Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-17-0373
Slovak Research and Development Agency
LO1305
Ministry of Education of the Czech Republic
internal grant
SANOFI-AVENTIS Pharma Slovakia
PubMed
30791492
PubMed Central
PMC6409737
DOI
10.3390/nano9020296
PII: nano9020296
Knihovny.cz E-zdroje
- Klíčová slova
- bioactive agents, dietary supplements, encapsulation, feed, foodstuffs, nanoemulsions, nanoformulations, nanoparticles, nutraceuticals,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Dietary supplements and foods for special medical purposes are special medical products classified according to the legal basis. They are regulated, for example, by the European Food Safety Authority and the U.S. Food and Drug Administration, as well as by various national regulations issued most frequently by the Ministry of Health and/or the Ministry of Agriculture of particular countries around the world. They constitute a concentrated source of vitamins, minerals, polyunsaturated fatty acids and antioxidants or other compounds with a nutritional or physiological effect contained in the food/feed, alone or in combination, intended for direct consumption in small measured amounts. As nanotechnology provides "a new dimension" accompanied with new or modified properties conferred to many current materials, it is widely used for the production of a new generation of drug formulations, and it is also used in the food industry and even in various types of nutritional supplements. These nanoformulations of supplements are being prepared especially with the purpose to improve bioavailability, protect active ingredients against degradation, or reduce side effects. This contribution comprehensively summarizes the current state of the research focused on nanoformulated human and veterinary dietary supplements, nutraceuticals, and functional foods for special medical purposes, their particular applications in various food products and drinks as well as the most important related guidelines, regulations and directives.
Institute of Neuroimmunology Slovak Academy of Sciences Dubravska cesta 9 845 10 Bratislava Slovakia
Zobrazit více v PubMed
Dwyer J.T., Wiemer K.L., Dary O., Keen C.L., King J.C., Miller K.B., Philbert M.A., Tarasuk V., Taylor C.L., Gaine P.C., et al. Fortification and health: Challenges and opportunities. Adv. Nutr. 2015;6:124–131. doi: 10.3945/an.114.007443. PubMed DOI PMC
Rao P.J., Naidu M.M. Nanoencapsulation of Bioactive Compounds for Nutraceutical Food. In: Ranjan S., Dasgupta N., Lichtfouse E., editors. Nanoscience in Food and Agriculture 2. Sustainable Agriculture Reviews. Volume 21. Springer; Cham, Germany: 2016. pp. 129–156.
National Institutes of Health Dietary Supplements: Background Information. [(accessed on 20 November 2018)]; Available online: https://ods.od.nih.gov/factsheets/DietarySupplements-HealthProfessional/
European Commission Food Supplements. [(accessed on 20 November 2018)]; Available online: https://ec.europa.eu/food/safety/labelling_nutrition/supplements_en.
U.S. Food and Drug Administration Dietary Supplements Guidance Documents & Regulatory Information. [(accessed on 20 November 2018)]; Available online: https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/DietarySupplements/default.htm.
European Commission—Health Claims. [(accessed on 20 November 2018)]; Available online: https://ec.europa.eu/food/safety/labelling_nutrition/claims/health_claims_en.
Kuhnert P. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany: 2016. [(accessed on 20 November 2018)]. Foods, 3. Food Additives. Available online: 10.1002/14356007.a11_561.pub2. DOI
EFSA Foods for Special Medical Purposes. [(accessed on 20 November 2018)]; Available online: https://www.efsa.europa.eu/en/press/news/151126.
European Commission—Foods for Specific Groups. [(accessed on 20 November 2018)]; Available online: https://ec.europa.eu/food/safety/labelling_nutrition/special_groups_food_en.
FDA Medical Foods Guidance Documents & Regulatory Information. [(accessed on 20 November 2018)]; Available online: https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/MedicalFoods/default.htm.
Corradini C., Lantano C., Cavazza A. Innovative analytical tools to characterize prebiotic carbohydrates of functional food interest. Anal. Bioanal. Chem. 2013;405:4591–4605. doi: 10.1007/s00216-013-6731-6. PubMed DOI
Shahidi F. Nutraceuticals, functional foods and dietary supplements in health and disease. J. Food Drug Anal. 2012;20:226–230.
National Nanotechnology Initiative . Big Things from a Tiny World. National Nanotechnology Initiative; Arlington, VA, USA: 2008.
European Commission Definition of a Nanomaterial. [(accessed on 3 December 2018)]; Available online: http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm.
Mody V.V., Siwale R., Singh A., Mody H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2010;2:282–289. doi: 10.4103/0975-7406.72127. PubMed DOI PMC
Couvreur P. Nanoparticles in drug delivery: Past, present and future. Adv. Drug Deliv. Rev. 2013;65:21–23. doi: 10.1016/j.addr.2012.04.010. PubMed DOI
Kateb B., Heiss J.D. The Textbook of Nanoneuroscience and Nanoneurosurgery. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2014.
Vaculikova E., Placha D., Jampilek J. Toxicology of drug nanocarriers. Chem. Listy. 2015;109:346–352.
Jampilek J., Kralova K. Application of nanobioformulations for controlled release and targeted biodistribution of drugs. In: Sharma A.K., Keservani R.K., Kesharwani R.K., editors. Nanobiomaterials: Applications in Drug Delivery. CRC Press; Warentown, NJ, USA: 2018. pp. 131–208.
Jampilek J., Kralova K. Nanotechnology based formulations for drug targeting to central nervous system. In: Keservani R.K., Sharma A.K., editors. Nanoparticulate Drug Delivery Systems. Apple Academic Press & CRC Press; Warentown, NJ, USA: 2019. pp. 151–220.
Bhushan B., Luo D., Schricker S.R., Sigmund W., Zauscher S. Handbook of Nanomaterials Properties. Springer; Berlin/Heidelberg, Germany: 2014.
Singh O.V. Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications. Wiley-Blackwell; Hoboken, NJ, USA: 2015.
Shukla A., Iravani S. Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier; Amsterdam, The Netherlands: 2018.
Jampilek J., Kralova K. Nano-antimicrobials: Activity, benefits and weaknesses. In: Ficai A., Grumezescu A.M., editors. Nanostructures for Antimicrobial Therapy. Elsevier; Amsterdam, The Netherlands: 2017. pp. 23–54.
Jampilek J., Kralova K. Nanomaterials for delivery of nutrients and growth-promoting compounds to Plants. In: Prasad R., Kumar M., Kumar V., editors. Nanotechnology: An Agricultural Paradigm. Springer; Singapore: 2017. pp. 177–226.
Brayner R., Fievet F., Coradin T. Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective. Springer; London, UK: 2013.
Acosta E. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr. Opin. Colloid Interface Sci. 2009;14:3–15. doi: 10.1016/j.cocis.2008.01.002. DOI
Bamrungsap S., Zhao Z., Chen T., Wang L., Li C., Fu T., Tan W. Nanotechnology in therapeutics: A focus on nanoparticles as a drug delivery system. Nanomedicine. 2012;7:1253–1271. doi: 10.2217/nnm.12.87. PubMed DOI
Nekkanti V., Vabalaboina V., Pillai R. Drug nanoparticles—An overview. In: Hashim A.A., editor. The Delivery of Nanoparticles. InTech; Rieka, Croatia: 2012. pp. 111–132.
Frohlich E. Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. Curr. Drug Metab. 2013;14:976–988. doi: 10.2174/1389200211314090004. PubMed DOI PMC
Dolez P.I. Nanoengineering: Global Approaches to Health and Safety Issues. Elsevier; Amterdam, The Netherlands: 2015.
Busquets R. Emerging Nanotechnologies in Food Science. Elsevier; Amterdam, The Netherlands: 2018.
Jampilek J., Kralova K. Nanomaterials applicable in food protection. In: Rai R.V., Bai J.A., editors. Nanotechnology Applications in Food Industry. Taylor & Francis Group; Boca Raton, FL, USA: 2018. pp. 75–96.
Vaculikova E., Grunwaldova V., Kral V., Dohnal J., Jampilek J. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules. 2012;17:13221–13234. doi: 10.3390/molecules171113221. PubMed DOI PMC
Jampilek J., Zaruba K., Oravec M., Kunes M., Babula P., Ulbrich P., Brezaniova I., Triska J., Suchy P. Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood–brain barrier. Biomed. Res. Int. 2015;2015:812673. doi: 10.1155/2015/812673. PubMed DOI PMC
Vaculikova E., Cernikova A., Placha D., Pisarcik M., Dedkova K., Peikertova P., Devinsky F., Jampilek J. Cimetidine nanoparticles for permeability enhancement. J. Nanosci. Nanotechnol. 2016;16:7840–7843. doi: 10.1166/jnn.2016.12562. DOI
Vaculikova E., Cernikova A., Placha D., Pisarcik M., Peikertova P., Dedkova K., Devinsky F., Jampilek J. Preparation of hydrochlorothiazide nanoparticles for solubility enhancement. Molecules. 2016;21:1005. doi: 10.3390/molecules21081005. PubMed DOI PMC
Pentak D., Kozik V., Bak A., Dybal P., Sochanik A., Jampilek J. Methotrexate and cytarabine—Loaded nanocarriers for multidrug cancer therapy. Spectroscopic study. Molecules. 2016;21:1689. doi: 10.3390/molecules21121689. PubMed DOI PMC
Pisarcik M., Jampilek J., Lukac M., Horakova R., Devinsky F., Bukovsky M., Kalina M., Tkacz J., Opravil T. Silver nanoparticles stabilised by cationic gemini surfactants with variable spacer length. Molecules. 2017;22:1794. doi: 10.3390/molecules22101794. PubMed DOI PMC
Pisarcik M., Lukac M., Jampilek J., Bilka F., Bilkova A., Paskova L., Devinsky F., Horakova R., Opravil T. Silver nanoparticles stabilised with cationic single-chain surfactants. Structure-physical properties-biological activity relationship study. J. Mol. Liq. 2018;272:60–72. doi: 10.1016/j.molliq.2018.09.042. DOI
Vaculikova E., Pokorna A., Placha D., Pisarcik M., Dedková K., Peikertova P., Devinsky F., Jampilek J. Improvement of glibenclamide water solubility by nanoparticle preparation. J. Nanosci. Nanotechnol. 2019;19:3031–3034. doi: 10.1166/jnn.2019.15876. PubMed DOI
Kozik V., Bak A., Pentak D., Hachula B., Pytlakowska K., Rojkiewicz M., Jampilek J., Sieron K., Jazowiecka-Rakus J., Sochanik A. Derivatives of graphene oxide as potential drug carriers. J. Nanosci. Nanotechnol. 2019;19:2489–2492. doi: 10.1166/jnn.2019.15855. PubMed DOI
Oehlke K., Adamiuk M., Behsnilian D., Graef V., Mayer-Miebach E., Walz E., Greiner R. Potential bioavailability enhancement of bioactive compounds using food-grade engineered nanomaterials: A review of the existing evidence. Food Funct. 2014;5:1341–1359. doi: 10.1039/c3fo60067j. PubMed DOI
Akhavan S., Assadpour E., Katouzian I., Jafari S.M. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci. Technol. 2018;74:132–146. doi: 10.1016/j.tifs.2018.02.001. DOI
Kumar D.H.L., Sarkar P. Encapsulation of bioactive compounds using nanoemulsions. Environ. Chem. Lett. 2018;16:59–70. doi: 10.1007/s10311-017-0663-x. DOI
Babazadeh A., Ghanbarzadeh B., Hamishehkar H. Formulation of food grade nanostructured lipid carrier (NLC) for potential applications in medicinal-functional foods. J. Drug Deliv. Sci. Technol. 2017;39:50–58. doi: 10.1016/j.jddst.2017.03.001. DOI
Simoes L.D.S., Madalena D.A., Pinheiro A.C., Teixeira J.A., Vicente A.A., Ramos O.L. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Adv. Colloid Interface Sci. 2017;243:23–45. doi: 10.1016/j.cis.2017.02.010. PubMed DOI
Goncalves R.F.S., Martins J.T., Duarte C.M.M., Vicente A.A., Pinheiro A.C. Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends Food Sci. Technol. 2018;78:270–291. doi: 10.1016/j.tifs.2018.06.011. DOI
Arora D., Jaglan S. Nanocarriers based delivery of nutraceuticals for cancer prevention and treatment: A review of recent research developments. Trends Food Sci. Technol. 2016;54:114–126. doi: 10.1016/j.tifs.2016.06.003. DOI
Katouzian I., Jafari S.M. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci. Technol. 2016;53:34–48. doi: 10.1016/j.tifs.2016.05.002. DOI
Chai J.J., Jiang P., Wang P.J., Jiang Y.M., Li D., Bao W.E., Liu B.X., Liu B., Zhao L.Y., Norde W., et al. The intelligent delivery systems for bioactive compounds in foods: Physicochemical and physiological conditions, absorption mechanisms, obstacles and responsive strategies. Trends Food Sci. Technol. 2018;78:144–154. doi: 10.1016/j.tifs.2018.06.003. DOI
Gleeson J.P., Ryan S.M., Brayden D.J. Oral delivery strategies for nutraceuticals: Delivery vehicles and absorption enhancers. Trends Food Sci. Technol. 2016;53:90–101. doi: 10.1016/j.tifs.2016.05.007. DOI
Jafari S.M., Assaidpoor E., Bhandari B., He Y.H. Nano-particle encapsulation of fish oil by spray drying. Food Res. Int. 2008;41:172–183. doi: 10.1016/j.foodres.2007.11.002. DOI
Li Q., Li T., Liu C.M., Dai T.T., Zhang R.J., Zhang Z.P., McClements D.J. Enhancement of carotenoid bioaccessibility from tomatoes using excipient emulsions: Influence of particle size. Food Biophys. 2017;12:172–185. doi: 10.1007/s11483-017-9474-7. DOI
Bioinicia, Valencia, Spain. [(accessed on 13 February 2019)]; Available online: https://bioinicia.com/electrospinning-electrospraying-technology.
Lagaron J.M. Multifunctional and Nanoreinforced Polymers for Food Packaging. Woodhead Publishing; Cambridge, UK: 2011.
Bhushani J.A., Anandharamakrishnan C. Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci. Technol. 2014;38:21–33. doi: 10.1016/j.tifs.2014.03.004. DOI
Torres-Giner S., Martinez-Abad A., Ocio M.J., Lagaron J.M. Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J. Food. Sci. 2010;75:N69–N79. doi: 10.1111/j.1750-3841.2010.01678.x. PubMed DOI
Perez-Masia R., Lopez-Nicolas R., Periago M.J., Ros G., Lagaron J.M., Lopez-Rubio A. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem. 2015;168:124–133. doi: 10.1016/j.foodchem.2014.07.051. PubMed DOI
Nagarajan S., Soussan L., Bechelany M., Teyssier C., Cavailles V., Pochat-Bohatier C., Miele P., Kalkura N., Janota J.M., Balme S. Novel biocompatible electrospun gelatin fiber mats with antibiotic drug delivery properties. J. Mater. Chem. B. 2016;4:1134–1141. doi: 10.1039/C5TB01897H. PubMed DOI
Khorasani S., Danaei M., Mozafari M.R. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci. Technol. 2018;79:106–115. doi: 10.1016/j.tifs.2018.07.009. DOI
Ghanbarzadeh B., Babazadeh A., Hamishehkar H. Nano-phytosome as a potential food-grade delivery system. Food Biosci. 2016;15:126–135. doi: 10.1016/j.fbio.2016.07.006. DOI
Babazadeh A., Ghanbarzadeh B., Hamishehkar H. Phosphatidylcholine-rutin complex as a potential nanocarrier for food applications. J. Funct. Foods. 2017;33:134–141. doi: 10.1016/j.jff.2017.03.038. DOI
Bochicchio S., Barba A.A., Grassi G., Lamberti G. Vitamin delivery: Carriers based on nanoliposomes produced via ultrasonic irradiation. LWT Food Sci. Technol. 2016;69:9–16. doi: 10.1016/j.lwt.2016.01.025. DOI
Azzi J., Jraij A., Auezova L., Fourmentin S., Greige-Gerges H. Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drug-in-cyclodextrin-in-liposomes. Food Hydrocoll. 2018;81:328–340. doi: 10.1016/j.foodhyd.2018.03.006. DOI
Li Z.L., Peng S.F., Chen X., Zhu Y.Q., Zou L.Q., Liu W., Liu C.M. Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility. Food Res. Int. 2018;108:246–253. doi: 10.1016/j.foodres.2018.03.048. PubMed DOI
Semenova M.G., Antipova A.S., Zelikina D.V., Martirosova E.I., Plashchina I.G., Palmina N.P., Binyukov V.I., Bogdanova N.G., Kasparov V.V., Shumilina E.A. Biopolymer nanovehicles for essential polyunsaturated fatty acids: Structure-functionality relationships. Food Res. Int. 2016;88:70–78. doi: 10.1016/j.foodres.2016.05.008. PubMed DOI
Dey T.K., Banerjee P., Chatterjee R., Dhar P. Designing of ω-3 PUFA enriched biocompatible nanoemulsion with sesame protein isolate as a natural surfactant: Focus on enhanced shelf-life stability and biocompatibility. Colloids Surf. A Physicochem. Eng. Asp. 2018;538:36–44. doi: 10.1016/j.colsurfa.2017.10.066. DOI
Hategekimana J., Chamba M.V.M., Shoemaker C.F., Majeed H., Zhong F. Vitamin E nanoemulsions by emulsion phase inversion: Effect of environmental stress and long-term storage on stability and degradation in different carrier oil types. Colloids Surf. A Physicochem. Eng. Asp. 2015;483:70–80. doi: 10.1016/j.colsurfa.2015.03.020. DOI
Guttoff M., Saberi A.H., McClements D.J. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: Factors affecting particle size and stability. Food Chem. 2015;171:117–122. doi: 10.1016/j.foodchem.2014.08.087. PubMed DOI
Salvia-Trujillo L., McClements D.J. Improvement of β-carotene bioaccessibility from dietary supplements using excipient nanoemulsions. J. Agric. Food Chem. 2016;64:4639–4647. doi: 10.1021/acs.jafc.6b00804. PubMed DOI
Liu X.J., Zhang R.J., McClements D.J., Li F., Liu H., Cao Y., Xiao H. Nanoemulsion-based delivery systems for nutraceuticals: Influence of long-chain triglyceride (LCT) type on in vitro digestion and astaxanthin bioaccessibility. Food Biophys. 2018;13:412–421. doi: 10.1007/s11483-018-9547-2. DOI
Saxena V., Hasan A., Sharma S., Pandey L.M. Edible oil nanoemulsion: An organic nanoantibiotic as a potential biomolecule delivery vehicle. Int. J. Polym. Mater. 2018;67:410–419. doi: 10.1080/00914037.2017.1332625. DOI
Parthasarathi S., Muthukumar S.P., Anandharamakrishnan C. The influence of droplet size on the stability, in vivo digestion, and oral bioavailability of vitamin E emulsions. Food Funct. 2016;7:2294–2302. doi: 10.1039/C5FO01517K. PubMed DOI
Ozturk B., Argin S., Ozilgen M., McClements D.J. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. J. Food Eng. 2014;142:57–63. doi: 10.1016/j.jfoodeng.2014.06.015. PubMed DOI
Peng S.F., Li Z.L., Zou L.Q., Liu W., Liu C.M., McClements D.J. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food Funct. 2018;9:1829–1839. doi: 10.1039/C7FO01814B. PubMed DOI
Zheng B.J., Peng S.F., Zhang X.Y., McClements D.J. Impact of delivery system type on curcumin bioaccessibility: Comparison of curcumin-loaded nanoemulsions with commercial curcumin supplements. J. Agric. Food Chem. 2018;66:10816–10826. doi: 10.1021/acs.jafc.8b03174. PubMed DOI
Braithwaite M.C., Choonara Y.E., Kumar P., Tomar L.K., Du Toit L.C., Pillay V. A novel bile salts-lipase polymeric film-infused minitablet system for enhanced oral delivery of cholecalciferol. Pharm. Dev. Technol. 2016;21:832–846. doi: 10.3109/10837450.2015.1069329. PubMed DOI
Liu F.G., Ma C.C., Zhang R.J., Gao Y.X., McClements D.J. Controlling the potential gastrointestinal fate of β-carotene emulsions using interfacial engineering: Impact of coating lipid droplets with polyphenol-protein-carbohydrate conjugate. Food Chem. 2017;221:395–403. doi: 10.1016/j.foodchem.2016.10.057. PubMed DOI
Liu X., Bi J.F., Xiao H., McClements D.J. Enhancement of nutraceutical bioavailability using excipient nanoemulsions: Role of lipid digestion products on bioaccessibility of carotenoids and phenolics from mangoes. J. Food Sci. 2016;81:N754–N761. doi: 10.1111/1750-3841.13227. PubMed DOI
Sharifi F., Jahangiri M. Investigation if the stability of vitamin D in emulsion-based delivery systems. Chem. Ind. Chem. Eng. 2018;24:157–167. doi: 10.2298/CICEQ160408028S. DOI
Esfanjani A.F., Assadpour E., Jafari S.M. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci. Technol. 2018;76:56–66. doi: 10.1016/j.tifs.2018.04.002. DOI
Gonzalez-Reza R.M., Quintanar-Guerrero D., Del Real-Lopez A., Pinon-Segundo E., Zambrano-Zaragoza M.L. Effect of sucrose concentration and pH onto the physical stability of β-carotene nanocapsules. LWT-Food Sci. Technol. 2018;90:354–361. doi: 10.1016/j.lwt.2017.12.044. DOI
Dan N. Compound release from nanostructured lipid carriers (NLCs) J. Food Eng. 2016;171:37–43. doi: 10.1016/j.jfoodeng.2015.10.005. DOI
Kong R., Xia Q., Liu G.Y. Preparation and characterization of vitamin A palmitate-loaded nanostructured lipid carriers as delivery systems for food products. Adv. Mater. Res. 2011;236–238:1818–1823. doi: 10.4028/www.scientific.net/AMR.236-238.1818. DOI
Paucar O.C., Tulini F.L., Thomazini M., Balieiro J.C.C., Pallone E.M.J.A., Favaro-Trindade C.S. Production by spray chilling and characterization of solid lipid microparticles loaded with vitamin D3. Food Bioprod. Process. 2016;100:344–350. doi: 10.1016/j.fbp.2016.08.006. DOI
Ramalingam P., Yoo S.W., Ko Y.T. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res. Int. 2016;84:113–119. doi: 10.1016/j.foodres.2016.03.031. DOI
Nunes S., Madureira A.R., Campos D., Sarmento B., Gomes A.M., Pintado M., Reis F. Solid lipid nanoparticles as oral delivery systems of phenolic compounds: Overcoming pharmacokinetic limitations for nutraceutical applications. Crit. Rev. Food Sci. Nutr. 2017;57:1863–1873. doi: 10.1080/10408398.2015.1031337. PubMed DOI
Sampathkumar K., Loo S.C.J. Targeted gastrointestinal delivery of nutraceuticals with polysaccharide-based coatings. Macromol. Biosci. 2018;18:1700363. doi: 10.1002/mabi.201700363. PubMed DOI
Hasanvand E., Fathi M., Bassiri A. Production and characterization of vitamin D3 loaded starch nanoparticles: Effect of amylose to amylopectin ratio and sonication parameters. J. Food Sci. Tech. Mys. 2018;55:1314–1324. doi: 10.1007/s13197-018-3042-0. PubMed DOI PMC
Hategekirnana J., Masamba K.G., Ma J.G., Zhong F. Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability. Carbohydr. Polym. 2015;124:172–179. doi: 10.1016/j.carbpol.2015.01.060. PubMed DOI
Khan A., Wen Y.B., Huq T., Ni Y.H. Cellulosic nanomaterials in food and nutraceutical applications: A review. J. Agric. Food Chem. 2018;66:8–19. doi: 10.1021/acs.jafc.7b04204. PubMed DOI
Huq T., Fraschini C., Khan A., Riedl B., Bouchard J., Lacroix M. Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin. Carbohydr. Polym. 2017;168:61–69. doi: 10.1016/j.carbpol.2017.03.032. PubMed DOI
Guo C.J., Yin J.G., Chen D.Q. Co-encapsulation of curcumin and resveratrol into novel nutraceutical hyalurosomes nano-food delivery system based on oligo-hyaluronic acid-curcumin polymer. Carbohydr. Polym. 2018;181:1033–1037. doi: 10.1016/j.carbpol.2017.11.046. PubMed DOI
Xia S.Q., Tan C., Xue J., Lou X.W., Zhang X.M., Feng B.A. Chitosan/tripolyphosphate-nanoliposomes core-shell nanocomplexes as vitamin E carriers: Shelf-life and thermal properties. Int. J. Food Sci. Technol. 2014;49:1367–1374. doi: 10.1111/ijfs.12438. DOI
Ge J., Yue P.X., Chi J.P., Liang J., Gao X.L. Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocoll. 2018;74:23–31. doi: 10.1016/j.foodhyd.2017.07.029. DOI
Acevedo-Fani A., Soliva-Fortuny R., Martin-Belloso O. Photo-protection and controlled release of folic acid using edible alginate/chitosan nanolaminates. J. Food Eng. 2018;229:72–82. doi: 10.1016/j.jfoodeng.2017.03.024. DOI
Sun Q.C., Zhang Z.P., Zhang R.J., Gao R.C., McClements D.J. Development of functional or medical foods for oral administration of insulin for diabetes treatment: Gastroprotective edible microgels. J. Agric. Food Chem. 2018;66:4820–4826. doi: 10.1021/acs.jafc.8b00233. PubMed DOI
Papagiannopoulos A., Vlassi E. Stimuli-responsive nanoparticles by thermal treatment of bovine serum albumin inside its complexes with chondroitin sulfate. Food Hydrocoll. 2019;87:602–610. doi: 10.1016/j.foodhyd.2018.08.054. DOI
Dai L., Wei Y., Sun C.X., Mao L.K., McClements D.J., Gao Y.X. Development of protein-polysaccharide-surfactant ternary complex particles as delivery vehicles for curcumin. Food Hydrocoll. 2018;85:75–85. doi: 10.1016/j.foodhyd.2018.06.052. DOI
Fathi M., Donsi F., McClements D.J. Protein-based delivery systems for the nanoencapsulation of food ingredients. Compr. Rev. Food Sci. 2018;17:920–936. doi: 10.1111/1541-4337.12360. PubMed DOI
Ramos O.L., Pereira R.N., Martins A., Rodrigues R., Fucinos C., Teixeira J.A., Pastrana L., Malcata F.X., Vicente A.A. Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food. Crit. Rev. Food Sci. Nutr. 2017;57:1377–1393. doi: 10.1080/10408398.2014.993749. PubMed DOI
Parthasarathi S., Anandharamakrishnan C. Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules. Food Bioprod. Process. 2016;100:469–476.
Cheng C.J., Ferruzzi M., Jones O.G. Fate of lutein-containing zein nanoparticles following simulated gastric and intestinal digestion. Food Hydrocoll. 2019;87:229–236. doi: 10.1016/j.foodhyd.2018.08.013. DOI
Arzeni C., Perez O.E., LeBlanc J.G., Pilosof A.M.R. Egg albumin-folic acid nanocomplexes: Performance as a functional ingredient and biological activity. J. Funct. Foods. 2015;18:379–386. doi: 10.1016/j.jff.2015.07.018. DOI
Zema P., Pilosof A.M.R. On the binding of folic acid to food proteins performing as vitamin micro/nanocarriers. Food Hydrocoll. 2018;79:509–517. doi: 10.1016/j.foodhyd.2018.01.021. DOI
Madalena D.A., Ramos O.L., Pereira R.N., Bourbon A.I., Pinheiro A.C., Malcata F.X., Teixeira J.A., Vicente A.A. In vitro digestion and stability assessment of β-lactoglobulin/riboflavin nanostructures. Food Hydrocoll. 2016;58:89–97. doi: 10.1016/j.foodhyd.2016.02.015. DOI
Ochnio M.E., Martinez J.H., Allievi M.C., Palavecino M., Martinez K.D., Perez O.E. Proteins as nano-carriers for bioactive compounds. The case of 7S and 11S soy globulins and folic acid complexation. Polymers. 2018;10:149. doi: 10.3390/polym10020149. PubMed DOI PMC
Rubio A.P.D., Martinez J.H., Casillas D.C.M., Leskow F.C., Piuri M., Perez O.E. Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect. Front. Microbiol. 2017;8:1783. doi: 10.3389/fmicb.2017.01783. PubMed DOI PMC
Peng S.F., Li Z.L., Zou L.Q., Liu W., Liu C.M., McClements D.J. Enhancement of curcumin bioavailability by encapsulation in sophorolipid-coated nanoparticles: An in vitro and in vivo study. J. Agric. Food Chem. 2018;66:1488–1497. doi: 10.1021/acs.jafc.7b05478. PubMed DOI
Liu G.Y., Huang W.J., Babii O., Gong X.Y., Tian Z.G., Yang J.Q., Wang Y.X., Jacobs R.L., Donna V., Lavasanifar A., et al. Novel protein-lipid composite nanoparticles with an inner aqueous compartment as delivery systems of hydrophilic nutraceutical compounds. Nanoscale. 2018;10:10629–10640. doi: 10.1039/C8NR01009A. PubMed DOI
Lin Y., Wang Y.H., Yang X.Q., Guo J., Wang J.M. Corn protein hydrolysate as a novel nano-vehicle: Enhanced physicochemical stability and in vitro bioaccessibility of vitamin D3. LWT Food Sci. Technol. 2016;72:510–517. doi: 10.1016/j.lwt.2016.05.020. DOI
David S., Livney Y.D. Potato protein based nanovehicles for health promoting hydrophobic bioactives in clear beverages. Food Hydrocoll. 2016;57:229–235. doi: 10.1016/j.foodhyd.2016.01.027. DOI
Cohen Y., Levi M., Lesmes U., Margier M., Reboul E., Livney Y.D. Re-assembled casein micelles improve in vitro bioavailability of vitamin D in a Caco-2 cell model. Food Funct. 2017;8:2133–2141. doi: 10.1039/C7FO00323D. PubMed DOI
Ghayour N., Hosseini S.M.H., Eskandari M.H., Esteghlal S., Nekoei A.R., Gahruie H.H., Tatar M., Naghibalhossaini F. Nanoencapsulation of quercetin and curcumin in casein-based delivery systems. Food Hydrocoll. 2019;87:394–403. doi: 10.1016/j.foodhyd.2018.08.031. DOI
Yerramilli M., Longmore N., Ghosh S. Stability and bioavailability of curcumin in mixed sodium caseinate and pea protein isolate nanoemulsions. J. Am. Oil Chem. Soc. 2018;95:1013–1026. doi: 10.1002/aocs.12084. DOI
Moeller H., Martin D., Schrader K., Hoffmann W., Lorenzen P.C. Spray- or freeze-drying of casein micelles loaded with vitamin D2: Studies on storage stability and in vitro digestibility. LWT-Food Sci. Technol. 2018;97:87–93. doi: 10.1016/j.lwt.2018.04.003. DOI
Penalva R., Esparza I., Agueeros M., Gonzalez-Navarro C.J., Gonzalez-Ferrero C., Irache J.M. Casein nanoparticles as carriers for the oral delivery of folic acid. Food Hydrocoll. 2015;44:399–406. doi: 10.1016/j.foodhyd.2014.10.004. DOI
Trofimov A.D., Ivanova A.A., Zyuzin M.V., Timin A.S. Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: Fresh outlook and future perspectives. Pharmaceutics. 2018;10:167. doi: 10.3390/pharmaceutics10040167. PubMed DOI PMC
Sayed E., Haj-Ahmad R., Ruparelia K., Arshad M.S., Chang M.W., Ahmad Z. Porous inorganic drug delivery systems—A review. AAPS PharmSciTech. 2017;18:1507–1525. doi: 10.1208/s12249-017-0740-2. PubMed DOI
Mishra G., Dash B., Pandey S. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 2018;153:172–186. doi: 10.1016/j.clay.2017.12.021. DOI
Perez-Esteve E., Ruiz-Rico M., de la Torre C., Villaescusa L.A., Sancenon F., Marcos M.D., Amoros P., Martinez-Manez R., Barat J.M. Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chem. 2016;196:66–75. doi: 10.1016/j.foodchem.2015.09.017. PubMed DOI
Perez-Esteve E., Fuentes A., Coll C., Acosta C., Bernardos A., Amoros P., Marcos M.D., Sancenon F., Martinez-Manez R., Barat J.M. Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Micropor. Mesopor. Mater. 2015;202:124–132. doi: 10.1016/j.micromeso.2014.09.049. DOI
Perez-Esteve E., Ruiz-Rico M., Fuentes A., Marcos M.D., Sancenon F., Martinez-Manez R., Barat J.M. Enrichment of stirred yogurts with folic acid encapsulated in pH-responsive mesoporous silica particles: Bioaccessibility modulation and physico-chemical characterization. LWT Food Sci. Technol. 2016;72:351–360. doi: 10.1016/j.lwt.2016.04.061. DOI
Ruiz-Rico M., Perez-Esteve E., Lerma-Garcia M.J., Marcos M.D., Martinez-Manez R., Barat J.M. Protection of folic acid through encapsulation in mesoporous silica particles included in fruit juices. Food Chem. 2017;218:471–478. doi: 10.1016/j.foodchem.2016.09.097. PubMed DOI
Juere E., Florek J., Bouchoucha M., Jambhrunkar S., Wong K.Y., Popat A., Kleitz F. In vitro dissolution, cellular membrane permeability, and anti-inflammatory response of resveratrol-encapsulated mesoporous silica nanoparticles. Mol. Pharm. 2017;14:4431–4441. doi: 10.1021/acs.molpharmaceut.7b00529. PubMed DOI
Summerlin N., Qu Z., Pujara N., Sheng Y., Jambhrunkar S., McGuckin M., Popat A. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf. B Biointerfaces. 2016;144:1–7. doi: 10.1016/j.colsurfb.2016.03.076. PubMed DOI
Singh S., Rathi N., Angal A., Parida P., Rautaray D. Biofortification of food with minerals and vitamins encapsulated in silica. In: Ranjan S., Dasgupta N., Lichtfouse E., editors. Nanoscience in Food and Agriculture 2. Sustainable Agriculture Reviews. Volume 21. Springer; Cham, Germany: 2016. pp. 157–206.
Pagano C., Tiralti M.C., Perioli L. Nanostructured hybrids for the improvement of folic acid biopharmaceutical properties. J. Pharm. Pharmacol. 2016;68:1384–1395. doi: 10.1111/jphp.12634. PubMed DOI
Constantinescu-Aruxandei D., Frincu R.M., Capra L., Oancea F. Selenium analysis and speciation in dietary supplements based on next-generation selenium ingredients. Nutrients. 2018;10:1466. doi: 10.3390/nu10101466. PubMed DOI PMC
De Villiers M.M. Antioxidants. In: Thompson J.E., editor. A Practical Guide to Contemporary Pharmacy Practice. 3rd ed. Lippincott Williams & Wilkins; Baltiomor, MD, USA: 2009. pp. 216–223.
Aditya N.P., Espinosa Y.G., Norton I.T. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnol. Adv. 2017;35:450–457. doi: 10.1016/j.biotechadv.2017.03.012. PubMed DOI
Pisoschi A.M., Pop A., Cimpeanu C., Turcus V., Predoi G., Iordache F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity—A critical view. Eur. J. Med. Chem. 2018;157:1326–1345. doi: 10.1016/j.ejmech.2018.08.076. PubMed DOI
Hou M.N., Li Q., Liu X.X., Lu C., Li S., Wang Z.Z., Dang L.P. Substantial enhancement of the antioxidant capacity of an α-linolenic acid loaded microemulsion: Chemical manipulation of the oil-water interface by carbon dots and its potential application. J. Agric. Food Chem. 2018;66:6917–6925. doi: 10.1021/acs.jafc.8b01991. PubMed DOI
Kaur K., Kaur J., Kumar R., Mehta S.K. Formulation and physiochemical study of α-tocopherol based oil in water nanoemulsion stabilized with non toxic, biodegradable surfactant: Sodium stearoyl lactate. Ultrason. Sonochem. 2017;38:570–578. doi: 10.1016/j.ultsonch.2016.08.026. PubMed DOI
Tamjidi F., Shahedi M., Varshosaz J., Nasirpour A. Stability of astaxanthin-loaded nanostructured lipid carriers in beverage systems. J. Sci. Food Agric. 2018;98:511–518. doi: 10.1002/jsfa.8488. PubMed DOI
Liu F.G., Ma D., Luo X., Zhang Z.Y., He L.L., Gao Y.X., McClements D.J. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocoll. 2018;79:450–461. doi: 10.1016/j.foodhyd.2018.01.017. DOI
Tapia-Hernandez J.A., Rodriguez-Felix F., Juarez-Onofre J.E., Ruiz-Cruz S., Robles-Garcia M.A., Borboa-Flores J., Wong-Corral F.J., Cinco-Moroyoqui F.J., Castro-Enriquez D.D., Del-Toro-Sanchez C.L. Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: A strategy for prevention of chronic degenerative diseases. Food Res. Int. 2018;111:451–471. doi: 10.1016/j.foodres.2018.05.036. PubMed DOI
Paulo F., Santos L. Inclusion of hydroxytyrosol in ethyl cellulose microparticles: In vitro release studies under digestion conditions. Food Hydrocoll. 2018;84:104–116. doi: 10.1016/j.foodhyd.2018.06.009. DOI
Hu Y., Zhang W., Ke Z., Li Y., Zhou Z. In vitro release and antioxidant activity of Satsuma mandarin (Citrus reticulata Blanco cv. unshiu) peel flavonoids encapsulated by pectin nanoparticles. Int. J. Food Sci. Technol. 2017;52:2362–2373. doi: 10.1111/ijfs.13520. DOI
Huang X.X., Huang X.L., Gong Y.S., Xiao H., McClements D.J., Hu K. Enhancement of curcumin water dispersibility and antioxidant activity using core-shell protein-polysaccharide nanoparticles. Food Res. Int. 2016;87:1–9. doi: 10.1016/j.foodres.2016.06.009. PubMed DOI
Jiao Z., Wang X.D., Yin Y.T., Xia J.X., Mei Y.N. Preparation and evaluation of a chitosan-coated antioxidant liposome containing vitamin C and folic acid. J. Microencapsul. 2018;35:272–280. doi: 10.1080/02652048.2018.1467509. PubMed DOI
Silva H.D., Poejo J., Pinheiro A.C., Donsi F., Serra A.T., Duarte C.M.M., Ferrari G., Cerqueira M.A., Vicente A.A. Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. J. Funct. Foods. 2018;48:605–613. doi: 10.1016/j.jff.2018.08.002. DOI
Kunwar A., Priyadarsini K.I. Free radicals, oxidative stress and importance of antioxidants in human health. J. Med. Allied. Sci. 2011;1:53–60.
Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. PubMed DOI PMC
Galati G., Sabzevari O., Wilson J.X., O’Brien P.J. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology. 2002;177:91–104. doi: 10.1016/S0300-483X(02)00198-1. PubMed DOI
Herbert V. The antioxidant supplement myth. Am. J. Clin. Nutr. 1994;60:157–168. doi: 10.1093/ajcn/60.2.157. PubMed DOI
Chan T.S., Galati G., Pannala A.S., Rice-Evans C., O’Brien P.J. Simultaneous detection of the antioxidant and pro-oxidant activity of dietary polyphenolics in a peroxidase system. Free Radic Res. 2003;37:787–794. doi: 10.1080/1071576031000094899. PubMed DOI
Rezaei A., Fathi M., Jafari S.M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll. 2019;88:146–162. doi: 10.1016/j.foodhyd.2018.10.003. DOI
Aadinath W., Bhushani A., Anandharamakrishnan C. Synergistic radical scavenging potency of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;64:293–302. doi: 10.1016/j.msec.2016.03.095. PubMed DOI
Yi J., Li Y., Zhong F., Yokoyama W. The physicochemical stability and in vitro bioaccessibility of β-carotene in oil-in-water sodium caseinate emulsions. Food Hydrocoll. 2014;35:19–27. doi: 10.1016/j.foodhyd.2013.07.025. DOI
Mao L.K., Wang D., Liu F.G., Gao Y.X. Emulsion design for the delivery of beta-carotene in complex food systems. Crit. Rev. Food Sci. Nutr. 2018;58:770–784. doi: 10.1080/10408398.2016.1223599. PubMed DOI
Brito-Oliveira T.C., Molina C.V., Netto F.M., Pinho S.C. Encapsulation of β-carotene in lipid microparticles stabilized with hydrolyzed soy protein isolate: Production parameters, α-tocopherol coencapsulation and stability under stress conditions. J. Food Sci. 2017;82:659–669. doi: 10.1111/1750-3841.13642. PubMed DOI
Wang W.Y., Sun C.X., Mao L.K., Ma P.H., Liu F.G., Yang J., Gao Y.X. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol. 2016;56:21–38. doi: 10.1016/j.tifs.2016.07.004. DOI
Zhang J.M., Wang D., Wu Y.H., Li W., Hu Y., Zhao G., Fu C.M., Fu S., Zou L. Lipid-polymer hybrid nanoparticles for oral delivery of tartary buckwheat flavonoids. J. Agric. Food Chem. 2018;66:4923–4932. doi: 10.1021/acs.jafc.8b00714. PubMed DOI
Tavakoli H., Hosseini O., Jafari S.M., Katouzian I. Evaluation of physicochemical and antioxidant properties of yogurt enriched by olive leaf phenolics within nanoliposomes. J. Agric. Food Chem. 2018;66:9231–9240. doi: 10.1021/acs.jafc.8b02759. PubMed DOI
Huang X.L., Dai Y.Q., Cai J.X., Zhong N.J., Xiao H., McClements D.J., Hu K. Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities. Food Hydrocoll. 2017;64:157–165. doi: 10.1016/j.foodhyd.2016.10.029. DOI
Liu Y.X., Fan Y.T., Gao L.Y., Zhang Y.Z., Yi J. Enhanced pH and thermal stability, solubility and antioxidant activity of resveratrol by nanocomplexation with α-lactalbumin. Food Funct. 2018;9:4781–4790. doi: 10.1039/C8FO01172A. PubMed DOI
Alarcon-Alarcon C., Inostroza-Riquelme M., Torres-Gallegos C., Araya C., Miranda M., Sanchez-Caamano J.C., Moreno-Villoslada I., Oyarzun-Ampuero F.A. Protection of astaxanthin from photodegradation by its inclusion in hierarchically assembled nano and microstructures with potential as food. Food Hydrocoll. 2018;83:36–44. doi: 10.1016/j.foodhyd.2018.04.033. DOI
Tamjidi F., Shahedi M., Varshosaz J., Nasirpour A. Stability of astaxanthin-loaded nanostructured lipid carriers as affected by pH, ionic strength, heat treatment, simulated gastric juice and freeze-thawing. J. Food Sci. Tech. Mysore. 2017;54:3132–3141. doi: 10.1007/s13197-017-2749-7. PubMed DOI PMC
Khader M., Eckl P.M. Thymoquinone: An emerging natural drug with a wide range of medical applications. Iran. J. Basic. Med. Sci. 2014;17:950–957. PubMed PMC
El-Far A.H., Al Jaouni S.K., Li W.K., Mousa S.A. Protective roles of thymoquinone nanoformulations: Potential nanonutraceuticals in human diseases. Nutrients. 2018;10:1369. doi: 10.3390/nu10101369. PubMed DOI PMC
De Farias S.S., Siqueira S.M.C., Cunha A.P., de Souza C.A.G., Fontenelle R.O.D., de Araujo T.G., de Amorim A.F.V., de Menezes J.E.S.A., de Morais S.M., Ricardo N.M.P.S. Microencapsulation of riboflavin with galactomannan biopolymer and F127: Physico-chemical characterization, antifungal activity and controlled release. Ind. Crops Prod. 2018;118:271–281. doi: 10.1016/j.indcrop.2018.03.039. DOI
Cheong A.M., Tan K.W., Tan C.P., Nyam K.L. Kenaf (Hibiscus cannabinus L.) seed oil-in-water pickering nanoemulsions stabilised by mixture of sodium caseinate, Tween 20 and β-cyclodextrin. Food Hydrocolloids. 2016;52:934–941. doi: 10.1016/j.foodhyd.2015.09.005. DOI
Pandey K.R., Naik S.R., Vakil B.V. Probiotics, prebiotics and synbiotics—A review. J. Food Sci. Technol. 2015;52:7577–7587. doi: 10.1007/s13197-015-1921-1. PubMed DOI PMC
Markowiak P., Slizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9:1021. doi: 10.3390/nu9091021. PubMed DOI PMC
Kerry R.G., Patra J.K., Gouda S., Park Y., Shin H.S., Das G. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 2018;26:927–939. doi: 10.1016/j.jfda.2018.01.002. PubMed DOI PMC
Gbassi G.K., Vandamme T. Probiotic encapsulation technology: From microencapsulation to release into the gut. Pharmaceutics. 2012;4:149–163. doi: 10.3390/pharmaceutics4010149. PubMed DOI PMC
Sathyabama S., Kumar M.R., Devi P.B., Vijayabharathi R., Priyadharisini V.B. Co-encapsulation of probiotics with prebiotics on alginate matrix and its effect on viability in simulated gastric environment. Food Sci. Technol. 2014;57:419–425. doi: 10.1016/j.lwt.2013.12.024. DOI
Kuo S.M., Merhige P.M., Hagey L.R. The effect of dietary prebiotics and probiotics on body weight, large intestine indices, and fecal bile acid profile in wild type and IL10-/- mice. PLoS ONE. 2013;8:60270. doi: 10.1371/journal.pone.0060270. PubMed DOI PMC
Yao M.F., Li B., Ye H.W., Huang W.H., Luo Q.X., Xiao H., McClements D.J., Li L.J. Enhanced viability of probiotics (Pediococcus pentosaceus Li05) by encapsulation in microgels doped with inorganic nanoparticles. Food Hydrocoll. 2018;83:246–252. doi: 10.1016/j.foodhyd.2018.05.024. DOI
Atia A., Gomaa A., Fliss I., Beyssac E., Garrait G., Subirade M. A prebiotic matrix for encapsulation of probiotics: Physicochemical and microbiological study. J. Microencapsul. 2016;33:89–101. doi: 10.3109/02652048.2015.1134688. PubMed DOI
Peredo A.G., Beristain C.I., Pascual L.A., Azuara E., Jimenez M. The effect of prebiotics on the viability of encapsulated probiotic bacteria. Food Sci. Technol. 2016;73:191–196. doi: 10.1016/j.lwt.2016.06.021. DOI
Mishra S.S., Behera P.K., Kar B., Ray R.C. Advances in probiotics, prebiotics and nutraceuticals. In: Panda S., Shetty P., editors. Innovations in Technologies for Fermented Food and Beverage Industries. Springer; Cham, Germany: 2018. pp. 121–141.
Salami A., Seydi E., Pourahmad J. Use of nutraceuticals for prevention and treatment of cancer. Iran. J. Pharm. Res. 2013;12:219–220. PubMed PMC
Lefranc F., Tabanca N., Kiss R. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests. Sem. Cancer Biol. 2017;46:14–32. doi: 10.1016/j.semcancer.2017.06.004. PubMed DOI
Fritz H., Seely D., Flower G., Skidmore B., Fernandes R., Vadeboncoeur S., Kennedy D., Cooley K., Wong R., Sagar S., et al. Soy, red clover, and isoflavones and breast cancer: A systematic review. PLoS ONE. 2013;8:e81968. doi: 10.1371/journal.pone.0081968. PubMed DOI PMC
Lotha R., Sivasubramanian A. Flavonoids nutraceuticals in prevention and treatment of cancer: A review. Asian J. Pharm. Clin. Res. 2018;11:42–47. doi: 10.22159/ajpcr.2018.v11i1.23410. DOI
Chikwere P. Functional foods and nutraceuticals, wonders in cancer risks—A review. World Sci. News. 2017;64:18–33.
Wargovich M.J., Morris J., Brown V., Ellis J., Logothetis B., Weber R. Nutraceutical use in late-stage cancer. Cancer Metastasis Rev. 2010;29:503–510. doi: 10.1007/s10555-010-9240-5. PubMed DOI PMC
McClements D.J., Xiao H. Designing food structure and composition to enhance nutraceutical bioactivity to support cancer inhibition. Semin. Cancer Biol. 2017;46:215–226. doi: 10.1016/j.semcancer.2017.06.003. PubMed DOI
Liu L., Gao Y.X., McClements D.J., Decker E.A. Role of continuous phase protein, (-)-epigallocatechin-3-gallate and carrier oil on beta-carotene degradation in oil-in-water emulsions. Food Chem. 2016;210:242–248. doi: 10.1016/j.foodchem.2016.04.075. PubMed DOI
Granja A., Frias I., Neves A.R., Pinheiro M., Reis S. Therapeutic potential of epigallocatechin gallate nanodelivery systems. Biomed. Res. Int. 2017;2017:5813793. doi: 10.1155/2017/5813793. PubMed DOI PMC
Hu K., Huang X.X., Gao Y.Q., Huang X.L., Xiao H., McClements D.J. Core-shell biopolymer nanoparticle delivery systems: Synthesis and characterization of curcumin fortified zein-pectin nanoparticles. Food Chem. 2015;182:275–281. doi: 10.1016/j.foodchem.2015.03.009. PubMed DOI
Quagliariello V., Vecchione R., Coppola C., Di Cicco C., De Capua A., Piscopo G., Paciello R., Narciso V., Formisano C., Taglialatela-Scafati O., et al. Cardioprotective effects of nanoemulsions loaded with anti-inflammatory nutraceuticals against doxorubicin-induced cardiotoxicity. Nutrients. 2018;10:1304. doi: 10.3390/nu10091304. PubMed DOI PMC
Meghani N., Patel P., Kansara K., Ranjan S., Dasgupta N., Ramalingam C., Kumar A. Formulation of vitamin D encapsulated cinnamon oil nanoemulsion: Its potential anti-cancerous activity in human alveolar carcinoma cells. Colloids Surf. B Biointerfaces. 2018;166:349–357. doi: 10.1016/j.colsurfb.2018.03.041. PubMed DOI
Alaarg A., Jordan N.Y., Verhoef J.J.F., Metselaar J.M., Storm G., Kok R.J. Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: An in vitro assessment. Int. J. Nanomed. 2016;11:5027–5040. doi: 10.2147/IJN.S115995. PubMed DOI PMC
Skibinski C.G., Das A., Chen K.M., Liao J., Manni A., Kester M., El-Bayoumy K. A novel biologically active acid stable liposomal formulation of docosahexaenoic acid in human breast cancer cell lines. Chem. Biol. Interact. 2016;252:1–8. doi: 10.1016/j.cbi.2016.03.035. PubMed DOI
Gokmen V., Mogol B.A., Lumaga R.B., Fogliano V., Kaplun Z., Shimoni E. Development of functional bread containing nanoencapsulated ω-3 fatty acids. J. Food Eng. 2011;105:585–591. doi: 10.1016/j.jfoodeng.2011.03.021. DOI
Bhatt P.C., Pathak S., Kumar V., Panda B.P. Attenuation of neurobehavioral and neurochemical abnormalities in animal model of cognitive deficits of Alzheimer’s disease by fermented soybean nanonutraceutical. Inflammopharmacology. 2018;26:105–118. doi: 10.1007/s10787-017-0381-9. PubMed DOI
Zempleni J., Aguilar-Lozano A., Sadri M., Sukreet S., Manca S., Wu D., Zhou F., Mutai E. Biological activities of extracellular vesicles and their cargos from bovine and human milk in humans and implications for infants. J. Nutr. 2017;147:3–10. doi: 10.3945/jn.116.238949. PubMed DOI PMC
Rigacci S., Stefani M. Nutraceuticals and amyloid neurodegenerative diseases: A focus on natural phenols. Expert Rev. Neurother. 2015;1:41–52. doi: 10.1586/14737175.2015.986101. PubMed DOI
Aalinkeel R., Kutscher H.L., Singh A., Cwiklinski K., Khechen N., Schwartz S.A., Prasad P.N., Mahajan S.D. Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: A potential nanotherapy for Alzheimer’s disease? J. Drug Target. 2018;26:182–193. doi: 10.1080/1061186X.2017.1354002. PubMed DOI
Kumar S.A., Brown L. Alginates in metabolic syndrome. In: Rehm B.H.A., Moradali M.F., editors. Aginates and Theirbiomedical Applications. Volume 11. Springer; Singapore: 2018. pp. 223–235.
Kar S.K., Jansman A.J.M., Boeren S., Kruijt L., Smits M.A. Protein, peptide, amino acid composition, and potential functional properties of existing and novel dietary protein sources for monogastrics. J. Anim. Sci. 2016;94:30–39. doi: 10.2527/jas.2015-9677. DOI
Pham T.M., Ekwaru J.P., Mastroeni S.S., Mastroeni M.F., Loehr S.A., Veugelers P.J. The effect of serum 25-hydroxyvitamin D on elevated homocysteine concentrations in participants of a preventive health program. PLoS ONE. 2016;11:0161368. doi: 10.1371/journal.pone.0161368. PubMed DOI PMC
Xie C.L., Lee S.S., Choung S.Y., Kang S.S., Choi Y.J. Preparation and optimisation of liposome-in-alginate beads containing oyster hydrolysate for sustained release. Int. J. Food Sci. Technol. 2016;51:2209–2216. doi: 10.1111/ijfs.13207. DOI
Feng T., Wang K., Liu F.F., Ye R., Zhu X., Zhuang H.N., Xue Z.M. Structural characterization and bioavailability of ternary nanoparticles consisting of amylose, α-linoleic acid and β-lactoglobulin complexed with naringin. Int. J. Biol. Macromol. 2017;99:365–374. doi: 10.1016/j.ijbiomac.2017.03.005. PubMed DOI
Mahmoud M.H., Badr G., El Shinnawy N.A. Camel whey protein improves lymphocyte function and protects against diabetes in the offspring of diabetic mouse dams. Int. J. Immunopathol. Pharmacol. 2016;29:632–646. doi: 10.1177/0394632016671729. PubMed DOI PMC
Paul D., Dey T.K., Mukherjee S., Ghosh M., Dhar P. Comparative prophylactic effects of alpha-eleostearic acid rich nano and conventional emulsions in induced diabetic rats. J. Food Sci. Tech. Mysore. 2014;51:1724–1736. doi: 10.1007/s13197-014-1257-2. PubMed DOI PMC
Tarighat-Esfanjani A., Fallahnejad H., Omidi H., Jafarabadi M.A., Abbasi M.M., Khorram S. The effects of natural nano-sized clinoptilolite and metformin on the levels of serum glucose, lipid profile, and minerals in rats with type 2 diabetes mellitus. Iran. Red Crescent Med. J. 2018;20:74365. doi: 10.5812/ircmj.74365. DOI
Nia B.H., Khorram S., Rezazadeh H., Safaiyan A., Tarighat-Esfanjani A. The effects of natural clinoptilolite and nano-sized clinoptilolite supplementation on glucose levels and oxidative stress in rats with type 1 diabetes. Can. J. Diabetes. 2018;42:31–35. PubMed
Hossein-Nia B., Khorram S., Rezazadeh H., Safaiyan A., Ghiasi R., Tarighat-Esfanjani A. The effects of natural clinoptilolite and nano-sized clinoptilolite supplementation on lipid profile, food intakes and body weight in rats with streptozotocin-induced diabetes. Adv. Pharm. Bull. 2018;8:211–216. doi: 10.15171/apb.2018.025. PubMed DOI PMC
Perurnal V., Manickam T., Bang K.S., Velmurugan P., Oh B.T. Antidiabetic potential of bioactive molecules coated chitosan nanoparticles in experimental rats. Int. J. Biol. Macromol. 2016;92:63–69. doi: 10.1016/j.ijbiomac.2016.07.006. PubMed DOI
Liu Y.T., Zeng S.G., Liu Y.X., Wu W.J., Shen Y.B., Zhang L., Li C., Chen H., Liu A.P., Shen L. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int. J. Biol. Macromol. 2018;114:632–639. doi: 10.1016/j.ijbiomac.2018.03.161. PubMed DOI
Sechi M., Syed D.N., Pala N., Mariani A., Marceddu S., Brunetti A., Mukhtar H., Sanna V. Nanoencapsulation of dietary flavonoid fisetin: Formulation and in vitro antioxidant and α-glucosidase inhibition activities. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;68:594–602. doi: 10.1016/j.msec.2016.06.042. PubMed DOI
Bagherpour S., Alizadeh A., Ghanbarzadeh S., Mohammadi M., Hamishehkar H. Preparation and characterization of Betasitosterol-loaded nanostructured lipid carriers for butter enrichment. Food Biosci. 2017;20:51–55. doi: 10.1016/j.fbio.2017.07.010. DOI
Nakada H., Sakae T., Watanabe T., Takahashi T., Fujita K., Tanimoto Y., Teranishi M., Kato T., Kawai Y. A new osteoporosis prevention supplements-diet improve bone mineral density in ovariectomized rats on micro-CT. J. Hard Tissue Biol. 2014;23:1–8. doi: 10.2485/jhtb.23.1. DOI
Khashayar P., Keshtkar A., Ebrahimi M., Larijani B. Nano calcium supplements: Friends or foes? J. Bone Biol. Osteoporosis. 2015;1:32–33.
Park H.S., Jeon B.J., Ahn J., Kwak H.S. Effects of nanocalcium supplemented milk on bone calcium metabolism in ovariectomized rats. Asian-Aust. J. Anim. Sci. 2007;20:1266–1271. doi: 10.5713/ajas.2007.1266. DOI
Choi H.S., Han J.H., Chung S., Hong Y.H., Suh H.J. Nano-calcium ameliorates ovariectomy-induced bone loss in female rats. Korean J. Food Sci. Anim. Res. 2013;33:515–521. doi: 10.5851/kosfa.2013.33.4.515. DOI
Huang S., Chen J.C., Hsu C.W., Chang W.H. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model. Nanotechnology. 2009;20:375102. doi: 10.1088/0957-4484/20/37/375102. PubMed DOI
Erfanian A., Mirhosseini H., Abd Manap M.Y., Rasti B., Hair-Bejo M. Influence of nano-size reduction on absorption and bioavailability of calcium from fortified milk powder in rats. Food Res. Int. 2014;66:1–11. doi: 10.1016/j.foodres.2014.08.026. PubMed DOI
Erfanian A., Mirhosseini H., Rasti B., Hair-Bejo M., Bin Mustafa S., Abd Manap M.Y. Absorption and bioavailability of nano-size reduced calcium citrate fortified milk powder in ovariectomized and ovariectomized-osteoporosis rats. J. Agric. Food Chem. 2015;63:5795–57804. doi: 10.1021/acs.jafc.5b01468. PubMed DOI
Erfanian A., Rasti B., Manap Y. Comparing the calcium bioavailability from two types of nano-sized enriched milk using in-vivo assay. Food Chem. 2017;214:606–613. doi: 10.1016/j.foodchem.2016.07.116. PubMed DOI
Guo H.H., Hong Z.A., Yi R.Z. Core-shell collagen peptide chelated calcium/calcium alginate nanoparticles from fish scales for calcium supplementation. J. Food Sci. 2015;80:N1595–N1601. doi: 10.1111/1750-3841.12912. PubMed DOI
Cai X.X., Zhao L.N., Wang S.Y., Rao P.F. Fabrication and characterization of the nano-composite of whey protein hydrolysate chelated with calcium. Food Funct. 2015;6:816–823. PubMed
Noor Z. Nanohydroxyapatite application to osteoporosis management. J. Osteoporosis. 2013;2013:679025. doi: 10.1155/2013/679025. PubMed DOI PMC
Zhang X., Zhu L., Lv H., Cao Y., Liu Y., Xu Y., Ye W., Wang J. Repair of rabbit femoral condyle bone defects with injectable nanohydroxyapatite/chitosan composites. J. Mater. Sci. Mater. Med. 2012;23:1941–1949. doi: 10.1007/s10856-012-4662-y. PubMed DOI
Severin A.V., Mazina S.E., Melikhov I.V. Physicochemical aspects of the antiseptic action of nanohydroxyapatite. Biophysics. 2009;54:701–705. doi: 10.1134/S0006350909060086. PubMed DOI
Chakraborty A.P. Chicken eggshell as calcium supplement tablet. Int. J. Sci. Eng. Manag. 2016;1:45–49.
Ray S., Barman A.K., Roy P.K., Singh B.K. Chicken eggshell powder as dietary calcium source in chocolate cakes. Pharma Innov. J. 2017;6:1–4.
Mijan M.A., Lee Y.K., Kwak H.S. Effects of nanopowdered eggshell on postmenopausal osteoporosis: A rat study. Food Sci. Biotechnol. 2014;23:1667–1676. doi: 10.1007/s10068-014-0227-9. DOI
El-Shibiny S., Abd El-Gawad M.A.M., Assem F.M., El-Sayed S.M. The use of nano-sized eggshell powder for calcium fortification of cow’s and buffalo’s milk yogurts. Acta Sci. Pol. Technol. Aliment. 2018;17:37–49. PubMed
Zanella D., Bossi E., Gornati R., Bastos C., Faria N., Bernardini G. Iron oxide nanoparticles can cross plasma membranes. Sci. Rep. 2017;7:11413. doi: 10.1038/s41598-017-11535-z. PubMed DOI PMC
Hosny K.M., Banjar Z.M., Hariri A.H., Hassan A.H. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia. Drug Des. Dev. Ther. 2015;9:313–320. doi: 10.2147/DDDT.S77702. PubMed DOI PMC
Gornati R., Pedretti E., Rossi F., Cappellini F., Zanella M., Olivato I., Sabbioni E., Bernardini G. Zerovalent Fe, Co and Ni nanoparticle toxicity evaluated on SKOV-3 and U87 cell lines. J. Appl. Toxicol. 2016;36:385–393. doi: 10.1002/jat.3220. PubMed DOI PMC
Lonnerdal B., Bryant A., Liu X., Theil E.C. Iron absorption from soybean ferritin in nonanemic women. Am. J. Clin. Nutr. 2006;83:103–107. doi: 10.1093/ajcn/83.1.103. PubMed DOI
Powell J.J., Bruggraber S.F.A., Faria N., Poots L.K., Hondow N., Pennycook T.J., Latunde-Dada G.O., Simpson R.J., Brown A.P., Pereira D.I.A. A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity. Nanomedicine. 2014;10:1529–1538. doi: 10.1016/j.nano.2013.12.011. PubMed DOI PMC
Pereira D.I.A., Bruggraber S.F.A., Faria N., Poots L.K., Tagmount M.A., Aslam M.F., Frazer D.M., Vulpe C.D., Anderson G.J., Powell J.J. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans. Nanomedicine. 2014;10:1877–1886. doi: 10.1016/j.nano.2014.06.012. PubMed DOI PMC
Pereira D.I.A., Mohammed N.I., Ofordile O., Camara F., Baldeh B., Mendy T., Sanyang C., Jallow A.T., Hossain I., Wason J., et al. A novel nano-iron supplement to safely combat iron deficiency and anaemia in young children: The IHAT-GUT double-blind, randomised, placebo-controlled trial protocol. Gates Open Res. 2018;2:48. doi: 10.12688/gatesopenres.12866.2. PubMed DOI PMC
Hilty F.M., Arnold M., Hilbe M., Teleki A., Knijnenburg J.T., Ehrensperger F., Hurrell R.F., Pratsinis S.E., Langhans W., Zimmermann M.B. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nat. Nanotechnol. 2010;5:374–380. doi: 10.1038/nnano.2010.79. PubMed DOI
Srinivasu B.Y., Mitra G., Muralidharan M., Srivastava D., Pinto J., Thankachan P., Suresh S., Shet A., Rao S., Ravikumar G., et al. Beneficiary effect of nanosizing ferric pyrophosphate as food fortificant in iron deficiency anemia: Evaluation of bioavailability, toxicity and plasma biomarker. RSC Adv. 2015;5:61678–61687. doi: 10.1039/C5RA07724A. DOI
Salaheldin T.A., Regheb E.M. In-Vivo nutritional and toxicological evaluation of nano iron fortified biscuits as food supplement for iron deficient anemia. J. Nanomed. Res. 2016;3:00049. doi: 10.15406/jnmr.2016.03.00049. DOI
Center for Veterinary Medicine Nanotechnology Programs. [(accessed on 1 December 2018)]; Available online: https://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm309682.htm.
Animal & Veterinary. [(accessed on 1 December 2018)]; Available online: https://www.fda.gov/AnimalVeterinary/UCM2005229.
Robinson N.G. Nutraceuticals and Dietary Supplements. MSD Veterinary Manual. [(accessed on 1 December 2018)];2018 Available online: https://www.msdvetmanual.com/management-and-nutrition/complementary-and-alternative-veterinary-medicine/nutraceuticals-and-dietary-supplements.
Valpotic H., Gracner D., Turk R., Duricic D., Vince S., Folnozic I., Lojkic M., Zaja I.Z., Bedrica L., Macesic N., et al. Zeolite clinoptilolite nanoporous feed additive for animals of veterinary importance: Potentials and limitations. Period. Biol. 2017;119:159–172. doi: 10.18054/pb.v119i3.5434. DOI
Swain P.S., Rao S.B.N., Rajendran D., Dominic G., Selvaraju S. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. 2016;2:134–141. doi: 10.1016/j.aninu.2016.06.003. PubMed DOI PMC
Yan R., Zhang L., Yang X., Wen C., Zhou Y. Bioavailability evaluation of zinc-bearing palygorskite as a zinc source for broiler chickens. Appl. Clay Sci. 2016;119:155–160. doi: 10.1016/j.clay.2015.07.027. DOI
Tsai Y.H., Mao S.Y., Li M.Z., Huang J.T., Lien T.F. Effects of nanosize zinc oxide on zinc retention, eggshell quality, immune response and serum parameters of aged laying hens. Anim. Feed Sci. Technol. 2016;213:99–107. doi: 10.1016/j.anifeedsci.2016.01.009. DOI
Chrastinova L., Cobanova K., Chrenkova M., Polacikova M., Foemelova Z., Laukova L., Ondruska A., Pogany S.M., Strompfova V., Mlynekova Z., et al. Effect of dietary zinc supplementation on nutrients digestibility and fermentation characteristics of caecal content in physiological experiment with young rabbits. Slovak J. Anim. Sci. 2016;49:23–31.
Swain P.S., Rajendran D., Rao S.B., Dominic G. Preparation and effects of nano mineral particle feeding in livestock: A review. Vet. World. 2015;8:888–891. doi: 10.14202/vetworld.2015.888-891. PubMed DOI PMC
Debski B. Supplementation of pigs diet with zinc and copper as alternative to conventional antimicrobials. Pol. J. Vet. Sci. 2016;19:917–924. doi: 10.1515/pjvs-2016-0113. PubMed DOI
Yin J., Li X., Li D., Yue T., Fang Q., Ni J., Zhou X., Wu G. Dietary supplementation with zinc oxide stimulates ghrelin secretion from stomach of young pigs. J. Nutr. Biochem. 2009;20:783–790. doi: 10.1016/j.jnutbio.2008.07.007. PubMed DOI
Li X., Yin J., Li D., Chen X., Zang J., Zhou X. Dietary supplementation with zinc oxide increases Igf-I and Igf-I receptor gene expression in the small intestine of weanling piglets. J. Nutr. 2006;136:1786–1791. doi: 10.1093/jn/136.7.1786. PubMed DOI
Zhou W., Kornegay E.T., Lindermann M.D., Swinkels J.W., Welten M.K., Wong E.A. Stimulation of growth by intravenous injection of copper in weanling pigs. J. Anim. Sci. 2014;72:2395–2403. doi: 10.2527/1994.7292395x. PubMed DOI
Jacela J.Y., De Rouchey J.M., Tokach M.D., Goodband R.D., Nelssen J.L., Renter D.G., Dritz S.S. Feed additives for swine: Fact sheets-high dietary levels of copper and zinc for young pigs, and phytase. J. Swine Health Prod. 2010;18:87–92. doi: 10.4148/2378-5977.7068. DOI
Saha U., Fayiga A., Hancock D., Sonon L. Selenium in animal nutrition: Deficiencies in soils and forages, requirements, supplementation and toxicity. Int. J. Appl. Agric. Sci. 2016;2:112–125. doi: 10.11648/j.ijaas.20160206.15. DOI
Hosnedlova B., Kepinska M., Skalickova S., Fernandez C., Ruttkay-Nedecky B., Peng Q.M., Baron M., Melcova M., Opatrilova R., Zidkova J., et al. Nano-selenium and its nanomedicine applications: A critical review. Int. J. Nanomed. 2018;13:2107–2128. doi: 10.2147/IJN.S157541. PubMed DOI PMC
Bai D.P., Lin X.Y., Huang Y.F., Zhang X.F. Theranostics aspects of various nanoparticles in veterinary medicine. Int. J. Mol. Sci. 2018;19:3299. doi: 10.3390/ijms19113299. PubMed DOI PMC
Hill E.K., Li J. Current and future prospects for nanotechnology in animal production. J. Anim. Sci. Biotechnol. 2017;8:26. doi: 10.1186/s40104-017-0157-5. PubMed DOI PMC
Nikonov I.N., Folmanis Y.G., Folmanis G.E., Kovalenko L.V., Laptev G.Y., Egorov I.A., Fisinin V.I., Tananaev I.G. Iron nanoparticles as a food additive for poultry. Dokl. Biol. Sci. 2011;440:328–331. doi: 10.1134/S0012496611050188. PubMed DOI
Izquierdo M.S., Ghrab W., Roo J., Hamre K., Hernandez-Cruz C.M., Bernardini G., Terova G., Saleh R. Organic, inorganic and nanoparticles of Se, Zn and Mn in early weaning diets for gilthead seabream (Sparus aurata; Linnaeus, 1758) Aqua. Res. 2017;48:2852–2867. doi: 10.1111/are.13119. DOI
Chris O.U., Singh N.B., Agarwal A. Nanoparticles as feed supplement on growth behaviour of cultured catfish (Clarias gariepinus) fingerlings. Appl. Mater. Today. 2018;5:9076–9081. doi: 10.1016/j.matpr.2017.10.023. DOI
Zadmajid V., Mohammadi C. Dietary thyme essential oil (Thymus vulgaris) changes serum stress markers, enzyme activity, and hematological parameters in gibel carp (Carassius auratus gibelio) exposed to silver nanoparticles. Iran. J. Fish. Sci. 2017;16:1063–1084.
Rohani S.M., Haghighi M., Moghaddam B.S. Study on nanoparticles of Aloe vera extract on growth performance, survival rate and body composition in Siberian sturgeon (Acipenser baerii) Iran. J. Fish. Sci. 2017;16:457–468.
Alishahi A., Mirvaghefi A., Tehrani M.R., Farahmand H., Koshio S., Dorkoosh F.A., Elsabee M.Z. Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss) Carbohydr. Polym. 2011;86:142–146. doi: 10.1016/j.carbpol.2011.04.028. DOI
Martins A.C.D., Flores J.A., Porto C., Romano L.A., Wasielesky J.W., Caldas S.S., Primel E.G., Kulkamp-Guerreiro I., Monserrat J.M. Antioxidant effects of nanoencapsulated lipoic acid in tissues and on the immune condition in haemolymph of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) Aquac. Nutr. 2018;24:1255–1262. doi: 10.1111/anu.12663. DOI
El Basuini M.F., El-Hais A.M., Dawood M.A.O., Abou-Zeid A.E.S., EL-Damrawy S.Z., Khalafalla M.M.E.S., Koshio S., Ishikawa M., Dossou S. Effects of dietary copper nanoparticles and vitamin C supplementations on growth performance, immune response and stress resistance of red sea bream, Pagrus major. Aquac. Nutr. 2017;23:1329–1340. doi: 10.1111/anu.12508. DOI
Wang H., Zhu H.Y., Wang X.D., Li E.C., Du Z.Y., Qin J.G., Chen L.Q. Comparison of copper bioavailability in copper-methionine, nano-copper oxide and copper sulfate additives in the diet of Russian sturgeon Acipenser gueldenstaedtii. Aquaculture. 2018;482:146–154. doi: 10.1016/j.aquaculture.2017.09.037. DOI
Kumar N., Krishnani K.K., Gupta S.K., Sharma R., Baitha R., Singh D.K., Singh N.P. Immuno-protective role of biologically synthesized dietary selenium nanoparticles against multiple stressors in Pangasinodon hypophthalrnus. Fish. Shellfish Immunol. 2018;78:289–298. PubMed
Anjugam M., Vaseeharan B., Iswarya A., Gobi N., Divya M., Thangaraj M.P., Elumalai P. Effect of β-1, 3 glucan binding protein based zinc oxide nanoparticles supplemented diet on immune response and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila. Fish. Shellfish Immunol. 2018;76:247–259. doi: 10.1016/j.fsi.2018.03.012. PubMed DOI
Shaphar Z., Johari S.A. Effects of dietary organic, inorganic, and nanoparticulate zinc on rainbow trout, Oncorhynchus mykiss larvae. Biol. Trace Elem. Res. 2018 doi: 10.1007/s12011-018-1563-z. in press. PubMed DOI
Saffari S., Keyvanshokooh S., Zakeri M., Johari S.A., Pasha-Zanoosi H., Mozanzadeh M.T. Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hemato-immunological, and serum biochemical parameters of common carp (Cyprinus carpio) Fish. Physiol. Biochem. 2018;44:1087–1097. doi: 10.1007/s10695-018-0496-y. PubMed DOI
Zhou X.X., Wang Y.B., Gu Q., Li W.F. Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio) Aquaculture. 2009;291:78–81. doi: 10.1016/j.aquaculture.2009.03.007. DOI
Khan K.U., Zuberi A., Nazir S., Fernandes J.B.K., Jamil Z., Sarwar H. Effects of dietary selenium nanoparticles on physiological and biochemical aspects of juvenile Tor putitora. Turk. J. Zool. 2016;40:704–712. doi: 10.3906/zoo-1510-5. DOI
Qin F.J., Shi M.M., Yuan H.X., Yuan L.X., Lu W.H., Zhang J., Tong J., Song X.H. Dietary nano-selenium relieves hypoxia stress and, improves immunity and disease resistance in the Chinese mitten crab (Eriocheir sinensis) Fish. Shellfish Immunol. 2016;54:481–488. doi: 10.1016/j.fsi.2016.04.131. PubMed DOI
Naderi M., Keyvanshokooh S., Salati A.P., Ghaedi A. Combined or individual effects of dietary vitamin E and selenium nanoparticles on humoral immune status and serum parameters of rainbow trout (Oncorhynchus mykiss) under high stocking density. Aquaculture. 2017;474:40–47. doi: 10.1016/j.aquaculture.2017.03.036. DOI
Kumar N., Krishnani K.K., Singh N.P. Effect of dietary zinc-nanoparticles on growth performance, anti-oxidative and immunological status of fish reared under multiple stressors. Biol. Trace Elem. Res. 2018;186:267–278. doi: 10.1007/s12011-018-1285-2. PubMed DOI
Gangadoo S., Stanley D., Hughes R.J., Moore R.J., Chapman J. Nanoparticles in feed: Progress and prospects in poultry research. Trends Food Sci. Technol. 2016;58:115–126. doi: 10.1016/j.tifs.2016.10.013. DOI
Song Z.G., Lv J.D., Sheikhahmadi A., Uerlings J., Everaert N. Attenuating effect of zinc and vitamin E on the intestinal oxidative stress induced by silver nanoparticles in broiler chickens. Biol. Trace Elem. Res. 2017;180:306–313. doi: 10.1007/s12011-017-1016-0. PubMed DOI
Sawosz F., Pineda L., Hotowy A., Jaworski S., Prasek M., Sawosz E., Chwalibog A. Nano-nutrition of chicken embryos. The effect of silver nanoparticles and ATP on expression of chosen genes involved in myogenesis. Arch. Anim. Nutr. 2013;67:347–355. doi: 10.1080/1745039X.2013.830520. PubMed DOI
Scott A., Vadalasetty K.P., Lukasiewicz M., Jaworski S., Wierzbicki M., Chwalibog A., Sawosz E. Effect of different levels of copper nanoparticles and copper sulphate on performance, metabolism and blood biochemical profiles in broiler chicken. J. Anim. Physiol. Anim. Nutr. (Berl.) 2018;102:E364–E373. doi: 10.1111/jpn.12754. PubMed DOI
Ognik K., Sembratowicz I., Cholewinska E., Jankowski J., Kozlowski K., Juskiewicz J., Zdunczyk Z. The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Anim. Sci. J. 2018;89:579–588. doi: 10.1111/asj.12956. PubMed DOI
Joshua P.P., Valli C., Balakrishnan V. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Vet. World. 2016;9:287–294. doi: 10.14202/vetworld.2016.287-294. PubMed DOI PMC
Abedini M., Shariatmadari F., Torshizi M.A.K., Ahmadi H. Effects of zinc oxide nanoparticles on the egg quality, immune response, zinc retention, and blood parameters of laying hens in the late phase of production. J. Anim. Physiol. Anim. Nutr. (Berl.) 2018;102:736–745. doi: 10.1111/jpn.12871. PubMed DOI
Mao S.Y., Lien T.F. Effects of nanosized zinc oxide and -polyglutamic acid on eggshell quality and serum parameters of aged laying hens. Arch. Anim. Nutr. 2017;71:373. doi: 10.1080/1745039X.2017.1355600. PubMed DOI
Cai S.J., Wu C.X., Gong L.M., Song T., Wu H., Zhang L.Y. Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poultry Sci. 2012;91:2532–2539. doi: 10.3382/ps.2012-02160. PubMed DOI
Boostani A., Sadeghi A.A., Mousavi S.N., Chamani M., Kashan N. The effects of organic, inorganic, and nano-selenium on blood attributes in broiler chickens exposed to oxidative stress. Acta Sci. Vet. 2015;43:1264.
Ahmadi M., Ahmadian A., Seidavi A.R. Effect of different levels of nano-selenium on performance, blood parameters, immunity and carcass characteristics of broiler chickens. Poult. Sci. J. 2018;6:99–108.
Rahmatollah D., Farzinpour A., Vaziry A., Sadeghi G. Effect of replacing dietary FeSO4 with cysteine-coated Fe3O4 nanoparticles on quails. Ital. J. Anim. Sci. 2018;17:121–127. doi: 10.1080/1828051X.2017.1345662. DOI
Lin Y.C., Huang J.T., Li M.Z., Cheng C.Y., Lien T.F. Effects of supplemental nanoparticle trivalent chromium on the nutrient utilization, growth performance and serum traits of broilers. J. Anim. Physiol. Anim. Nutr. (Berl.) 2015;99:59–65. doi: 10.1111/jpn.12215. PubMed DOI
Xia T., Lai W.Q., Han M.M., Han M., Ma X., Zhang L.Y. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget. 2017;8:64878–64891. doi: 10.18632/oncotarget.17612. PubMed DOI PMC
Li M.Z., Huang J.T., Tsai Y.H., Mao S.Y., Fu C.M., Lien T.F. Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Anim. Sci. J. 2016;87:1379–1385. doi: 10.1111/asj.12579. PubMed DOI
Kosla T., Lasocka I., Skibniewska E.M., Kolnierzak M., Skibniewski M. Trivalent chromium (Cr III) as a trace element essential for animals and humans. Med. Weter. 2018;74:560–567.
Hung A.T., Leury B.J., Sabin M.A., Collins C.L., Dunshea F.R. Dietary nano-chromium tripicolinate increases feed intake and decreases plasma cortisol in finisher gilts during summer. Trop. Anim. Health Prod. 2014;46:1483–1489. doi: 10.1007/s11250-014-0673-7. PubMed DOI
Wang M.Q., Wang C., Du Y.J., Li H., Tao W.J., Ye S.S., He Y.D., Chen S.Y. Effects of chromium-loaded chitosan nanoparticles on growth, carcass characteristics, pork quality, and lipid metabolism in finishing pigs. Livest. Sci. 2014;161:123–129. doi: 10.1016/j.livsci.2013.12.029. DOI
Wang M.Q., Xu Z.R., Zha L.Y., Lindemann M.D. Effects of chromium nanocomposite supplementation on blood metabolites, endocrine parameters and immune traits in finishing pigs. Anim. Feed Sci. Technol. 2007;139:69–80. doi: 10.1016/j.anifeedsci.2006.12.004. DOI
Duffy C., O’Riordan D., O’Sullivan M., Jacquier J.C. In vitro evaluation of chitosan copper chelate gels as a multimicronutrient feed additive for cattle. J. Sci. Food Agric. 2018;98:4177–4183. doi: 10.1002/jsfa.8939. PubMed DOI
Kojouri G.A., Jahanabadi S., Shakibaie M., Ahadi A.M., Shahverdi A.R. Effect of selenium supplementation with sodium selenite and selenium nanoparticles on iron homeostasis and transferrin gene expression in sheep: A preliminary study. Res. Vet. Sci. 2012;93:275–278. doi: 10.1016/j.rvsc.2011.07.029. PubMed DOI
Shi L.G., Xun W.J., Yue W.B., Zhang C.X., Ren Y.S., Liu Q.A., Wang Q.A., Shi L. Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep. Anim. Feed Sci. Technol. 2011;163:136–142. doi: 10.1016/j.anifeedsci.2010.10.016. DOI
EI-Sherbiny M., Cieslak A., Szczechowiak J., Kolodziejski P., Szulc P., Szumacher-Strabel M. Effect of nanoemulsified oils addition on rumen fermentation and fatty acid proportion in a rumen simulation technique. J. Anim. Feed Sci. 2016;25:116–124. doi: 10.22358/jafs/65571/2016. DOI
Refaie A.M., Ghazal M.N., Easa F.M., Barakat S.A., Morsy W.A., Younan G.E., Eisa W.H. Nano-copper as a new growth promoter in the diet of growing New Zealand white rabbits. Egypt. J. Rabbit Sci. 2015;25:39–57.
Hassan F.A.M., Mahmoud R., El-Araby I.E. Growth performance, serum biochemical, economic evaluation and IL6 gene expression in growing rabbits fed diets supplemented with zinc nanoparticles. Zagazig Vet. J. 2017;45:238–249. doi: 10.21608/zvjz.2017.7949. DOI
Ismail H.T.H., El-Araby I.E. Effect of dietary zinc oxide nanoparticles supplementation on biochemical, hematological and genotoxucity parameters in rabbits. Int. J. Curr. Adv. Res. 2017;6:2108–2115.
Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems
Advances in Nanostructures for Antimicrobial Therapy
Advances in Use of Nanomaterials for Musculoskeletal Regeneration
Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes
Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems
Potential of Nanonutraceuticals in Increasing Immunity
Graphenic Materials for Biomedical Applications