Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood-brain barrier
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26075264
PubMed Central
PMC4449887
DOI
10.1155/2015/812673
Knihovny.cz E-zdroje
- MeSH
- hematoencefalická bariéra metabolismus MeSH
- krysa rodu Rattus MeSH
- nanočástice chemie MeSH
- nootropní látky * chemie farmakokinetika farmakologie MeSH
- nosiče léků * chemie farmakokinetika farmakologie MeSH
- oxid křemičitý * chemie farmakokinetika farmakologie MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nootropní látky * MeSH
- nosiče léků * MeSH
- oxid křemičitý * MeSH
The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain.
Zobrazit více v PubMed
Roth H. J., Fenner H. Arzneistoffe. 3rd. Stuttgart, Germany: Deutscher Apotheker; 2000.
Abraham D. J., Rotella D. P. Burger's Medicinal Chemistry, Drug Discovery and Development. 7th. New York, NY, USA: Wiley; 2010.
Alavijeh M. S., Chishty M., Qaiser M. Z., Palmer A. M. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx. 2005;2(4):554–571. doi: 10.1602/neurorx.2.4.554. PubMed DOI PMC
Abbott N. J., Patabendige A. A. K., Dolman D. E. M., Yusof S. R., Begley D. J. Structure and function of the blood-brain barrier. Neurobiology of Disease. 2010;37(1):13–25. doi: 10.1016/j.nbd.2009.07.030. PubMed DOI
Passeleu-Le Bourdonnec C., Carrupt P.-A., Scherrmann J. M., Martel S. Methodologies to assess drug permeation through the blood-brain barrier for pharmaceutical research. Pharmaceutical Research. 2013;30(11):2729–2756. doi: 10.1007/s11095-013-1119-z. PubMed DOI
Abbott N. J., Rönnbäck L., Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience. 2006;7(1):41–53. doi: 10.1038/nrn1824. PubMed DOI
Lu C.-T., Zhao Y.-Z., Wong H. L., Cai J., Peng L., Tian X.-Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. International Journal of Nanomedicine. 2014;9(1):2241–2257. doi: 10.2147/IJN.S61288. PubMed DOI PMC
Yang Z., Liu Z. W., Allaker R. P., et al. A review of nanoparticle functionality and toxicity on the central nervous system. The Journal of the Royal Society Interface. 2010;7(supplement 4):S411–S422. doi: 10.1098/rsif.2010.0158.focus. PubMed DOI PMC
Wong H. L., Wu X. Y., Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Advanced Drug Delivery Reviews. 2012;64(7):686–700. doi: 10.1016/j.addr.2011.10.007. PubMed DOI
Bhaskar S., Tian F., Stoeger T., et al. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging. Particle and Fibre Toxicology. 2010;7, article 3:25. doi: 10.1186/1743-8977-7-3. PubMed DOI PMC
Simko M., Mattsson M.-O. Interactions between nanosized materials and the brain. Current Medicinal Chemistry. 2014;21(37):4200–4214. doi: 10.2174/0929867321666140716100449. PubMed DOI PMC
Bitar A., Ahmad N. M., Fessi H., Elaissari A. Silica-based nanoparticles for biomedical applications. Drug Discovery Today. 2012;17(19-20):1147–1154. doi: 10.1016/j.drudis.2012.06.014. PubMed DOI
Nehoff H., Parayath N. N., Domanovitch L., Taurin S., Greish K. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. International Journal of Nanomedicine. 2014;9(1):2539–2555. doi: 10.2147/ijn.s47129. PubMed DOI PMC
Liao Y. T., Liu C. H., Yu J., Wu K. C. W. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres. International Journal of Nanomedicine. 2014;9:2767–2778. doi: 10.2147/ijn.s60171. PubMed DOI PMC
Marzaioli V., Aguilar-Pimentel J. A., Weichenmeier I., et al. Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties. International Journal of Nanomedicine. 2014;9:2815–2832. PubMed PMC
Tang L., Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today. 2013;8(3):290–312. doi: 10.1016/j.nantod.2013.04.007. PubMed DOI PMC
