Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-18-0302
Slovak Research and Development Agency
PubMed
33668271
PubMed Central
PMC7956197
DOI
10.3390/ma14051059
PII: ma14051059
Knihovny.cz E-zdroje
- Klíčová slova
- carbon nanotubes, drug delivery nanosystems, drugs, graphene, graphene oxide, graphene quantum dots, nanoparticles,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.
Institute of Neuroimmunology Slovak Academy of Sciences Dubravska Cesta 9 845 10 Bratislava Slovakia
Zobrazit více v PubMed
Roy J. An Introduction to Pharmaceutical Sciences: Production, Chemistry, Techniques and Technology. Woodhead Publishing & Elsevier; Cambridge, UK: 2011.
Tovey G.D. Pharmaceutical Formulation: The Science and Technology of Dosage Forms. Royal Society of Chemistry; Croydon, UK: 2018.
Buschmann H., Holenz J., Mannhold R., Bachhav Y.G. Innovative Dosage Forms: Design and Development at Early Stage. Wiley-VCH; Wienheim, Germany: 2019.
State Institute for Drug Control—About Drugs, Encyclopedia. [(accessed on 21 January 2021)];2021 Available online: www.olecich.cz. (In Czech)
Tekade R.K. Drug Delivery Systems. Academic Press & Elsevier; London, UK: 2019.
Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. PubMed DOI PMC
Chyzy A., Tomczykowa M., Plonska-Brzezinska M.E. Hydrogels as potential nano-, micro- and macro-scale systems for controlled drug delivery. Materials. 2020;13:188. doi: 10.3390/ma13010188. PubMed DOI PMC
Jampilek J., Kralova K., Campos E.V.R., Fraceto L.F. Bio-Based Nanoemulsion Formulations Applicable in Agriculture, Medicine and Food Industry. In: Prasad R., Kumar V., Kumar M., Choudhary D.K., editors. Nanobiotechnology in Bioformulations. Springer; Cham, Switzerland: 2019. pp. 33–84.
Jampilek J., Kralova K. Application of Nanobioformulations For Controlled Release and Targeted Biodistribution of Drugs. In: Sharma A.K., Keservani R.K., Kesharwani R.K., editors. Nanobiomaterials: Applications in Drug Delivery. CRC Press; Warentown, NJ, USA: 2018. pp. 131–208.
Jampilek J., Kralova K. Nanotechnology Based Formulations for Drug Targeting to Central Nervous System. In: Keservani R.K., Sharma A.K., editors. Nanoparticulate Drug Delivery Systems. Apple Academic Press & CRC Press; Warentown, NJ, USA: 2019. pp. 151–220.
Jampilek J., Kralova K. Recent Advances in Lipid Nanocarriers Applicable in the Fight Against Cancer. In: Grumezescu A.M., editor. Nanoarchitectonics in Biomedicine. Elsevier; Amsterdam, The Netherlands: 2019. pp. 219–294.
Jampilek J., Kralova K. Natural Biopolymeric Nanoformulations for Brain Drug Delivery. In: Keservani R.K., Sharma A.K., Kesharwani R.K., editors. Nanocarriers for Brain Targeting: Principles and Applications. Apple Academic Press & CRC Press; Warentown, NJ, USA: 2020. pp. 131–203.
Calzoni E., Cesaretti A., Polchi A., Di Michele A., Tancini B., Emiliani C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater. 2019;10:4. doi: 10.3390/jfb10010004. PubMed DOI PMC
Fortuni B., Inose T., Ricci M., Fujita Y., Van Zundert I., Masuhara A., Fron E., Mizuno H., Latterini L., Rocha S., et al. Polymeric engineering of nanoparticles for highly efficient multifunctional drug delivery systems. Sci. Rep. 2019;9:2666. doi: 10.1038/s41598-019-39107-3. PubMed DOI PMC
Singh S., Dhawan A., Karhana S., Bhat A., Dinda A.K. Quantum dots: An emerging tool for point-of-care testing. Micromachines. 2020;11:1058. doi: 10.3390/mi11121058. PubMed DOI PMC
Zhao M.X., Zhu B.J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett. 2016;11:207. doi: 10.1186/s11671-016-1394-9. PubMed DOI PMC
Chis A.A., Dobrea C., Morgovan C., Arseniu A.M., Rus L.L., Butuca A., Juncan A.M., Totan M., Vonica-Tincu A.L., Cormos G., et al. Applications and limitations of dendrimers in biomedicine. Molecules. 2020;25:3982. doi: 10.3390/molecules25173982. PubMed DOI PMC
Su S., Kang P.M. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics. 2020;12:837. doi: 10.3390/pharmaceutics12090837. PubMed DOI PMC
Jampilek J., Kralova K. Nano-Antimicrobials: Activity, Benefits and Weaknesses. In: Ficai A., Grumezescu A.M., editors. Nanostructures for Antimicrobial Therapy. Elsevier; Amsterdam, The Netherlands: 2017. pp. 23–54.
