Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation

. 2012 Nov 06 ; 17 (11) : 13221-34. [epub] 20121106

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23132139

The solubility, absorption and distribution of a drug are involved in the basic aspects of oral bioavailability Solubility is an essential characteristic and influences the efficiency of the drug. Over the last ten years, the number of poorly soluble drugs has steadily increased. One of the progressive ways for increasing oral bioavaibility is the technique of nanoparticle preparation, which allows many drugs to thus reach the intended site of action. Candesartan cilexetil and atorvastatin, belonging to class II of the biopharmaceutical classification system, were chosen as model active pharmaceutical ingredients in this study. Forty samples were prepared either by antisolvent precipitation/solvent evaporation method or by the emulsion/solvent evaporation technique with various commonly used surface-active excipients as nanoparticle stabilizers. All samples were analyzed by means of dynamic light scattering. The particle size of the determined 36 nanoparticle samples was to 574 nm, whereas 32 samples contained nanoparticles of less than 200 nm. Relationships between solvents and excipients used and their amount are discussed. Based on the results the investigated solvent evaporation methods can be used as an effective and an affordable technique for the preparation of nanoparticles.

Zobrazit více v PubMed

Kerns E.H., Li D. Drug-Like Properties: Concept, Structure Design and Methods. Elsevier; San Diego, CA, USA: 2008.

Junghanns J.U.A.H., Muller R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed. 2008;3:295–309. PubMed PMC

Komarek P., Rabiskova M. Pharmaceutics. 3rd. Galén; Praha, Czech Republic: 2006.

Bawa R. Nanopharmaceuticals for drug delivery—A review. Drug Deliv. 2009;3:122–127.

Mihranyan A., Stromme M. Solubility of fractal nanoparticles. Surf. Sci. 2007;601:315–319. doi: 10.1016/j.susc.2006.09.037. DOI

Sahoo N.G., Abbas A., Li C.M. Micro/Nanoparticles design and fabrication for pharmaceutical drug preparation and delivery applications. Curr. Drug Ther. 2008;3:78–97. doi: 10.2174/157488508784221253. DOI

Vijaykumar N., Venkateswarlu V., Raviraj P. Development of oral tablet dosage form incorporating drug nanoparticles. Res. J. Pharm. Biol. Chem. Sci. 2010;1:952–963.

Konan Y.N., Berton M., Gurny R., Allemand E. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur. J. Pharm. Sci. 2003;18:241–249. doi: 10.1016/S0928-0987(03)00017-4. PubMed DOI

Kral V., Kralova J., Flieger M., Jampilek J., Rezacova A., Dohnal J., Oktabec Z., Zaruba K., Grunwaldova V., Pouckova P., et al. Route of drug administration in nanoparticle form to enable penetration through the brain blood barrier. CZ Patent Appl. PV 2011–366. 2011 Jun 21;

Kral V., Rak J., Zagora J., Grunwaldova V., Rezacova A., Jampilek J., Kutkova B. Preparation, stabilization and application of API nanoparticles for development of modern drug formulations. CZ Patent Appl. PV 2011–353. 2011 Jun 13;

Bhushan B. Handbook of Nanotechnology, Part A. Springer-Verlag; Berlin/Heidelberg, Germany: 2004.

Rao C., Muller A., Cheetham A.K. The Chemistry of Nanomaterials, Synthesis, Properties and Applications. Wiley-VCH; Weinheim, Germany: 2005.

Nalwa H.S. Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publisher; Valencia, CA, USA: 2004-2011.

Singh S., Nalwa H.S. Nanotechnology and health safety—Toxicity and risk assessments of nanostructured materials on human health. J. Nanosci. Nanotechnol. 2007;7:3048–3070. doi: 10.1166/jnn.2007.922. PubMed DOI

Lewinski N., Colvin V., Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49. doi: 10.1002/smll.200700595. PubMed DOI

Suh W.H., Suslick K.S., Stucky G.D., Suh Y.H. Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 2009;87:133–170. doi: 10.1016/j.pneurobio.2008.09.009. PubMed DOI PMC

Verma A., Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6:12–21. doi: 10.1002/smll.200901158. PubMed DOI

Raab C., Simko M., Fiedeler U., Nentwich M., Gazso A. Production of nanoparticles and nanomaterials. Nano Trust Dossier. 2011 Number 006en.

Zielinska-Jurek A., Reszczynska J., Grabowska E., Zaleska A. Nanoparticles preparation using microemulsion systems. In: Najjar R., editor. Microemulsions—An Introduction to Properties and Applications. InTech; Rijeka, Croatia: 2012. pp. 229–250.

Lopez-Quintela M.A. Synthesis of nanomaterials in microemulsions: Formation mechanism and growth control. Curr. Opin. Coll. Int. Sci. 2003;8:137–144. doi: 10.1016/S1359-0294(03)00019-0. DOI

Shah P., Bhalodia D., Shelat P. Nanoemulsion: A pharmaceutical review. Syst. Rev. Pharm. 2010;1:24–32. doi: 10.4103/0975-8453.59509. DOI

Sonawane R.S., Dongare M.K. Sol-gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight. J. Mol. Catal. A. 2006;243:68–76. doi: 10.1016/j.molcata.2005.07.043. DOI

Turk M., Bolten D. Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): Results for naproxen. J. Supercrit. Fluids. 2010;55:778–785. doi: 10.1016/j.supflu.2010.09.023. DOI

Hezave A.Z., Esmaeilzadeh F. Micronization of drug particles via RESS process. J. Supercrit. Fluids. 2010;52:84–98. doi: 10.1016/j.supflu.2009.09.006. DOI

Thorat A.A., Dalvi S.V. Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: Recent developments and future perspective. Chem. Eng. J. 2012;181/182:1–34.

