Preparation of Hydrochlorothiazide Nanoparticles for Solubility Enhancement
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
27490530
PubMed Central
PMC6274297
DOI
10.3390/molecules21081005
PII: molecules21081005
Knihovny.cz E-resources
- Keywords
- dynamic light scattering, hydrochlorothiazide, infrared spectroscopy, nanoparticles, scanning electron microscopy, solubility,
- MeSH
- Dynamic Light Scattering MeSH
- Hydrochlorothiazide chemical synthesis chemistry MeSH
- Molecular Structure MeSH
- Nanoparticles chemistry MeSH
- Surface-Active Agents chemistry MeSH
- Drug Compounding methods MeSH
- Solvents chemistry MeSH
- Solubility MeSH
- Particle Size MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Hydrochlorothiazide MeSH
- Surface-Active Agents MeSH
- Solvents MeSH
Nanoparticles can be considered as a useful tool for improving properties of poorly soluble active ingredients. Hydrochlorothiazide (Class IV of the Biopharmaceutical Classification System) was chosen as a model compound. Antisolvent precipitation-solvent evaporation and emulsion solvent evaporation methods were used for preparation of 18 samples containing hydrochlorothiazide nanoparticles. Water solutions of surfactants sodium dodecyl sulfate, Tween 80 and carboxymethyl dextran were used in mass concentrations of 1%, 3% and 5%. Acetone and dichloromethane were used as solvents of the model compound. The particle size of the prepared samples was measured by dynamic light scattering. The selected sample of hydrochlorothiazide nanoparticles stabilized with carboxymethyl dextran sodium salt with particle size 2.6 nm was characterized additionally by Fourier transform mid-infrared spectroscopy and scanning electron microscopy. It was found that the solubility of this sample was 6.5-fold higher than that of bulk hydrochlorothiazide.
See more in PubMed
Drug bank-Hydrochlorothiazide. [(accessed on 25 May 2016)]. Available online: http://www.drugbank.ca/drugs/DB00999.
Drugs.com-Know More. Be Sure. [(accessed on 21 May 2016)]. Available online: http://www.drugs.com/sfx/hydrochlorothiazide-side-effects.html.
Sica D.A. Diuretic-related side effects: Development and treatment. J. Clin. Hypertens. 2004;9:532–540. doi: 10.1111/j.1524-6175.2004.03789.x. PubMed DOI PMC
Elliott W.J., Meyer P.M. Incident diabetes in clinical trial of antihypertensive drugs: A network meta-analysis. Lancet. 2007;369:201–207. doi: 10.1016/S0140-6736(07)60108-1. PubMed DOI
Duarte J.D., Cooper-DeHoff R.M. Mechanism for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics. Expert Rev. Cardiovasc. Ther. 2010;8:793–802. doi: 10.1586/erc.10.27. PubMed DOI PMC
Lakshman M.R., Reda D.J., Materson B.J., Cushman W.C., Fres E.D. Diuretics and beta-blockers do not have adverse effects at 1 year on plasma lipid and lipoprotein profiles in men with hypertension. Arch. Intern. Med. 1999;159:551–558. doi: 10.1001/archinte.159.6.551. PubMed DOI
Lindholm L.H., Persson M., Alaupovic P., Carlberg B., Svensson A., Samuelsson O. Metabolic outcome during 1 year in newly detected hypertensives: Results of the Antihypertensive Treatment and Lipid Profile in a North of Sweden Efficacy Evaluation (ALPINE study) J. Hypertens. 2003;21:1563–1574. doi: 10.1097/00004872-200308000-00022. PubMed DOI
Ellison D.H., Loffing J. Thiazides effects and side effects: Insight from molecular genetics. Hypertension. 2009;54:196–202. doi: 10.1161/HYPERTENSIONAHA.109.129171. PubMed DOI PMC
Wilczewska A.Z., Niemirowicz K., Markiewicz K.H., Car H. Nanoparticles as a drug delivery systems. Pharmacol. Rep. 2012;64:1020–1037. doi: 10.1016/S1734-1140(12)70901-5. PubMed DOI
U.S. Food and Drug Administration. [(accessed on 20 May 2016)]; Available online: http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm128219.htm.
Reddy B.B.K., Karunakar A. Biopharmaceutics classification system: A regulatory approach. Dissol. Technol. 2011;3:31–37. doi: 10.14227/DT180111P31. DOI
Nekkanti V., Vabalaboina V., Pillai R. Drug nanoparticles—An overview. In: Hashim A.A., editor. The Delivery of Nanoparticles. InTech; Rieka, Croatia: 2012. pp. 111–132.
Chadha R., Bhandari S., Kataria D., Gupta S., Jain D.S. Exploring the potential of lecithin/chitosan nanoparticles in enhancement of antihypertensive efficacy of hydrochlorothiazide. J. Microencapsul. 2012;29:805–812. doi: 10.3109/02652048.2012.692399. PubMed DOI
Arora A., Shafiq N., Jain S., Khuller G.K., Sharma S., Malhotra S. Development of sustained release “NanoFDC (fixed dose combination)” for hypertension—An experimental study. PLoS ONE. 2015;10:e0128208. doi: 10.1371/journal.pone.0128208. PubMed DOI PMC
Chourasiya V., Bohrey S., Pandey A. Hydrochlorothiazide containing PLGA nanoparticles: Design, characterization, in-vitro drug release and release kinetic study. Polym. Sci. Ser. B. 2015;57:645–653. doi: 10.1134/S1560090415060020. DOI
Mokale V., Khatumaria B., Verma U., Shimpi N., Naik J., Mishra S. Formulation and development of nanoparticles for quick and complete release of hydrochlorothiazide by nanonization technique. Micro Nanosyst. 2016;6:109–117. doi: 10.2174/187640290602141127114854. DOI
Vaculikova E., Placha D., Cech-Barabaszova K., Jampilek J. Cimetidine nanoparticles study. Adv. Sci. Eng. Med. 2014;6:477–481. doi: 10.1166/asem.2014.1529. DOI
Vaculikova E., Placha D., Pisarcik M., Peikertova P., Dedkova K., Devinsky F., Jampilek J. Preparation of risedronate nanoparticles by solvent evaporation technique. Molecules. 2014;19:17848–17861. doi: 10.3390/molecules191117848. PubMed DOI PMC
Sanggu K., Waikiong N., Yuancai D., Surajit D., Tan R.B.H. Preparation and physicochemical characterization of trans-resveratrol nanoparticle by temperature-controlled antisolvent precipitation. J. Food Eng. 2012;108:37–44.
Chin S.F., Pang S.C., Tay S.H. Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr. Polym. 2011;86:1817–1819. doi: 10.1016/j.carbpol.2011.07.012. DOI
Thorat A.A., Dalvi S.V. Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: Recent developments and future perspective. Chem. Eng. J. 2012;181/182:1–34. doi: 10.1016/j.cej.2011.12.044. DOI
Zielinska-Jurek A., Reszczynska J., Grabowska E., Zaleska A. Nanoparticles preparation using microemulsion systems. In: Najjar R., editor. Microemulsions—An Introduction to Properties and Applications. InTech; Rijeka, Croatia: 2012. pp. 229–250.
Lee M., Cho Y.W., Park J.H., Chung H., Jeong S.Y., Choi K., Moon D.H., Kim S.Y., Kim I.S., Kwon I.C. Size control of self-assembled nanoparticles by an emulsion/solvent evaporation method. Colloid Polym. Sci. 2006;284:506–512. doi: 10.1007/s00396-005-1413-3. DOI
Vaculikova E., Grunwaldova V., Kral V., Dohnal J., Jampilek J. Primary investigation of the preparation of nanoparticles by precipitation. Molecules. 2012;17:11067–11078. doi: 10.3390/molecules170911067. PubMed DOI PMC
Vaculikova E., Grunwaldova V., Kral V., Dohnal J., Jampilek J. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules. 2012;17:13221–13234. doi: 10.3390/molecules171113221. PubMed DOI PMC
Merkus H.G. Particle Size Measurements: Fundamentals, Practice, Quality. Springer Science + Business Media B.V.; Dordrecht, The Netherlands: 2009.
Win K.Y., Feng S.S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–2722. doi: 10.1016/j.biomaterials.2004.07.050. PubMed DOI
Malvern Instruments Ltd: Dynamic Light Scattering Common Terms Defined. [(accessed on 25 May 2016)]. Available online: http://www.biophysics.bioc.cam.ac.uk/wp-content/uploads/2011/02/DLS_Terms_defined_Malvern.pdf.
Freytag T., Dashevsky A., Tillman L., Hardee G.E., Bodmeier R. Improvement of the encapsulation efficiency of oligonucleotide-containing biodegradable microspheres. J. Control. Release. 2000;69:197–207. doi: 10.1016/S0168-3659(00)00299-6. PubMed DOI
Sivasubramanian M., Thambi T., Deepagan V.G., Saravanakumar G., Ko H., Kang Y.M., Park J.H. Carboxymethyl dextran-cyclodextrin conjugate as the carrier of doxorubicin. J. Nanosci. Nanotechnol. 2013;13:7271–7278. doi: 10.1166/jnn.2013.8091. PubMed DOI
Thambi T., You D.G., Han H.S., Deepagan V.G., Jeon S.M., Suh Y.D., Choi K.Y., Kim K., Kwon I.C., Yi G.R., et al. Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery. Adv. Healthc. Mater. 2014;3:1829–1838. doi: 10.1002/adhm.201300691. PubMed DOI
Chen B., Yang J.Z., Wang L.F., Zhang Y.J., Lin X.J. Ifosfamide-loaded poly (lactic-co-glycolic acid) PLGA-dextran polymeric nanoparticles to improve the antitumor efficacy in osteosarcoma. BMC Cancer. 2015;15:752. doi: 10.1186/s12885-015-1735-6. PubMed DOI PMC
Jin B., Zhou X., Li X., Lin W., Chen G., Qiu R. Self-assembled modified soy protein/dextran nanogel induced by ultrasonication as a delivery vehicle for riboflavin. Molecules. 2016;21:282. doi: 10.3390/molecules21030282. PubMed DOI PMC
Yang Q., Pan X. Fabrication and applications of biocompatible graphene oxide a graphene. In: Aliofkhazraei M., Ali N., Milne W.I., Ozkan C.S., Mitura S., Gervasoni J.L., editors. Graphene Science Handbook: Fabrication Methods. CRC Press; Boca Raton, FL, USA: 2016. pp. 125–133.
Huang G., Mei X., Xiao F., Chen X., Tang Q., Peng D. Applications of important polysaccharides in drug delivery. Curr. Pharm. Des. 2015;21:3692–3696. doi: 10.2174/1381612821666150109144613. PubMed DOI
Huang G., Chen Y., Li Y., Huang D., Han J., Yang M. Two important polysaccharides as carriers for drug delivery. Mini Rev. Med. Chem. 2015;15:1103–1109. doi: 10.2174/1389557515666150709115945. PubMed DOI
Vaculikova E., Placha D., Pisarcik M., Jampilek J. Stability study of cimetidine nanoparticles. Adv. Sci. Lett. 2016;22:708–710. doi: 10.1166/asl.2016.6914. DOI
Haynes W.M. CRC Handbook of Chemistry and Physics. 92nd ed. CRC Press; Boca Raton, FL, USA: 2011.
Mana Z., Pellequer Y., Lamprecht A. Oil-in-oil microencapsulation technique with an external perfluorohexane phase. Int. J. Pharm. 2007;338:231–237. doi: 10.1016/j.ijpharm.2007.02.010. PubMed DOI
Beermann B., Groschinsky-Grind M., Rosen A. Absorption, metabolism, and excretion of hydrochlorothiazide. Clin. Pharmacol. Ther. 1976;19:531–537. doi: 10.1002/cpt1976195part1531. PubMed DOI
Ovesen L., Bendtsen F., Tage-Jensen U., Pedersen N.T., Gram B.R., Rune S.J. Intraluminal pH in the stomach, duodenum, and proximal jejunum in normal subjects and patients with exocrine pancreatic insufficiency. Gastroenterology. 1986;90:958–962. doi: 10.1016/0016-5085(86)90873-5. PubMed DOI
Culen M., Rezacova A., Jampilek J., Dohnal J. Designing a dynamic dissolution method: A review of instrumental options and corresponding physiology of stomach and small intestine. J. Pharm. Sci. 2013;102:2995–3017. doi: 10.1002/jps.23494. PubMed DOI
Advances in Use of Nanomaterials for Musculoskeletal Regeneration
Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes
Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes