s0165-0173(01)00119-9 PubMed DOI
Fuda H., Lee Y. C., Shimizu C., Javitt N. B., Strott C. A. (2002). Mutational Analysis of Human Hydroxysteroid Sulfotransferase SULT2B1 Isoforms Reveals that Exon 1B of the SULT2B1 Gene Produces Cholesterol Sulfotransferase, whereas Exon 1A Yields Pregnenolone Sulfotransferase. J. Biol. Chem. 277 (39), 36161–36166. 10.1074/jbc.M207165200 PubMed DOI
Gamage N. U., Tsvetanov S., Duggleby R. G., McManus M. E., Martin J. L. (2005). The Structure of Human SULT1A1 Crystallized with Estradiol. J. Biol. Chem. 280 (50), 41482–41486. 10.1074/jbc.M508289200 PubMed DOI
Genedani S., Rasio G., Cortelli P., Antonelli F., Guidolin D., Galantucci M., et al. (2004). Studies on Homocysteine and Dehydroepiandrosterone Sulphate Plasma Levels in Alzheimer's Disease Patients and in Parkinson's Disease Patients. Neurotox Res. 6 (4), 327–332. 10.1007/bf03033443 PubMed DOI
Giatti S., Diviccaro S., Falvo E., Garcia-Segura L. M., Melcangi R. C. (2020). Physiopathological Role of the Enzymatic Complex 5α-Reductase and 3α/β-Hydroxysteroid Oxidoreductase in the Generation of Progesterone and Testosterone Neuroactive Metabolites. Front. Neuroendocrinology 57, 100836. 10.1016/j.yfrne.2020.100836 PubMed DOI
Giatti S., Diviccaro S., Serafini M. M., Caruso D., Garcia-Segura L. M., Viviani B., et al. (2020). Sex Differences in Steroid Levels and Steroidogenesis in the Nervous System: Physiopathological Role. Front. Neuroendocrinology 56, 100804. 10.1016/j.yfrne.2019.100804 PubMed DOI
Giatti S., Garcia-Segura L. M., Barreto G. E., Melcangi R. C. (2019). Neuroactive Steroids, Neurosteroidogenesis and Sex. Prog. Neurobiol. 176, 1–17. 10.1016/j.pneurobio.2018.06.007 PubMed DOI
Grube M., Hagen P., Jedlitschky G. (2018). Neurosteroid Transport in the Brain: Role of ABC and SLC Transporters. Front. Pharmacol. 9, 354. 10.3389/fphar.2018.00354 PubMed DOI PMC
Hampl R., Bičíková M., Sosvorová L. (2015). Hormones and the Blood-Brain Barrier. Horm. Mol. Biol. Clin. Investig. 21 (3), 159–164. 10.1515/hmbci-2014-0042 PubMed DOI
Havlíková H., Hill M., Kancheva L., Vrbíková J., Pouzar V., Cerny I., et al. (2006). Serum Profiles of Free and Conjugated Neuroactive Pregnanolone Isomers in Nonpregnant Women of fertile Age. J. Clin. Endocrinol. Metab. 91 (8), 3092–3099. 10.1210/jc.2005-2785 PubMed DOI
He X.-Y., Dobkin C., Yang S.-Y. (2019). 17β-Hydroxysteroid Dehydrogenases and Neurosteroid Metabolism in the central Nervous System. Mol. Cell Endocrinol. 489, 92–97. 10.1016/j.mce.2018.10.002 PubMed DOI
Hempel N., Barnett A. C., Bolton-Grob R. M., Liyou N. E., McManus M. E. (2000). Site-directed Mutagenesis of the Substrate-Binding Cleft of Human Estrogen Sulfotransferase. Biochem. Biophysical Res. Commun. 276 (1), 224–230. 10.1006/bbrc.2000.3473 PubMed DOI
Her C., Wood T. C., Eichler E. E., Mohrenweiser H. W., Ramagli L. S., Siciliano M. J., et al. (1998). Human Hydroxysteroid Sulfotransferase SULT2B1: Two Enzymes Encoded by a Single Chromosome 19 Gene. Genomics 53 (3), 284–295. 10.1006/geno.1998.5518 PubMed DOI
Hickman R. A., O’Shea S. A., Mehler M. F., Chung W. K. (2022). Neurogenetic Disorders across the Lifespan: from Aberrant Development to Degeneration. Nat. Rev. Neurol. 10.1038/s41582-021-00595-5 https://www.nature.com/articles/s41582-021-00595-5 PubMed DOI PMC
Hill M. (2007). “Neuroaktivní Pregnanové Deriváty - Fyziologie a Patofyziologie,” in Pokroky V Endokrinologii. Editor Očenášková J. (Prague: Maxdorf; ).
Hill M., Popov P., Havlíková H., Kancheva L., Vrbíková J., Kancheva R., et al. (2005). Altered Profiles of Serum Neuroactive Steroids in Premenopausal Women Treated for Alcohol Addiction. Steroids 70 (8), 515–524. 10.1016/j.steroids.2005.02.013 PubMed DOI
Hill M., Vrbíková J., Zárubová J., Kancheva R., Velíková M., Kancheva L., et al. (2011). The Steroid Metabolome in Lamotrigine-Treated Women with Epilepsy. Steroids 76 (12), 1351–1357. 10.1016/j.steroids.2011.07.002 PubMed DOI
Hill M., Zárubová J., Marusič P., Vrbíková J., Velíková M., Kancheva R., et al. (2010). Effects of Valproate and Carbamazepine Monotherapy on Neuroactive Steroids, Their Precursors and Metabolites in Adult Men with Epilepsy. J. Steroid Biochem. Mol. Biol. 122 (4), 239–252. 10.1016/j.jsbmb.2010.06.003 PubMed DOI
Hillen T., Lun A., Reischies F. M., Borchelt M., Steinhagen-Thiessen E., Schaub R. T. (2000). DHEA-S Plasma Levels and Incidence of Alzheimer's Disease. Biol. Psychiatry 47 (2), 161–163. 10.1016/s0006-3223(99)00217-6 PubMed DOI
Hong E. P., Park J. W. (2012). Sample Size and Statistical Power Calculation in Genetic Association Studies. Genomics Inform. 10 (2), 117–122. 10.5808/gi.2012.10.2.117 PubMed DOI PMC
Hu A.-Q., Wang Z.-M., Lan D.-M., Fu Y.-M., Zhu Y.-H., Dong Y., et al. (2007). Inhibition of Evoked Glutamate Release by Neurosteroid Allopregnanolone via Inhibition of L-type Calcium Channels in Rat Medial Prefrontal Cortex. Neuropsychopharmacol 32 (7), 1477–1489. 10.1038/sj.npp.1301261 PubMed DOI
Irwin R. P., Maragakis N. J., Rogawski M. A., Purdy R. H., Farb D. H., Paul S. M. (1992). Pregnenolone Sulfate Augments NMDA Receptor Mediated Increases in Intracellular Ca2+ in Cultured Rat Hippocampal Neurons. Neurosci. Lett. 141 (1), 30–34. 10.1016/0304-3940(92)90327-4 PubMed DOI
Iwamori M., Moser H. W., Kishimoto Y. (1976). Steroid Sulfatase in Brain: Comparison of Sulfohydrolase Activities for Various Steroid Sulfates in normal and Pathological Brains, Including the Various Forms of Metachromatic Leukodystrophy. J. Neurochem. 27 (6), 1389–1395. 10.1111/j.1471-4159.1976.tb02620.x PubMed DOI
Jaffe R. B., Pérez-palacios G., Diczfalusy E. (1972). Conversion of Pregnenolone and Pregnenolone Sulfate to Other Steroid Sulfates by the Human Fetus Perfused at Midgestation1. J. Clin. Endocrinol. Metab. 35 (5), 646–654. 10.1210/jcem-35-5-646 PubMed DOI
Jiang P., Kong Y., Zhang X.-B., Wang W., Liu C.-F., Xu T.-L. (2009). Glycine Receptor in Rat Hippocampal and Spinal Cord Neurons as a Molecular Target for Rapid Actions of 17-β-Estradiol. Mol. Pain 5, 1744–8069. 10.1186/1744-8069-5-2 PubMed DOI PMC
Jiang P., Yang C.-X., Wang Y.-T., Xu T.-L. (2006). Mechanisms of Modulation of Pregnanolone on Glycinergic Response in Cultured Spinal Dorsal Horn Neurons of Rat. Neuroscience 141 (4), 2041–2050. 10.1016/j.neuroscience.2006.05.009 PubMed DOI
Joëls M. (1997). Steroid Hormones and Excitability in the Mammalian Brain. Front. Neuroendocrinology 18 (1), 2–48. 10.1006/frne.1996.0144 PubMed DOI
Johansson I.-M., Birzniece V., Lindblad C., Olsson T., Bäckström T. (2002). Allopregnanolone Inhibits Learning in the Morris Water Maze. Brain Res. 934 (2), 125–131. 10.1016/s0006-8993(02)02414-9 PubMed DOI
Kaminski R. M., Marini H., Kim W.-J., Rogawski M. A. (2005). Anticonvulsant Activity of Androsterone and Etiocholanolone. Epilepsia 46 (6), 819–827. 10.1111/j.1528-1167.2005.00705.x PubMed DOI PMC
Kanceva R., Stárka L., Kancheva L., Hill M., Veliková M., Havrdová E. (2015). Increased Serum Levels of C21 Steroids in Female Patients with Multiple Sclerosis. Physiol. Res. 64 (Suppl. 2), S247–S254. 10.33549/physiolres.933145 PubMed DOI
Kancheva R., Hill M., Cibula D., Včeláková H., Kancheva L., Vrbíková J., et al. (2007). Relationships of Circulating Pregnanolone Isomers and Their Polar Conjugates to the Status of Sex, Menstrual Cycle, and Pregnancy. J. Endocrinol. 195 (1), 67–78. 10.1677/joe-06-0192 PubMed DOI
Kancheva R., Hill M., Novák Z., Chrastina J., Kancheva L., Stárka L. (2011). Neuroactive Steroids in Periphery and Cerebrospinal Fluid. Neuroscience 191, 22–27. 10.1016/j.neuroscience.2011.05.054 PubMed DOI
Kancheva R., Hill M., Novák Z., Chrastina J., Velíková M., Kancheva L., et al. (2010). Peripheral Neuroactive Steroids May Be as Good as the Steroids in the Cerebrospinal Fluid for the Diagnostics of CNS Disturbances. J. Steroid Biochem. Mol. Biol. 119 (1-2), 35–44. 10.1016/j.jsbmb.2009.12.006 PubMed DOI
Kim S.-B., Hill M., Kwak Y.-T., Hampl R., Jo D.-H., Morfin R. (2003). Neurosteroids: Cerebrospinal Fluid Levels for Alzheimer's Disease and Vascular Dementia Diagnostics. J. Clin. Endocrinol. Metab. 88 (11), 5199–5206. 10.1210/jc.2003-030646 PubMed DOI
Klangkalya B., Chan A. (1988). Structure-activity Relationships of Steroid Hormones on Muscarinic Receptor Binding. J. Steroid Biochem. 29 (1), 111–118. 10.1016/0022-4731(88)90384-6 PubMed DOI
Klein P., Herzog A. G. (1998). Hormonal Effects on Epilepsy in Women. Epilepsia 39 (Suppl. 8), S9–S16. 10.1111/j.1528-1157.1998.tb02602.x PubMed DOI
Kudova E. (2021). Rapid Effects of Neurosteroids on Neuronal Plasticity and Their Physiological and Pathological Implications. Neurosci. Lett. 750, 135771. 10.1016/j.neulet.2021.135771 PubMed DOI
Labrie F. (1991). Intracrinology. Mol. Cell Endocrinol. 78 (3), C113–C118. 10.1016/0303-7207(91)90116-a PubMed DOI
Lamont K. G., Pérez-Palacios G., Pérez A. E., Jaffe R. B. (1970). Pregnenolone and Pregnenolone Sulfate Metabolism by Human Fetal Testes In Vitro . Steroids 16 (1), 127–140. 10.1016/s0039-128x(70)80101-5 PubMed DOI
López O. L., DeKosky S. T. (2008). “Clinical Symptoms in Alzheimer's Disease,” in Handbook of Clinical Neurology (Amsterdam, Netherlands: Elsevier; ), 207–216. 10.1016/s0072-9752(07)01219-5 PubMed DOI
Luchetti S., Bossers K., Frajese G. V., Swaab D. F. (2010). Neurosteroid Biosynthetic Pathway Changes in Substantia Nigra and Caudate Nucleus in Parkinson's Disease. Brain Pathol. 20 (5), 945–951. 10.1111/j.1750-3639.2010.00396.x PubMed DOI PMC
Luchetti S., Huitinga I., Swaab D. F. (2011). Neurosteroid and GABA-A Receptor Alterations in Alzheimer's Disease, Parkinson's Disease and Multiple Sclerosis. Neuroscience 191, 6–21. 10.1016/j.neuroscience.2011.04.010 PubMed DOI
Luchetti S., van Eden C. G., Schuurman K., van Strien M. E., Swaab D. F., Huitinga I. (2014). Gender Differences in Multiple Sclerosis. J. Neuropathol. Exp. Neurol. 73 (2), 123–135. 10.1097/nen.0000000000000037 PubMed DOI
Luine V. N., Frankfurt M. (2012). Estrogens Facilitate Memory Processing through Membrane Mediated Mechanisms and Alterations in Spine Density. Front. Neuroendocrinology 33 (4), 388–402. 10.1016/j.yfrne.2012.07.004 PubMed DOI PMC
Lundgren P., Strömberg J., Bäckström T., Wang M. (2003). Allopregnanolone-stimulated GABA-Mediated Chloride Ion Flux Is Inhibited by 3β-Hydroxy-5α-Pregnan-20-One (Isoallopregnanolone). Brain Res. 982 (1), 45–53. 10.1016/s0006-8993(03)02939-1 PubMed DOI
Luoma J. I., Stern C. M., Mermelstein P. G. (2012). Progesterone Inhibition of Neuronal Calcium Signaling Underlies Aspects of Progesterone-Mediated Neuroprotection. J. Steroid Biochem. Mol. Biol. 131 (1-2), 30–36. 10.1016/j.jsbmb.2011.11.002 PubMed DOI PMC
MacKenzie G., Maguire J. (2013). Neurosteroids and GABAergic Signaling in Health and Disease. Biomol. Concepts 4 (1), 29–42. 10.1515/bmc-2012-0033 PubMed DOI PMC
Mahul-Mellier A.-L., Burtscher J., Maharjan N., Weerens L., Croisier M., Kuttler F., et al. (2020). The Process of Lewy Body Formation, rather Than Simply α-synuclein Fibrillization, Is One of the Major Drivers of Neurodegeneration. Proc. Natl. Acad. Sci. USA 117 (9), 4971–4982. 10.1073/pnas.1913904117 PubMed DOI PMC
Majeed Y., Tumova S., Green B. L., Seymour V. A. L., Woods D. M., Agarwal A. K., et al. (2012). Pregnenolone Sulphate-independent Inhibition of TRPM3 Channels by Progesterone. Cell Calcium 51 (1), 1–11. 10.1016/j.ceca.2011.09.005 PubMed DOI PMC
Majewska M. D., Schwartz R. D. (1987). Pregnenolone-sulfate: an Endogenous Antagonist of the Gamma-Aminobutyric Acid Receptor Complex in Brain. Brain Res. 404 (1-2), 355–360. 10.1016/0006-8993(87)91394-1 PubMed DOI
Majewska M. D., Demirgo¨ren S., Spivak C. E., London E. D. (1990). The Neurosteroid Dehydroepiandrosterone Sulfate Is an Allosteric Antagonist of the GABAA Receptor. Brain Res. 526 (1), 143–146. 10.1016/0006-8993(90)90261-9 PubMed DOI
Majewska M. D., Harrison N. L., Schwartz R. D., Barker J. L., Paul S. M. (1986). Steroid Hormone Metabolites Are Barbiturate-like Modulators of the GABA Receptor. Science 232 (4753), 1004–1007. 10.1126/science.2422758 PubMed DOI
Maksay G., Laube B., Betz H. (2001). Subunit-specific Modulation of glycine Receptors by Neurosteroids. Neuropharmacology 41 (3), 369–376. 10.1016/s0028-3908(01)00071-5 PubMed DOI
Maninger N., Wolkowitz O. M., Reus V. I., Epel E. S., Mellon S. H. (2009). Neurobiological and Neuropsychiatric Effects of Dehydroepiandrosterone (DHEA) and DHEA Sulfate (DHEAS). Front. Neuroendocrinology 30 (1), 65–91. 10.1016/j.yfrne.2008.11.002 PubMed DOI PMC
McEwen B. S. (1991). Non-genomic and Genomic Effects of Steroids on Neural Activity. Trends Pharmacol. Sci. 12 (4), 141–147. 10.1016/0165-6147(91)90531-v PubMed DOI
Melcangi R. C., Garcia-Segura L. M., Mensah-Nyagan A. G. (2008). Neuroactive Steroids: State of the Art and New Perspectives. Cell. Mol. Life Sci. 65 (5), 777–797. 10.1007/s00018-007-7403-5 PubMed DOI PMC
Melcangi R. C., Giatti S., Garcia-Segura L. M. (2016). Levels and Actions of Neuroactive Steroids in the Nervous System under Physiological and Pathological Conditions: Sex-specific Features. Neurosci. Biobehavioral Rev. 67, 25–40. 10.1016/j.neubiorev.2015.09.023 PubMed DOI
Melcangi R. C., Panzica G. C. (2014). Allopregnanolone: State of the Art. Prog. Neurobiol. 113, 1–5. 10.1016/j.pneurobio.2013.09.005 PubMed DOI
Melcangi R. C., Panzica G., Garcia-Segura L. M. (2011). Neuroactive Steroids: Focus on Human Brain. Neuroscience 191, 1–5. 10.1016/j.neuroscience.2011.06.024 PubMed DOI
Melcangi R. C., Panzica G. (2009). Neuroactive Steroids: an Update of Their Roles in central and Peripheral Nervous System. Psychoneuroendocrinology 34 (Suppl. 1), S1–S8. 10.1016/j.psyneuen.2009.11.001 PubMed DOI
Meloche C. A., Falany C. N. (2001). Expression and Characterization of the Human 3 Beta-Hydroxysteroid Sulfotransferases (SULT2B1a and SULT2B1b). J. Steroid Biochem. Mol. Biol. 77 (4-5), 261–269. 10.1016/s0960-0760(01)00064-4 PubMed DOI
Mendell A. L., MacLusky N. J. (2018). Neurosteroid Metabolites of Gonadal Steroid Hormones in Neuroprotection: Implications for Sex Differences in Neurodegenerative Disease. Front. Mol. Neurosci. 11, 359. 10.3389/fnmol.2018.00359 PubMed DOI PMC
Miller W. L., Auchus R. J. (2011). The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and its Disorders. Endocr. Rev. 32 (1), 81–151. 10.1210/er.2010-0013 PubMed DOI PMC
Monnet F. P., Mahé V., Robel P., Baulieu E. E. (1995). Neurosteroids, via Sigma Receptors, Modulate the [3H]norepinephrine Release Evoked by N-Methyl-D-Aspartate in the Rat hippocampus. Proc. Natl. Acad. Sci. 92 (9), 3774–3778. 10.1073/pnas.92.9.3774 PubMed DOI PMC
Mostaghel E. A. (2013). Steroid Hormone Synthetic Pathways in Prostate Cancer. Transl Androl. Urol. 2 (3), 212–227. 10.3978/j.issn.2223-4683.2013.09.16 PubMed DOI PMC
Mu Y., Gage F. H. (2011). Adult Hippocampal Neurogenesis and its Role in Alzheimer's Disease. Mol. Neurodegeneration 6, 85. 10.1186/1750-1326-6-85 PubMed DOI PMC
Mueller J. W., Gilligan L. C., Idkowiak J., Arlt W., Foster P. A. (2015). The Regulation of Steroid Action by Sulfation and Desulfation. Endocr. Rev. 36 (5), 526–563. 10.1210/er.2015-1036 PubMed DOI PMC
Näsman B., Olsson T., Bäckström T., Eriksson S., Grankvist K., Viitanen M., et al. (1991). Serum Dehydroepiandrosterone Sulfate in Alzheimer's Disease and in Multi-Infarct Dementia. Biol. Psychiatry 30 (7), 684–690. 10.1016/0006-3223(91)90013-c PubMed DOI
Neunzig J., Bernhardt R. (2018). Effect of Sulfonated Steroids on Steroidogenic Cytochrome P450-dependent Steroid Hydroxylases. J. Steroid Biochem. Mol. Biol. 179, 3–7. 10.1016/j.jsbmb.2017.07.004 PubMed DOI
Neunzig J., Sánchez-Guijo A., Mosa A., Hartmann M. F., Geyer J., Wudy S. A., et al. (2014). A Steroidogenic Pathway for Sulfonated Steroids: the Metabolism of Pregnenolone Sulfate. J. Steroid Biochem. Mol. Biol. 144 B, 324–333. 10.1016/j.jsbmb.2014.07.005 PubMed DOI
Nicolas L. B., Fry J. P. (2007). The Steroid Sulfatase Inhibitor COUMATE Attenuates rather Than Enhances Access of Dehydroepiandrosterone Sulfate to the Brain in the Mouse. Brain Res. 1174, 92–96. 10.1016/j.brainres.2007.07.078 PubMed DOI
Nieschlag E., Loriaux D. L., Ruder H. J., Zucker I. R., Kirschner M. A., Lipsett M. B. (1973). The Secretion of Dehydroepiandrosterone and Dehydroepiandrosterone Sulphate in Man. J. Endocrinol. 57 (1), 123–134. 10.1677/joe.0.0570123 PubMed DOI
Noorbakhsh F., Baker G. B., Power C. (2014). Allopregnanolone and Neuroinflammation: a Focus on Multiple Sclerosis. Front. Cel. Neurosci. 8, 134. 10.3389/fncel.2014.00134 PubMed DOI PMC
Noorbakhsh F., Ellestad K. K., Maingat F., Warren K. G., Han M. H., Steinman L., et al. (2011). Impaired Neurosteroid Synthesis in Multiple Sclerosis. Brain 134 (Pt 9), 2703–2721. 10.1093/brain/awr200 PubMed DOI PMC
Orefice N., Carotenuto A., Mangone G., Bues B., Rehm R., Cerillo I., et al. (2016). Assessment of Neuroactive Steroids in Cerebrospinal Fluid Comparing Acute Relapse and Stable Disease in Relapsing-Remitting Multiple Sclerosis. J. Steroid Biochem. Mol. Biol. 159, 1–7. 10.1016/j.jsbmb.2016.02.012 PubMed DOI
Ottander U., Poromaa I. S., Bjurulf E., Skytt A., Bäckström T., Olofsson J. I. (2005). Allopregnanolone and Pregnanolone Are Produced by the Human Corpus Luteum. Mol. Cell Endocrinol. 239 (1-2), 37–44. 10.1016/j.mce.2005.04.007 PubMed DOI
Palmieri C., Stein R. C., Stein R. C., Liu X., Hudson E., Nicholas H., et al. (2017). IRIS Study: a Phase II Study of the Steroid Sulfatase Inhibitor Irosustat when Added to an Aromatase Inhibitor in ER-Positive Breast Cancer Patients. Breast Cancer Res. Treat. 165 (2), 343–353. 10.1007/s10549-017-4328-z PubMed DOI PMC
Pan X., Wu X., Kaminga A. C., Wen S. W., Liu A. (2019). Dehydroepiandrosterone and Dehydroepiandrosterone Sulfate in Alzheimer's Disease: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 11, 61. 10.3389/fnagi.2019.00061 PubMed DOI PMC
Pardridge W. M., Mietus L. J. (1979). Transport of Steroid Hormones through the Rat Blood-Brain Barrier. J. Clin. Invest. 64 (1), 145–154. 10.1172/jci109433 PubMed DOI PMC
Pardridge W. M., Mietus L. J. (1980). Transport of Thyroid and Steroid Hormones through the Blood-Brain Barrier of the Newborn Rabbit: Primary Role of Protein-Bound Hormone*. Endocrinology 107 (6), 1705–1710. 10.1210/endo-107-6-1705 PubMed DOI
Park-Chung M., Wu F. S., Farb D. H. (1994). 3 Alpha-Hydroxy-5 Beta-Pregnan-20-One Sulfate: a Negative Modulator of the NMDA-Induced Current in Cultured Neurons. Mol. Pharmacol. 46 (1), 146–150. PubMed
Park-Chung M., Malayev A., Purdy R. H., Gibbs T. T., Farb D. H. (1999). Sulfated and Unsulfated Steroids Modulate γ-aminobutyric acidA Receptor Function through Distinct Sites. Brain Res. 830 (1), 72–87. 10.1016/s0006-8993(99)01381-5 PubMed DOI
Pérez-Jiménez M. M., Monje-Moreno J. M., Brokate-Llanos A. M., Venegas-Calerón M., Sánchez-García A., Sansigre P., et al. (2021). Steroid Hormones Sulfatase Inactivation Extends Lifespan and Ameliorates Age-Related Diseases. Nat. Commun. 12 (1), 49. 10.1038/s41467-020-20269-y PubMed DOI PMC
Perumal A. S., Robins E. (1973). Regional and Subcellular Distribution of Aryl- and Steroid Sulfatases in Brain. Brain Res. 59, 349–358. 10.1016/0006-8993(73)90273-4 PubMed DOI
Pillerová M., Borbélyová V., Hodosy J., Riljak V., Renczés E., Frick K. M., et al. (2021). On the Role of Sex Steroids in Biological Functions by Classical and Non-classical Pathways. An Update. Front. Neuroendocrinology 62, 100926. 10.1016/j.yfrne.2021.100926 PubMed DOI PMC
Pluchino N., Ansaldi Y., Genazzani A. R. (2019). Brain Intracrinology of Allopregnanolone during Pregnancy and Hormonal Contraception. Horm. Mol. Biol. Clin. Investig. 37 (1), 20180032. 10.1515/hmbci-2018-0032 PubMed DOI
Purohit A., Foster P. A. (2012). Steroid Sulfatase Inhibitors for Estrogen- and Androgen-dependent Cancers. J. Endocrinol. 212 (2), 99–110. 10.1530/joe-11-0266 PubMed DOI
Qaiser M. Z., Dolman D. E. M., Begley D. J., Abbott N. J., Cazacu-Davidescu M., Corol D. I., et al. (2017). Uptake and Metabolism of Sulphated Steroids by the Blood-Brain Barrier in the Adult Male Rat. J. Neurochem. 142 (5), 672–685. 10.1111/jnc.14117 PubMed DOI PMC
Ramsaransing G. S. M., Heersema D. J., De Keyser J. (2005). Serum Uric Acid, Dehydroepiandrosterone Sulphate, and Apolipoprotein E Genotype in Benign vs. Progressive Multiple Sclerosis. Eur. J. Neurol. 12 (7), 514–518. 10.1111/j.1468-1331.2005.01009.x PubMed DOI
Reed M. J., Purohit A., Woo L. W. L., Newman S. P., Potter B. V. L. (2005). Steroid Sulfatase: Molecular Biology, Regulation, and Inhibition. Endocr. Rev. 26 (2), 171–202. 10.1210/er.2004-0003 PubMed DOI
Reitz C., Mayeux R. (2014). Alzheimer Disease: Epidemiology, Diagnostic Criteria, Risk Factors and Biomarkers. Biochem. Pharmacol. 88 (4), 640–651. 10.1016/j.bcp.2013.12.024 PubMed DOI PMC
Rhodes M. E., Li P. K., Burke A. M., Johnson D. A. (1997). Enhanced Plasma DHEAS, Brain Acetylcholine and Memory Mediated by Steroid Sulfatase Inhibition. Brain Res. 773 (1-2), 28–32. 10.1016/s0006-8993(97)00867-6 PubMed DOI
Riches Z., Stanley E. L., Bloomer J. C., Coughtrie M. W. H. (2009). Quantitative Evaluation of the Expression and Activity of Five Major Sulfotransferases (SULTs) in Human Tissues: The SULT "Pie". Drug Metab. Dispos 37 (11), 2255–2261. 10.1124/dmd.109.028399 PubMed DOI PMC
Rižner T. L., Penning T. M. (2014). Role of Aldo-Keto Reductase Family 1 (AKR1) Enzymes in Human Steroid Metabolism. Steroids 79, 49–63. 10.1016/j.steroids.2013.10.012 PubMed DOI PMC
Rupprecht R., Berning B., Hauser C. A. E., Holsboer F., Reul J. M. H. M. (1996). Steroid Receptor-Mediated Effects of Neuroactive Steroids: Characterization of Structure-Activity Relationship. Eur. J. Pharmacol. 303 (3), 227–234. 10.1016/0014-2999(96)00036-2 PubMed DOI
Rupprecht R. (2003). Neuroactive Steroids: Mechanisms of Action and Neuropsychopharmacological Properties. Psychoneuroendocrinology 28 (2), 139–168. 10.1016/s0306-4530(02)00064-1 PubMed DOI
Salman E. D., Faye-Petersen O., Falany C. N. (2011). Hydroxysteroid Sulfotransferase 2B1b Expression and Localization in normal Human Brain. Horm. Mol. Biol. Clin. Investig. 8 (1), 445–454. 10.1515/hmbci.2011.117 PubMed DOI PMC
Salman E. D., Kadlubar S. A., Falany C. N. (2009). Expression and Localization of Cytosolic Sulfotransferase (SULT) 1A1 and SULT1A3 in normal Human Brain. Drug Metab. Dispos 37 (4), 706–709. 10.1124/dmd.108.025767 PubMed DOI PMC
Sánchez J. C., López-Zapata D. F., Pinzón O. A. (2014). Effects of 17beta-Estradiol and IGF-1 on L-type Voltage-Activated and Stretch-Activated Calcium Currents in Cultured Rat Cortical Neurons. Neuro Endocrinol. Lett. 35 (8), 724–732. https://www.nel.edu/userfiles/articlesnew/NEL350814A09.pdf PubMed
Sánchez-Guijo A., Neunzig J., Gerber A., Oji V., Hartmann M. F., Schuppe H.-C., et al. (2016). Role of Steroid Sulfatase in Steroid Homeostasis and Characterization of the Sulfated Steroid Pathway: Evidence from Steroid Sulfatase Deficiency. Mol. Cell Endocrinol. 437, 142–153. 10.1016/j.mce.2016.08.019 PubMed DOI
Sarkar S. N., Huang R.-Q., Logan S. M., Yi K. D., Dillon G. H., Simpkins J. W. (2008). Estrogens Directly Potentiate Neuronal L-type Ca2+ Channels. Proc. Natl. Acad. Sci. 105 (39), 15148–15153. 10.1073/pnas.0802379105 PubMed DOI PMC
Schiffer L., Barnard L., Baranowski E. S., Gilligan L. C., Taylor A. E., Arlt W., et al. (2019). Human Steroid Biosynthesis, Metabolism and Excretion Are Differentially Reflected by Serum and Urine Steroid Metabolomes: A Comprehensive Review. J. Steroid Biochem. Mol. Biol. 194, 105439. 10.1016/j.jsbmb.2019.105439 PubMed DOI PMC
Schuler G. (2021). Steroid Sulfates in Domestic Mammals and Laboratory Rodents. Domest. Anim. Endocrinol. 76, 106622. 10.1016/j.domaniend.2021.106622 PubMed DOI
Serra M., Pisu M. G., Littera M., Papi G., Sanna E., Tuveri F., et al. (2000). Social Isolation-Induced Decreases in Both the Abundance of Neuroactive Steroids and GABAA Receptor Function in Rat Brain. J. Neurochem. 75 (2), 732–740. 10.1046/j.1471-4159.2000.0750732.x PubMed DOI
Shimizu M., Tamura H.-o. (2002). Identification and Localization of Two Hydroxysteroid Sulfotransferases in the Human Brain. J. Health Sci. 48 (5), 467–472. 10.1248/jhs.48.467 DOI
Shirakawa H., Katsuki H., Kume T., Kaneko S., Akaike A. (2005). Pregnenolone Sulphate Attenuates AMPA Cytotoxicity on Rat Cortical Neurons. Eur. J. Neurosci. 21 (9), 2329–2335. 10.1111/j.1460-9568.2005.04079.x PubMed DOI
Smith C. C., Gibbs T. T., Farb D. H. (2014). Pregnenolone Sulfate as a Modulator of Synaptic Plasticity. PSYCHOPHARMACOLOGY 231 (17), 3537–3556. 10.1007/s00213-014-3643-x PubMed DOI PMC
Sodani K., Patel A., Kathawala R. J., Chen Z.-S. (2012). Multidrug Resistance Associated Proteins in Multidrug Resistance. Chin. J. Cancer 31 (2), 58–72. 10.5732/cjc.011.10329 PubMed DOI PMC
Spence R. D., Voskuhl R. R. (2012). Neuroprotective Effects of Estrogens and Androgens in CNS Inflammation and Neurodegeneration. Front. Neuroendocrinology 33 (1), 105–115. 10.1016/j.yfrne.2011.12.001 PubMed DOI PMC
Sribnick E. A., Del Re A. M., Ray S. K., Woodward J. J., Banik N. L. (2009). Estrogen Attenuates Glutamate-Induced Cell Death by Inhibiting Ca2+ Influx through L-type Voltage-Gated Ca2+ Channels. Brain Res. 1276, 159–170. 10.1016/j.brainres.2009.04.022 PubMed DOI PMC
Srinivasan R., Sailasuta N., Hurd R., Nelson S., Pelletier D. (2005). Evidence of Elevated Glutamate in Multiple Sclerosis Using Magnetic Resonance Spectroscopy at 3 T. Brain 128 (Pt 5), 1016–1025. 10.1093/brain/awh467 PubMed DOI
Stárka L., Dušková M., Hill M. (2015). Dehydroepiandrosterone: a Neuroactive Steroid. J. Steroid Biochem. Mol. Biol. 145, 254–260. 10.1016/j.jsbmb.2014.03.008 PubMed DOI
Steckelbroeck S., Nassen A., Ugele B., Ludwig M., Watzka M., Reissinger A., et al. (2004). Steroid Sulfatase (STS) Expression in the Human Temporal Lobe: Enzyme Activity, mRNA Expression and Immunohistochemistry Study. J. Neurochem. 89 (2), 403–417. 10.1046/j.1471-4159.2004.02336.x PubMed DOI
Steckelbroeck S., Watzka M., Lütjohann D., Makiola P., Nassen A., Hans V. H. J., et al. (2002). Characterization of the Dehydroepiandrosterone (DHEA) Metabolism via Oxysterol 7α-Hydroxylase and 17-ketosteroid Reductase Activity in the Human Brain. J. Neurochem. 83 (3), 713–726. 10.1046/j.1471-4159.2002.01187.x PubMed DOI
Stein C., Hille A., Seidel J., Rijnbout S., Waheed A., Schmidt B., et al. (1989). Cloning and Expression of Human Steroid-Sulfatase. J. Biol. Chem. 264 (23), 13865–13872. 10.1016/s0021-9258(18)80080-1 PubMed DOI
Strömberg J., Bäckström T., Lundgren P. (2005). Rapid Non-genomic Effect of Glucocorticoid Metabolites and Neurosteroids on the γ-aminobutyric Acid-A Receptor. Eur. J. Neurosci. 21 (8), 2083–2088. 10.1111/j.1460-9568.2005.04047.x PubMed DOI
Strott C. A. (2002). Sulfonation and Molecular Action. Endocr. Rev. 23 (5), 703–732. 10.1210/er.2001-0040 PubMed DOI
Sun T., Liu Z., Liu M., Guo Y., Sun H., Zhao J., et al. (2019). Hippocampus-specific Rictor Knockdown Inhibited 17β-Estradiol Induced Neuronal Plasticity and Spatial Memory Improvement in Ovariectomized Mice. Behav. Brain Res. 364, 50–61. 10.1016/j.bbr.2019.02.014 PubMed DOI
Téllez N., Comabella M., Julià E. v., Río J., Tintoré M. a., Brieva L., et al. (2006). Fatigue in Progressive Multiple Sclerosis Is Associated with Low Levels of Dehydroepiandrosterone. Mult. Scler. 12 (4), 487–494. 10.1191/135248505ms1322oa PubMed DOI
Tomassini V., Onesti E., Mainero C., Giugni E., Paolillo A., Salvetti M., et al. (2005). Sex Hormones Modulate Brain Damage in Multiple Sclerosis: MRI Evidence. J. Neurol. Neurosurg. Psychiatry 76 (2), 272–275. 10.1136/jnnp.2003.033324 PubMed DOI PMC
Tozzi A., Bellingacci L., Pettorossi V. E. (2020). Rapid Estrogenic and Androgenic Neurosteroids Effects in the Induction of Long-Term Synaptic Changes: Implication for Early Memory Formation. Front. Neurosci. 14, 572511. 10.3389/fnins.2020.572511 PubMed DOI PMC
Trent S., Cassano T., Bedse G., Ojarikre O. A., Humby T., Davies W. (2012). Altered Serotonergic Function May Partially Account for Behavioral Endophenotypes in Steroid Sulfatase-Deficient Mice. Neuropsychopharmacol 37 (5), 1267–1274. 10.1038/npp.2011.314 PubMed DOI PMC
Tuckey R. C. (1990). Side-chain Cleavage of Cholesterol Sulfate by Ovarian Mitochondria. J. Steroid Biochem. Mol. Biol. 37 (1), 121–127. 10.1016/0960-0760(90)90380-4 PubMed DOI
Turner D. M., Ransom R. W., Yang J. S., Olsen R. W. (1989). Steroid Anesthetics and Naturally Occurring Analogs Modulate the Gamma-Aminobutyric Acid Receptor Complex at a Site Distinct from Barbiturates. J. Pharmacol. Exp. Ther. 248 (3), 960–966. PubMed
Valera S., Ballivet M., Bertrand D. (1992). Progesterone Modulates a Neuronal Nicotinic Acetylcholine Receptor. Proc. Natl. Acad. Sci. 89 (20), 9949–9953. 10.1073/pnas.89.20.9949 PubMed DOI PMC
Vallée M., Mayo W., Darnaudéry M., Corpéchot C., Young J., Koehl M., et al. (1997). Neurosteroids: Deficient Cognitive Performance in Aged Rats Depends on Low Pregnenolone Sulfate Levels in the hippocampus. Proc. Natl. Acad. Sci. 94 (26), 14865–14870. 10.1073/pnas.94.26.14865 PubMed DOI PMC
Vaňková M., Hill M., Velíková M., Včelák J., Vacínová G., Dvořáková K., et al. (2016). Preliminary Evidence of Altered Steroidogenesis in Women with Alzheimer's Disease: Have the Patients "OLDER" Adrenal Zona Reticularis. J. Steroid Biochem. Mol. Biol. 158, 157–177. 10.1016/j.jsbmb.2015.12.011 PubMed DOI
Vaňková M., Hill M., Velíková M., Včelák J., Vacínová G., Lukášová P., et al. (2015). Reduced Sulfotransferase SULT2A1 Activity in Patients with Alzheimer´s Disease. Physiol. Res. 64 (Suppl. 2), S265–S273. 10.33549/physiolres.933160 PubMed DOI
Vega-Vela N. E., Osorio D., Avila-Rodriguez M., Gonzalez J., García-Segura L. M., Echeverria V., et al. (2017). L-type Calcium Channels Modulation by Estradiol. Mol. Neurobiol. 54 (7), 4996–5007. 10.1007/s12035-016-0045-6 PubMed DOI
Wagner T. F. J., Loch S., Lambert S., Straub I., Mannebach S., Mathar I., et al. (2008). Transient Receptor Potential M3 Channels Are Ionotropic Steroid Receptors in Pancreatic β Cells. Nat. Cel Biol 10 (12), 1421–1430. 10.1038/ncb1801 PubMed DOI
Wang M.-D., Wahlström G., Bäckström T. (1997). The Regional Brain Distribution of the Neurosteroids Pregnenolone and Pregnenolone Sulfate Following Intravenous Infusion. J. Steroid Biochem. Mol. Biol. 62 (4), 299–306. 10.1016/s0960-0760(97)00041-1 PubMed DOI
Wang M., Bäckström T., Sundström I., Wahlström G., Olsson T., Zhu D., et al. (2001). Neuroactive Steroids and central Nervous System Disorders. Int. Rev. Neurobiol. 46, 421–459. 10.1016/s0074-7742(01)46071-5 PubMed DOI
Wang M. D., Bäckström T., Landgren S. (2000). The Inhibitory Effects of Allopregnanolone and Pregnanolone on the Population Spike, Evoked in the Rat Hippocampal CA1 Stratum Pyramidale In Vitro , Can Be Blocked Selectively by Epiallopregnanolone. Acta Physiol. Scand. 169 (4), 333–341. 10.1046/j.1365-201x.2000.00744.x PubMed DOI
Wang M., He Y., Eisenman L. N., Fields C., Zeng C.-M., Mathews J., et al. (2002). 3β-Hydroxypregnane Steroids Are Pregnenolone Sulfate-like GABAAReceptor Antagonists. J. Neurosci. 22 (9), 3366–3375. 10.1523/jneurosci.22-09-03366.2002 PubMed DOI PMC
Weaver C. E., Land M. B., Purdy R. H., Richards K. G., Gibbs T. T., Farb D. H. (2000). Geometry and Charge Determine Pharmacological Effects of Steroids on N-Methyl-D-Aspartate Receptor-Induced Ca(2+) Accumulation and Cell Death. J. Pharmacol. Exp. Ther. 293 (3), 747–754. https://jpet.aspetjournals.org/content/293/3/747 PubMed
Weaver C. E., Jr., Park-Chung M., Gibbs T. T., Farb D. H. (1997). 17β-Estradiol Protects against NMDA-Induced Excitotoxicity by Direct Inhibition of NMDA Receptors. Brain Res. 761 (2), 338–341. 10.1016/s0006-8993(97)00449-6 PubMed DOI
Weill-Engerer S., David J.-P., Sazdovitch V., Liere P., Eychenne B., Pianos A., et al. (2002). Neurosteroid Quantification in Human Brain Regions: Comparison between Alzheimer's and Nondemented Patients. J. Clin. Endocrinol. Metab. 87 (11), 5138–5143. 10.1210/jc.2002-020878 PubMed DOI
Weir C. J., Ling A. T. Y., Belelli D., Wildsmith J. A. W., Peters J. A., Lambert J. J. (2004). The Interaction of Anaesthetic Steroids with Recombinant glycine and GABAA Receptors. Br. J. Anaesth. 92 (5), 704–711. 10.1093/bja/aeh125 PubMed DOI
Wetzel C. H. R., Hermann B., Behl C., Pestel E., Rammes G., Zieglgänsberger W., et al. (1998). Functional Antagonism of Gonadal Steroids at the 5-hydroxytryptamine Type 3 Receptor. Mol. Endocrinol. 12 (9), 1441–1451. 10.1210/mend.12.9.0163 PubMed DOI
Willemsen R., Kroos M., Hoogeveen A. T., van Dongen J. M., Parenti G., van der Loos C. M., et al. (1988). Ultrastructural Localization of Steroid Sulphatase in Cultured Human Fibroblasts by Immunocytochemistry: a Comparative Study with Lysosomal Enzymes and the Mannose 6-phosphate Receptor. Histochem. J. 20 (1), 41–51. 10.1007/bf01745968 PubMed DOI
Wong P., Sze Y., Chang C. C. R., Lee J., Zhang X. (2015). Pregnenolone Sulfate Normalizes Schizophrenia-like Behaviors in Dopamine Transporter Knockout Mice through the AKT/GSK3β Pathway. Transl Psychiatry 5 (3), e528. 10.1038/tp.2015.21 PubMed DOI PMC
Wu F.-S., Chen S.-C. (1997). Mechanism Underlying the Effect of Pregnenolone Sulfate on the Kainate-Induced Current in Cultured Chick Spinal Cord Neurons. Neurosci. Lett. 222 (2), 79–82. 10.1016/s0304-3940(97)13350-x PubMed DOI
Wu F. S., Chen S. C., Tsai J. J. (1997). Competitive Inhibition of the Glycine-Induced Current by Pregnenolone Sulfate in Cultured Chick Spinal Cord Neurons. Brain Res. 750 (1-2), 318–320. 10.1016/s0006-8993(97)00053-x PubMed DOI
Wu F. S., Gibbs T. T., Farb D. H. (1990). Inverse Modulation of Gamma-Aminobutyric Acid- and Glycine-Induced Currents by Progesterone. Mol. Pharmacol. 37 (5), 597–602. PubMed
Wu F. S., Gibbs T. T., Farb D. H. (1991). Pregnenolone Sulfate: a Positive Allosteric Modulator at the N-Methyl-D-Aspartate Receptor. Mol. Pharmacol. 40 (3), 333–336. PubMed
Wu F. S., Lai C. P., Liu B. C. (2000). Non-competitive Inhibition of 5-HT3 Receptor-Mediated Currents by Progesterone in Rat Nodose Ganglion Neurons. Neurosci. Lett. 278 (1-2), 37–40. 10.1016/s0304-3940(99)00883-6 PubMed DOI
Wu F. S., Yu H. M., Tsai J. J. (1998). Mechanism Underlying Potentiation by Progesterone of the Kainate-Induced Current in Cultured Neurons. Brain Res. 779 (1-2), 354–358. 10.1016/s0006-8993(97)01312-7 PubMed DOI
Wu M., Fang K., Wang W., Lin W., Guo L., Wang J. (2019). Identification of Key Genes and Pathways for Alzheimer's Disease via Combined Analysis of Genome-wide Expression Profiling in the hippocampus. Biophys. Rep. 5 (2), 98–109. 10.1007/s41048-019-0086-2 DOI
Wu T.-W., Wang J. M., Chen S., Brinton R. D. (2005). 17β-estradiol Induced Ca2+ Influx via L-type Calcium Channels Activates the Src/ERK/cyclic-AMP Response Element Binding Protein Signal Pathway and BCL-2 Expression in Rat Hippocampal Neurons: A Potential Initiation Mechanism for Estrogen-Induced Neuroprotection. Neuroscience 135 (1), 59–72. 10.1016/j.neuroscience.2004.12.027 PubMed DOI
Xu B., Yang R., Chang F., Chen L., Xie G., Sokabe M., et al. (2012). Neurosteroid PREGS Protects Neurite Growth and Survival of Newborn Neurons in the Hippocampal Dentate Gyrus of APPswe/PS1dE9 Mice. Curr. Alzheimer Res. 9 (3), 361–372. 10.2174/156720512800107591 PubMed DOI
Xu S., Cheng Y., Keast J. R., Osborne P. B. (2008). 17β-Estradiol Activates Estrogen Receptor β-Signalling and Inhibits Transient Receptor Potential Vanilloid Receptor 1 Activation by Capsaicin in Adult Rat Nociceptor Neurons. Endocrinology 149 (11), 5540–5548. 10.1210/en.2008-0278 PubMed DOI PMC
Yaghoubi N., Malayev A., Russek S. J., Gibbs T. T., Farb D. H. (1998). Neurosteroid Modulation of Recombinant Ionotropic Glutamate Receptors. Brain Res. 803 (1-2), 153–160. 10.1016/s0006-8993(98)00644-1 PubMed DOI
Yanase T., Fukahori M., Taniguchi S., Nishi Y., Sakai Y., Takayanagi R., et al. (1996). Serum Dehydroepiandrosterone (DHEA) and DHEA-Sulfate (DHEA-S) in Alzheimer's Disease and in Cerebrovascular Dementia. Endocr. J. 43 (1), 119–123. 10.1507/endocrj.43.119 PubMed DOI
Yang L., Zhou R., Tong Y., Chen P., Shen Y., Miao S., et al. (2020). Neuroprotection by Dihydrotestosterone in LPS-Induced Neuroinflammation. Neurobiol. Dis. 140, 104814. 10.1016/j.nbd.2020.104814 PubMed DOI
Yilmaz C., Karali K., Fodelianaki G., Gravanis A., Chavakis T., Charalampopoulos I., et al. (2019). Neurosteroids as Regulators of Neuroinflammation. Front. Neuroendocrinology 55, 100788. 10.1016/j.yfrne.2019.100788 PubMed DOI
Ysrraelit M. C., Gaitán M. I., Lopez A. S., Correale J. (2008). Impaired Hypothalamic-Pituitary-Adrenal axis Activity in Patients with Multiple Sclerosis. Neurology 71 (24), 1948–1954. 10.1212/01.wnl.0000336918.32695.6b PubMed DOI
Yue X.-H., Tong J.-Q., Wang Z.-J., Zhang J., Liu X., Liu X.-J., et al. (2016). Steroid Sulfatase Inhibitor DU-14 Protects Spatial Memory and Synaptic Plasticity from Disruption by Amyloid β Protein in Male Rats. Horm. Behav. 83, 83–92. 10.1016/j.yhbeh.2016.05.019 PubMed DOI
Zhai G., Teumer A., Stolk L., Perry J. R. B., Vandenput L., Coviello A. D., et al. (2011). Eight Common Genetic Variants Associated with Serum DHEAS Levels Suggest a Key Role in Ageing Mechanisms. Plos Genet. 7 (4), e1002025. 10.1371/journal.pgen.1002025 PubMed DOI PMC