Vaculikova E., Grunwaldova V., Kral V., Dohnal J., Jampilek J. Primary investigation of the preparation of nanoparticles by precipitation. Molecules. 2012;17:11067–11078. PubMed PMC

Sanggu K., Waikiong N., Yuancai D., Surajit D., Tan R.B.H. Preparation and physicochemical characterization of trans-resveratrol nanoparticle by temperature-controlled antisolvent precipitation. J. Food Eng. 2012;108:37–44. doi: 10.1016/j.jfoodeng.2011.07.034. DOI

Chin S.F., Pang S.C., Tay S.H. Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr. Polym. 2011;86:1817–1819.

Lee M., Cho Y.W., Park J.H., Chung H., Jeong S.Y., Choi K., Moon D.H., Kim S.Y., Kim I.-S., Kwon I.C. Size control of self-assembled nanoparticles by an emulsion/solvent evaporation method. Colloid Polym. Sci. 2006;284:506–512. doi: 10.1007/s00396-005-1413-3. DOI

Turner S., Ravishankar J., Fassihi R. Method for improving the bioavaibility of orally delivered therapeutics. U.S. Patent US 2006/0068010 A1. 2006 Mar 30;

Drug Information Online—Drugs.com: Atacand. [(accessed on 20 September 2012)]. Available online: http://www.drugs.com/monograph/atacand.html.

Kubo K., Kohara Y., Imamiya E., Sugiura Y., Inada Y., Furukawa Y., Nishikawa K., Naka T. Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of benzimidazolecarboxylic acids. J. Med. Chem. 1993;36:2182–2195. doi: 10.1021/jm00067a016. PubMed DOI

Drug Information Online—Drugs.com: Lipitor. [(accessed on 20 September 2012)]. Available online: http://www.drugs.com/monograph/lipitor.html.

Roth B.D. The discovery and development of atorvastatin, a potent novel hypolipidemic agent. Prog. Med. Chem. 2002;40:1–22. doi: 10.1016/S0079-6468(08)70080-8. PubMed DOI

Cilla D.D., Whitfield J.L.R., Gibson D.M., Sedman A.J., Posvar E.L. Multiple-dose pharmacokinetics, pharmacodynamics, and safety of atorvastatin, an inhibitor of HMG-CoA reductase, in healthy subjects. Clin. Pharmacol. Ther. 1996;60:687–695. doi: 10.1016/S0009-9236(96)90218-0. PubMed DOI

Corsini A., Bellosta S., Baetta R., Fumagalli R., Paoletti R., Bernini F. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol. Ther. 1999;84:413–428. doi: 10.1016/S0163-7258(99)00045-5. PubMed DOI

Lennernas H. Clinical pharmacokinetics of atorvastatin. Clin. Pharmacokinet. 2003;42:1141–1160. doi: 10.2165/00003088-200342130-00005. PubMed DOI

Kral V., Oktabec Z., Jampilek J., Pekarek T., Proksa B., Dohnal J., Malovikova A., Ebringerova A., Rezacova A. Pectin complexes of sartans and pharmaceutical compositions based thereon. WO/2011/063775 A2. 2011 Jun 3;

Reddy M.S., Goud P.S., Apte S.S. Solubility enhancement of candesartan cilexetil by self-emulsifying drug delivery systems. Int. J. Pharm. Sci. Res. 2012;3:2098–2104.

Zhang Z., Gao F., Bu H., Xiao J., Li Y. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: In vitro characteristics and absorption mechanism in rats. Nanomedicine. 2012;8:740–747. doi: 10.1016/j.nano.2011.08.016. PubMed DOI

Wankhede S.V., Krishnaprasad M., Manjunath S.Y., Debnath S. Formulation and stabilization of atorvastatin tablets. J. Chem. Pharm. Res. 2010;2:548–554.

Gubbi S.R., Jarag R. Formulation and characterization of atorvastatin calcium liquisolid compacts. Asian J. Pharm. Sci. 2010;5:50–60.

Bora D., Borude P., Bhise K. Formulation and evaluation of self-microemulsifying drug delivery systems of low solubility drug for enhanced solubility and dissolution. Int. J. Pharm. Innov. 2012 in press.

Khan R.I., Kadir M.H., Shams T., Islam M.S., Jalil R. Study of dissolution enhancement property of Poloxamer 407 using BCS class II drugs. Int. J. Pharm. Res. Dev. 2012;3:25–32.

Kim S.M., Jin S.J., Kim J.S. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 2008;69:454–465. doi: 10.1016/j.ejpb.2008.01.007. PubMed DOI

Merkus H.G. Particle Size Measurements: Fundamentals, Practice, Quality. Springer Science+Business Media B.V.; Dordrecht, The Netherlands: 2009.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...