Jampilek J., Kralova K. Nanoformulations—Valuable Tool in Therapy of Viral Diseases Attacking Humans and Animals. In: Rai M., Jamil B., editors. Nanotheranostic—Applications and Limitations. Springer Nature; Cham, Switzerland: 2019. pp. 137–178.
Jampilek J., Kralova K. Impact of Nanoparticles on Toxigenic Fungi. In: Rai M., Abd-Elsalam K.A., editors. Nanomycotoxicology—Treating Mycotoxins in the Nano Way. Academic Press & Elsevier; London, UK: 2020. pp. 309–348.
Jampilek J., Kralova K. Nanocomposites: Synergistic Nanotools for Management Mycotoxigenic Fungi. In: Rai M., Abd-Elsalam K.A., editors. Nanomycotoxicology—Treating Mycotoxins in the Nano Way. Academic Press & Elsevier; London, UK: 2020. pp. 349–383.
Jampilek J., Kralova K. Nanoweapons against Tuberculosis. In: Talegaonkar S., Rai M., editors. Nanoformulations in Human Health—Challenges and Approaches. Springer Nature; Cham, Switzerland: 2020. pp. 469–502.
Pentak D., Kozik V., Bak A., Dybal P., Sochanik A., Jampilek J. Methotrexate and cytarabine—Loaded nanocarriers for multidrug cancer therapy. Spectroscopic study. Molecules. 2016;21:1689. doi: 10.3390/molecules21121689. PubMed DOI PMC
Kozik V., Bak A., Pentak D., Hachula B., Pytlakowska K., Rojkiewicz M., Jampilek J., Sieron K., Jazowiecka-Rakus J., Sochanik A. Derivatives of graphene oxide as potential drug carriers. J. Nanosci. Nanotechnol. 2019;19:2489–2492. doi: 10.1166/jnn.2019.15855. PubMed DOI
Placha D., Jampilek J. Graphenic materials for biomedical applications. Nanomaterials. 2019;9:1758. doi: 10.3390/nano9121758. PubMed DOI PMC
Shi Z., Zhou Y., Fan T., Lin Y., Zhang H., Mei L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater. Med. 2020;1:32–47. doi: 10.1016/j.smaim.2020.05.002. DOI
Dhas N., Parekh K., Pandey A., Kudarha R., Mutalik S., Mehta T. Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. J. Control. Release. 2019;308:130–161. doi: 10.1016/j.jconrel.2019.07.016. PubMed DOI
Panwar N., Soehartono A.M., Chan K.K., Zeng S., Xu G., Qu J., Coquet P., Yong K.T., Chen X. Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery. Chem. Rev. 2019;119:9559–9656. doi: 10.1021/acs.chemrev.9b00099. PubMed DOI
Zainal-Abidin M.H., Hayyan M., Ngoh G.C., Wong W.F. From nanoengineering to nanomedicine: A facile route to enhance biocompatibility of graphene as a potential nano-carrier for targeted drug delivery using natural deep eutectic solvents. Chem. Eng. Sci. 2019;195:95–106. doi: 10.1016/j.ces.2018.11.013. DOI
Jendrzejewska I., Knizek K., Kubacki J., Goraus J., Goryczka T., Pietrasik E., Barsova Z., Jampilek J., Witkowska-Kita B. Structure and properties of nano- and polycrystalline Mn-doped CuCr2Se4 obtained by ceramic method and grain reduction. Mater. Res. Bull. 2021;137:111174. doi: 10.1016/j.materresbull.2020.111174. DOI
Vaculikova E., Grunwaldová V., Kral V., Dohnal J., Jampilek J. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules. 2012;17:13221–13234. doi: 10.3390/molecules171113221. PubMed DOI PMC
Vaculikova E., Cernikova A., Placha D., Pisarcik M., Peikertova P., Dedkova K., Devinsky F., Jampilek J. Preparation of hydrochlorothiazide nanoparticles for solubility enhancement. Molecules. 2016;21:1005. doi: 10.3390/molecules21081005. PubMed DOI PMC
Jampilek J., Kos J., Kralova K. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials. 2019;9:296. doi: 10.3390/nano9020296. PubMed DOI PMC
Jampilek J., Kralova K. Potential of nanonutraceuticals in increasing immunity. Nanomaterials. 2020;10:2224. doi: 10.3390/nano10112224. PubMed DOI PMC
Placha D., Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics. 2021;13:642019. doi: 10.3390/pharmaceutics13010064. PubMed DOI PMC
Jampilek J., Kralova K., Novak P., Novak M. In: Nanobiotechnology in Neurodegenerative Diseases. Rai M., Yadav A., editors. Springer Nature; Cham, Switzerland: 2019. pp. 65–138.
Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI
Martinez G., Merinero M., Perez-Aranda M., Perez-Soriano E.M., Ortiz T., Begines B., Alcudia A. Environmental impact of nanoparticles’ application as an emerging technology: A review. Materials. 2021;14:166. doi: 10.3390/ma14010166. PubMed DOI PMC
Canaparo R., Foglietta F., Limongi T., Serpe L. Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials. 2021;14:53. doi: 10.3390/ma14010053. PubMed DOI PMC
Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 2010;624:25–37. PubMed
Clemons T.D., Singh R., Sorolla A., Chaudhari N., Hubbard A., Iyer K.S. Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy. Langmuir. 2018;34:15343–15349. doi: 10.1021/acs.langmuir.8b02946. PubMed DOI
Shukla T., Upmanyu N., Pandey S.P., Sudheesh M.S. Site-Specific Drug Delivery, Targeting, and Gene Therapy. In: Grumezescu A.M., editor. Nanoarchitectonics in Biomedicine. Elsevier; Amsterdam, The Netherlands: 2019. pp. 473–505.
Attia M.F., Anton N., Wallyn J., Omran Z., Vandamme T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019;71:1185–1198. doi: 10.1111/jphp.13098. PubMed DOI
Zhang M., Cheng S., Jin Y., Zhang N., Wang Y. Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics. Clin. Transl. Med. 2021;11:e292. doi: 10.1002/ctm2.292. PubMed DOI PMC
De Sousa M., de Luna L.A.V., Fonseca L.C., Giorgio S., Alves O.L. Folic-acid-functionalized graphene oxide nanocarrier: Synthetic approaches, characterization, drug delivery study, and antitumor screening. ACS Appl. Nano Mater. 2018;1:922–932. doi: 10.1021/acsanm.7b00324. DOI
Sharma H., Mondal S. Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: A promising material in nanomedicine. Int. J. Mol. Sci. 2020;21:6280. doi: 10.3390/ijms21176280. PubMed DOI PMC
Han X.M., Zheng K.W., Wang R.L., Yue S.F., Chen J., Zhao Z.W., Song F., Su Y., Ma Q. Functionalization and optimization-strategy of graphene oxide-based nanomaterials for gene and drug delivery. Am. J. Transl. Res. 2020;12:1515–1534. PubMed PMC
Mahor A., Singh P.P., Bharadwaj P., Sharma N., Yadav S., Rosenholm J.M., Bansal K.K. Carbon-based nanomaterials for delivery of biologicals and therapeutics: A cutting-edge technology. C. 2021;7:19.
Sajjadi M., Nasrollahzadeh M., Jaleh B., Jamalipour Soufi G., Iravani S. Carbon-based nanomaterials for targeted cancer nanotherapy: Recent trends and future prospects. J. Drug Target. 2021 doi: 10.1080/1061186X.2021.1886301. in press. PubMed DOI
Barthelmy D. Mineral Species Containing Carbon. In Mineralogy Database. [(accessed on 20 January 2021)];2021 Available online: http://webmineral.com/chem/Chem-C.shtml#.YAn3SxaLqM8.
Hirsch A. The era of carbon allotropes. Nat. Mater. 2010;9:868–871. doi: 10.1038/nmat2885. PubMed DOI
Nasir S., Hussein M.Z., Zainal Z., Yusof N.A. Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials. 2018;11:295. doi: 10.3390/ma11020295. PubMed DOI PMC
Allotropes of Carbon. Lumen Learning: Portland, OR, USA. [(accessed on 20 January 2021)]; Available online: https://courses.lumenlearning.com/introchem/chapter/allotropes-of-carbon/
The Nobel Prize in Physics 2010. NobelPrize.org. Nobel Media AB. [(accessed on 14 January 2021)];2021 Available online: https://www.nobelprize.org/prizes/physics/2010/summary/
Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009;81:109–162. doi: 10.1103/RevModPhys.81.109. DOI
Marconcini P., Macucci M. The k.p method and its application to graphene, carbon nanotubes and graphene nanoribbons: The Dirac equation. Riv. Nuovo Cim. 2011;34:489–584.
Nurunnabi M., McCarthy J.R. Biomedical Applications of Graphene and 2D Nanomaterials (Micro and Nano Technologies) Elsevier; Amsterdam, The Netherlands: 2019.
Singh R.K., Kumar R., Singh D.P. Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv. 2016;6:64993–65011. doi: 10.1039/C6RA07626B. DOI
Ranjan P., Agrawal S., Sinha A., Rao T.R., Balakrishnan J., Thakur A.D. A low-cost non-explosive synthesis of graphene oxide for scalable applications. Sci. Rep. 2018;8:12007. doi: 10.1038/s41598-018-30613-4. PubMed DOI PMC
Neustroev E.P. Plasma Treatment of Graphene Oxide. In: Kamble G.S., editor. Graphene Oxide Applications and Opportunities. IntechOpen; Rijeka, Croatia: 2018. pp. 7–24.
Shabin M., Hanaa H., Ranwen O., Shasha L., Hongyu M., Xiaofang C., Tam S., Huanting W. Effect of oxygen plasma treatment on the nanofiltration performance of reduced graphene oxide/cellulose nanofiber composite membranes. Green Chem. Eng. 2021 doi: 10.1016/j.gce.2020.12.001. in press. DOI
Etching with Plasma. Diener Electronic, Plasma—Surface—Technology, Ebhausen, Germany. [(accessed on 18 February 2021)]; Available online: https://www.plasma.com/en/etching-with-plasma/?kampagne=1&gclid=Cj0KCQiAvbiBBhD-ARIsAGM48bzt1bCEbT4CqRUWwSqgJWCitReALhY-T5EBVf9B6c5AkWFWNdVxSxUaAkU0EALw_wcB.
Smith A.T., LaChance A.M., Zeng S., Liu B., Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mat. Sci. 2019;1:31–47. doi: 10.1016/j.nanoms.2019.02.004. DOI
Joshi S., Siddiqui R., Sharma P., Kumar R., Verma G., Saini A. Green synthesis of peptide functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity. Sci. Rep. 2020;10:9441. doi: 10.1038/s41598-020-66230-3. PubMed DOI PMC
Kang J., Wei Z.M., Li J.B. Graphyne and its family: Recent theoretical advances. ACS Appl. Mater. Interfaces. 2019;11:2692–2706. doi: 10.1021/acsami.8b03338. PubMed DOI
Gao X., Liu H.B., Wang D., Zhang J. Graphdiyne: Synthesis, properties, and applications. Chem. Soc. Rev. 2019;48:908–936. doi: 10.1039/C8CS00773J. PubMed DOI
Nanowerk: Carbon Nanotubes—What They Are, How They Are Made, What They Are Used For. [(accessed on 21 January 2021)];2021 Available online: https://www.nanowerk.com/nanotechnology/introduction/introduction_to_nanotechnology_22.php.
Foa Torres L.E.F., Roche S., Charlier J.C. Introduction to Graphene-Based Nanomaterials. 2nd ed. