Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23132139
PubMed Central
PMC6268062
DOI
10.3390/molecules171113221
PII: molecules171113221
Knihovny.cz E-zdroje
- MeSH
- aceton chemie MeSH
- atorvastatin MeSH
- benzimidazoly chemie MeSH
- bifenylové sloučeniny MeSH
- dextrany chemie MeSH
- dodecylsíran sodný chemie MeSH
- kyseliny heptylové chemie MeSH
- methylenchlorid chemie MeSH
- nanokuličky chemie MeSH
- polyethylenglykoly chemie MeSH
- polysorbáty chemie MeSH
- pomocné látky chemie MeSH
- povrchově aktivní látky chemie MeSH
- pyrroly chemie MeSH
- rozpouštědla chemie MeSH
- rozpustnost MeSH
- sodná sůl karboxymethylcelulosy chemie MeSH
- tetrazoly chemie MeSH
- velikost částic MeSH
- vysoušení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aceton MeSH
- atorvastatin MeSH
- benzimidazoly MeSH
- bifenylové sloučeniny MeSH
- candesartan MeSH Prohlížeč
- carboxymethyl dextran MeSH Prohlížeč
- dextrany MeSH
- dodecylsíran sodný MeSH
- kyseliny heptylové MeSH
- methylenchlorid MeSH
- polyethylenglykoly MeSH
- polysorbáty MeSH
- pomocné látky MeSH
- povrchově aktivní látky MeSH
- pyrroly MeSH
- rozpouštědla MeSH
- sodná sůl karboxymethylcelulosy MeSH
- tetrazoly MeSH
The solubility, absorption and distribution of a drug are involved in the basic aspects of oral bioavailability Solubility is an essential characteristic and influences the efficiency of the drug. Over the last ten years, the number of poorly soluble drugs has steadily increased. One of the progressive ways for increasing oral bioavaibility is the technique of nanoparticle preparation, which allows many drugs to thus reach the intended site of action. Candesartan cilexetil and atorvastatin, belonging to class II of the biopharmaceutical classification system, were chosen as model active pharmaceutical ingredients in this study. Forty samples were prepared either by antisolvent precipitation/solvent evaporation method or by the emulsion/solvent evaporation technique with various commonly used surface-active excipients as nanoparticle stabilizers. All samples were analyzed by means of dynamic light scattering. The particle size of the determined 36 nanoparticle samples was to 574 nm, whereas 32 samples contained nanoparticles of less than 200 nm. Relationships between solvents and excipients used and their amount are discussed. Based on the results the investigated solvent evaporation methods can be used as an effective and an affordable technique for the preparation of nanoparticles.
Zobrazit více v PubMed
Kerns E.H., Li D. Drug-Like Properties: Concept, Structure Design and Methods. Elsevier; San Diego, CA, USA: 2008.
Junghanns J.U.A.H., Muller R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed. 2008;3:295–309. PubMed PMC
Komarek P., Rabiskova M. Pharmaceutics. 3rd. Galén; Praha, Czech Republic: 2006.
Bawa R. Nanopharmaceuticals for drug delivery—A review. Drug Deliv. 2009;3:122–127.
Mihranyan A., Stromme M. Solubility of fractal nanoparticles. Surf. Sci. 2007;601:315–319. doi: 10.1016/j.susc.2006.09.037. DOI
Sahoo N.G., Abbas A., Li C.M. Micro/Nanoparticles design and fabrication for pharmaceutical drug preparation and delivery applications. Curr. Drug Ther. 2008;3:78–97. doi: 10.2174/157488508784221253. DOI
Vijaykumar N., Venkateswarlu V., Raviraj P. Development of oral tablet dosage form incorporating drug nanoparticles. Res. J. Pharm. Biol. Chem. Sci. 2010;1:952–963.
Konan Y.N., Berton M., Gurny R., Allemand E. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur. J. Pharm. Sci. 2003;18:241–249. doi: 10.1016/S0928-0987(03)00017-4. PubMed DOI
Kral V., Kralova J., Flieger M., Jampilek J., Rezacova A., Dohnal J., Oktabec Z., Zaruba K., Grunwaldova V., Pouckova P., et al. Route of drug administration in nanoparticle form to enable penetration through the brain blood barrier. CZ Patent Appl. PV 2011–366. 2011 Jun 21;
Kral V., Rak J., Zagora J., Grunwaldova V., Rezacova A., Jampilek J., Kutkova B. Preparation, stabilization and application of API nanoparticles for development of modern drug formulations. CZ Patent Appl. PV 2011–353. 2011 Jun 13;
Bhushan B. Handbook of Nanotechnology, Part A. Springer-Verlag; Berlin/Heidelberg, Germany: 2004.
Rao C., Muller A., Cheetham A.K. The Chemistry of Nanomaterials, Synthesis, Properties and Applications. Wiley-VCH; Weinheim, Germany: 2005.
Nalwa H.S. Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publisher; Valencia, CA, USA: 2004-2011.
Singh S., Nalwa H.S. Nanotechnology and health safety—Toxicity and risk assessments of nanostructured materials on human health. J. Nanosci. Nanotechnol. 2007;7:3048–3070. doi: 10.1166/jnn.2007.922. PubMed DOI
Lewinski N., Colvin V., Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49. doi: 10.1002/smll.200700595. PubMed DOI
Suh W.H., Suslick K.S., Stucky G.D., Suh Y.H. Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 2009;87:133–170. doi: 10.1016/j.pneurobio.2008.09.009. PubMed DOI PMC
Verma A., Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6:12–21. doi: 10.1002/smll.200901158. PubMed DOI
Raab C., Simko M., Fiedeler U., Nentwich M., Gazso A. Production of nanoparticles and nanomaterials. Nano Trust Dossier. 2011 Number 006en.
Zielinska-Jurek A., Reszczynska J., Grabowska E., Zaleska A. Nanoparticles preparation using microemulsion systems. In: Najjar R., editor. Microemulsions—An Introduction to Properties and Applications. InTech; Rijeka, Croatia: 2012. pp. 229–250.
Lopez-Quintela M.A. Synthesis of nanomaterials in microemulsions: Formation mechanism and growth control. Curr. Opin. Coll. Int. Sci. 2003;8:137–144. doi: 10.1016/S1359-0294(03)00019-0. DOI
Shah P., Bhalodia D., Shelat P. Nanoemulsion: A pharmaceutical review. Syst. Rev. Pharm. 2010;1:24–32. doi: 10.4103/0975-8453.59509. DOI
Sonawane R.S., Dongare M.K. Sol-gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight. J. Mol. Catal. A. 2006;243:68–76. doi: 10.1016/j.molcata.2005.07.043. DOI
Turk M., Bolten D. Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): Results for naproxen. J. Supercrit. Fluids. 2010;55:778–785. doi: 10.1016/j.supflu.2010.09.023. DOI
Hezave A.Z., Esmaeilzadeh F. Micronization of drug particles via RESS process. J. Supercrit. Fluids. 2010;52:84–98. doi: 10.1016/j.supflu.2009.09.006. DOI
Thorat A.A., Dalvi S.V. Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: Recent developments and future perspective. Chem. Eng. J. 2012;181/182:1–34.
Vaculikova E., Grunwaldova V., Kral V., Dohnal J., Jampilek J. Primary investigation of the preparation of nanoparticles by precipitation. Molecules. 2012;17:11067–11078. PubMed PMC
Sanggu K., Waikiong N., Yuancai D., Surajit D., Tan R.B.H. Preparation and physicochemical characterization of trans-resveratrol nanoparticle by temperature-controlled antisolvent precipitation. J. Food Eng. 2012;108:37–44. doi: 10.1016/j.jfoodeng.2011.07.034. DOI
Chin S.F., Pang S.C., Tay S.H. Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr. Polym. 2011;86:1817–1819.
Lee M., Cho Y.W., Park J.H., Chung H., Jeong S.Y., Choi K., Moon D.H., Kim S.Y., Kim I.-S., Kwon I.C. Size control of self-assembled nanoparticles by an emulsion/solvent evaporation method. Colloid Polym. Sci. 2006;284:506–512. doi: 10.1007/s00396-005-1413-3. DOI
Turner S., Ravishankar J., Fassihi R. Method for improving the bioavaibility of orally delivered therapeutics. U.S. Patent US 2006/0068010 A1. 2006 Mar 30;
Drug Information Online—Drugs.com: Atacand. [(accessed on 20 September 2012)]. Available online: http://www.drugs.com/monograph/atacand.html.
Kubo K., Kohara Y., Imamiya E., Sugiura Y., Inada Y., Furukawa Y., Nishikawa K., Naka T. Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of benzimidazolecarboxylic acids. J. Med. Chem. 1993;36:2182–2195. doi: 10.1021/jm00067a016. PubMed DOI
Drug Information Online—Drugs.com: Lipitor. [(accessed on 20 September 2012)]. Available online: http://www.drugs.com/monograph/lipitor.html.
Roth B.D. The discovery and development of atorvastatin, a potent novel hypolipidemic agent. Prog. Med. Chem. 2002;40:1–22. doi: 10.1016/S0079-6468(08)70080-8. PubMed DOI
Cilla D.D., Whitfield J.L.R., Gibson D.M., Sedman A.J., Posvar E.L. Multiple-dose pharmacokinetics, pharmacodynamics, and safety of atorvastatin, an inhibitor of HMG-CoA reductase, in healthy subjects. Clin. Pharmacol. Ther. 1996;60:687–695. doi: 10.1016/S0009-9236(96)90218-0. PubMed DOI
Corsini A., Bellosta S., Baetta R., Fumagalli R., Paoletti R., Bernini F. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol. Ther. 1999;84:413–428. doi: 10.1016/S0163-7258(99)00045-5. PubMed DOI
Lennernas H. Clinical pharmacokinetics of atorvastatin. Clin. Pharmacokinet. 2003;42:1141–1160. doi: 10.2165/00003088-200342130-00005. PubMed DOI
Kral V., Oktabec Z., Jampilek J., Pekarek T., Proksa B., Dohnal J., Malovikova A., Ebringerova A., Rezacova A. Pectin complexes of sartans and pharmaceutical compositions based thereon. WO/2011/063775 A2. 2011 Jun 3;
Reddy M.S., Goud P.S., Apte S.S. Solubility enhancement of candesartan cilexetil by self-emulsifying drug delivery systems. Int. J. Pharm. Sci. Res. 2012;3:2098–2104.
Zhang Z., Gao F., Bu H., Xiao J., Li Y. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: In vitro characteristics and absorption mechanism in rats. Nanomedicine. 2012;8:740–747. doi: 10.1016/j.nano.2011.08.016. PubMed DOI
Wankhede S.V., Krishnaprasad M., Manjunath S.Y., Debnath S. Formulation and stabilization of atorvastatin tablets. J. Chem. Pharm. Res. 2010;2:548–554.
Gubbi S.R., Jarag R. Formulation and characterization of atorvastatin calcium liquisolid compacts. Asian J. Pharm. Sci. 2010;5:50–60.
Bora D., Borude P., Bhise K. Formulation and evaluation of self-microemulsifying drug delivery systems of low solubility drug for enhanced solubility and dissolution. Int. J. Pharm. Innov. 2012 in press.
Khan R.I., Kadir M.H., Shams T., Islam M.S., Jalil R. Study of dissolution enhancement property of Poloxamer 407 using BCS class II drugs. Int. J. Pharm. Res. Dev. 2012;3:25–32.
Kim S.M., Jin S.J., Kim J.S. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 2008;69:454–465. doi: 10.1016/j.ejpb.2008.01.007. PubMed DOI
Merkus H.G. Particle Size Measurements: Fundamentals, Practice, Quality. Springer Science+Business Media B.V.; Dordrecht, The Netherlands: 2009.
Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems
Advances in Use of Nanomaterials for Musculoskeletal Regeneration
Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes
Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes
Preparation of Hydrochlorothiazide Nanoparticles for Solubility Enhancement
Preparation of risedronate nanoparticles by solvent evaporation technique