Vaculikova E., Placha D., Jampílek J. Toxicology of drug nanocarriers. Chemické Listy. 2015;109(5)
Costantino L., Tosi G., Ruozi B., Bondioli L., Vandelli M. A., Forni F. Colloidal systems for CNS drug delivery. In: Hari S. S., editor. Progress in Brain Research Nanoneuroscience and Nanoneuropharmacology. Elsevier; 2009. pp. 35–69. PubMed
Wang Y., Zhao Q., Han N., et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine. 2015;11(2):313–327. doi: 10.1016/j.nano.2014.09.014. PubMed DOI
Liu D., Lin B., Shao W., Zhu Z., Ji T., Yang C. In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier. ACS Applied Materials and Interfaces. 2014;6(3):2131–2136. doi: 10.1021/am405219u. PubMed DOI
Ku S., Yan F., Wang Y., Sun Y., Yang N., Ye L. The blood-brain barrier penetration and distribution of PEGylated fluorescein-doped magnetic silica nanoparticles in rat brain. Biochemical and Biophysical Research Communications. 2010;394(4):871–876. doi: 10.1016/j.bbrc.2010.03.006. PubMed DOI
Xu H., Yan F., Monson E. E., Kopelman R. Room-temperature preparation and characterization of poly(ethylene glycol)-coated silica nanoparticles for biomedical applications. Journal of Biomedical Materials Research: Part A. 2003;66(4):870–879. PubMed
Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid And Interface Science. 1968;26(1):62–69. doi: 10.1016/0021-9797(68)90272-5. DOI
Xu H., Aylott J. W., Kopelman R., Miller T. J., Philbert M. A. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Analytical Chemistry. 2001;73(17):4124–4133. doi: 10.1021/ac0102718. PubMed DOI
Tang W., Xu H., Kopelman R., Philbert M. A. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochemistry and Photobiology. 2005;81(2):242–249. doi: 10.1111/j.1751-1097.2005.tb00181.x. PubMed DOI
Takasato Y., Rapoport S. I., Smith Q. R. An in situ brain perfusion technique to study cerebrovascular transport in the rat. The American Journal of Physiology. 1984;247(3):H484–H493. PubMed
Allen D. D., Oki J., Smith Q. R. An update on the in situ brain perfusion technique: simple, faster, better. Pharmacological Research. 1997;14:p. s337.
Smith R. Q., Allen D. D. In situ brain perfusion technique. In: Nag S., editor. Methods in Molecular Medicine—The Blood-Brain Barrier: Biology and Research Protocols. Vol. 89. Totowa, NJ, USA: Humana Press; 2003. pp. 209–218. PubMed
Kuneš M., Květina J., Kubant P., Maláková J., Herout V., Svoboda Z. Influence of methotrexate and L-carnitine on transintestinal transport of model substances (the rat small intestine in situ perfusion) Chemicke Listy. 2007;101(14):s209–s211.
Kuneš M., Květina J., Svoboda Z., Herout V. Study of the mechanisms of intestinal absorption of xenobiotics using in situ perfusion of rat intestine. Biologia. 2005;60(17):s89–s92.
Shimizu K., del Amo Y., Brzezinski M. A., Stucky G. D., Morse D. E. A novel fluorescent silica tracer for biological silicification studies. Chemistry and Biology. 2001;8(11):1051–1060. doi: 10.1016/s1074-5521(01)00072-2. PubMed DOI
Swanson S. J., Bethke P. C., Jones R. L. Barley aleurone cells contain two types of vacuoles: characterization of lytic organelles by use of fluorescent probes. Plant Cell. 1998;10(5):685–698. doi: 10.1105/tpc.10.5.685. PubMed DOI PMC
Znachor P., Nedoma J., Rychtecký P. Kinetics of glucose stimulatory effect on silica deposition and growth of natural populations of Fragilaria crotonensis. Phycological Research. 2011;59(2):123–128. doi: 10.1111/j.1440-1835.2011.00609.x. DOI
Meyer V. R. Chromatography Practical High-Performance Liquid Chromatography. 5th. Chichester, UK: John Wiley & Sons; 2010. Adsorption chromatography: normal-phase; pp. 159–172.
Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes