Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood-brain barrier

. 2015 ; 2015 () : 812673. [epub] 20150517

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26075264

The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain.

Zobrazit více v PubMed

Roth H. J., Fenner H. Arzneistoffe. 3rd. Stuttgart, Germany: Deutscher Apotheker; 2000.

Abraham D. J., Rotella D. P. Burger's Medicinal Chemistry, Drug Discovery and Development. 7th. New York, NY, USA: Wiley; 2010.

Alavijeh M. S., Chishty M., Qaiser M. Z., Palmer A. M. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx. 2005;2(4):554–571. doi: 10.1602/neurorx.2.4.554. PubMed DOI PMC

Abbott N. J., Patabendige A. A. K., Dolman D. E. M., Yusof S. R., Begley D. J. Structure and function of the blood-brain barrier. Neurobiology of Disease. 2010;37(1):13–25. doi: 10.1016/j.nbd.2009.07.030. PubMed DOI

Passeleu-Le Bourdonnec C., Carrupt P.-A., Scherrmann J. M., Martel S. Methodologies to assess drug permeation through the blood-brain barrier for pharmaceutical research. Pharmaceutical Research. 2013;30(11):2729–2756. doi: 10.1007/s11095-013-1119-z. PubMed DOI

Abbott N. J., Rönnbäck L., Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience. 2006;7(1):41–53. doi: 10.1038/nrn1824. PubMed DOI

Lu C.-T., Zhao Y.-Z., Wong H. L., Cai J., Peng L., Tian X.-Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. International Journal of Nanomedicine. 2014;9(1):2241–2257. doi: 10.2147/IJN.S61288. PubMed DOI PMC

Yang Z., Liu Z. W., Allaker R. P., et al. A review of nanoparticle functionality and toxicity on the central nervous system. The Journal of the Royal Society Interface. 2010;7(supplement 4):S411–S422. doi: 10.1098/rsif.2010.0158.focus. PubMed DOI PMC

Wong H. L., Wu X. Y., Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Advanced Drug Delivery Reviews. 2012;64(7):686–700. doi: 10.1016/j.addr.2011.10.007. PubMed DOI

Bhaskar S., Tian F., Stoeger T., et al. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging. Particle and Fibre Toxicology. 2010;7, article 3:25. doi: 10.1186/1743-8977-7-3. PubMed DOI PMC

Simko M., Mattsson M.-O. Interactions between nanosized materials and the brain. Current Medicinal Chemistry. 2014;21(37):4200–4214. doi: 10.2174/0929867321666140716100449. PubMed DOI PMC

Bitar A., Ahmad N. M., Fessi H., Elaissari A. Silica-based nanoparticles for biomedical applications. Drug Discovery Today. 2012;17(19-20):1147–1154. doi: 10.1016/j.drudis.2012.06.014. PubMed DOI

Nehoff H., Parayath N. N., Domanovitch L., Taurin S., Greish K. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. International Journal of Nanomedicine. 2014;9(1):2539–2555. doi: 10.2147/ijn.s47129. PubMed DOI PMC

Liao Y. T., Liu C. H., Yu J., Wu K. C. W. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres. International Journal of Nanomedicine. 2014;9:2767–2778. doi: 10.2147/ijn.s60171. PubMed DOI PMC

Marzaioli V., Aguilar-Pimentel J. A., Weichenmeier I., et al. Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties. International Journal of Nanomedicine. 2014;9:2815–2832. PubMed PMC

Tang L., Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today. 2013;8(3):290–312. doi: 10.1016/j.nantod.2013.04.007. PubMed DOI PMC

Vaculikova E., Placha D., Jampílek J. Toxicology of drug nanocarriers. Chemické Listy. 2015;109(5)

Costantino L., Tosi G., Ruozi B., Bondioli L., Vandelli M. A., Forni F. Colloidal systems for CNS drug delivery. In: Hari S. S., editor. Progress in Brain Research Nanoneuroscience and Nanoneuropharmacology. Elsevier; 2009. pp. 35–69. PubMed

Wang Y., Zhao Q., Han N., et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine. 2015;11(2):313–327. doi: 10.1016/j.nano.2014.09.014. PubMed DOI

Liu D., Lin B., Shao W., Zhu Z., Ji T., Yang C. In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier. ACS Applied Materials and Interfaces. 2014;6(3):2131–2136. doi: 10.1021/am405219u. PubMed DOI

Ku S., Yan F., Wang Y., Sun Y., Yang N., Ye L. The blood-brain barrier penetration and distribution of PEGylated fluorescein-doped magnetic silica nanoparticles in rat brain. Biochemical and Biophysical Research Communications. 2010;394(4):871–876. doi: 10.1016/j.bbrc.2010.03.006. PubMed DOI

Xu H., Yan F., Monson E. E., Kopelman R. Room-temperature preparation and characterization of poly(ethylene glycol)-coated silica nanoparticles for biomedical applications. Journal of Biomedical Materials Research: Part A. 2003;66(4):870–879. PubMed

Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid And Interface Science. 1968;26(1):62–69. doi: 10.1016/0021-9797(68)90272-5. DOI

Xu H., Aylott J. W., Kopelman R., Miller T. J., Philbert M. A. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Analytical Chemistry. 2001;73(17):4124–4133. doi: 10.1021/ac0102718. PubMed DOI

Tang W., Xu H., Kopelman R., Philbert M. A. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochemistry and Photobiology. 2005;81(2):242–249. doi: 10.1111/j.1751-1097.2005.tb00181.x. PubMed DOI

Takasato Y., Rapoport S. I., Smith Q. R. An in situ brain perfusion technique to study cerebrovascular transport in the rat. The American Journal of Physiology. 1984;247(3):H484–H493. PubMed

Allen D. D., Oki J., Smith Q. R. An update on the in situ brain perfusion technique: simple, faster, better. Pharmacological Research. 1997;14:p. s337.

Smith R. Q., Allen D. D. In situ brain perfusion technique. In: Nag S., editor. Methods in Molecular Medicine—The Blood-Brain Barrier: Biology and Research Protocols. Vol. 89. Totowa, NJ, USA: Humana Press; 2003. pp. 209–218. PubMed

Kuneš M., Květina J., Kubant P., Maláková J., Herout V., Svoboda Z. Influence of methotrexate and L-carnitine on transintestinal transport of model substances (the rat small intestine in situ perfusion) Chemicke Listy. 2007;101(14):s209–s211.

Kuneš M., Květina J., Svoboda Z., Herout V. Study of the mechanisms of intestinal absorption of xenobiotics using in situ perfusion of rat intestine. Biologia. 2005;60(17):s89–s92.

Shimizu K., del Amo Y., Brzezinski M. A., Stucky G. D., Morse D. E. A novel fluorescent silica tracer for biological silicification studies. Chemistry and Biology. 2001;8(11):1051–1060. doi: 10.1016/s1074-5521(01)00072-2. PubMed DOI

Swanson S. J., Bethke P. C., Jones R. L. Barley aleurone cells contain two types of vacuoles: characterization of lytic organelles by use of fluorescent probes. Plant Cell. 1998;10(5):685–698. doi: 10.1105/tpc.10.5.685. PubMed DOI PMC

Znachor P., Nedoma J., Rychtecký P. Kinetics of glucose stimulatory effect on silica deposition and growth of natural populations of Fragilaria crotonensis. Phycological Research. 2011;59(2):123–128. doi: 10.1111/j.1440-1835.2011.00609.x. DOI

Meyer V. R. Chromatography Practical High-Performance Liquid Chromatography. 5th. Chichester, UK: John Wiley & Sons; 2010. Adsorption chromatography: normal-phase; pp. 159–172.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes

. 2019 Feb 19 ; 9 (2) : . [epub] 20190219

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...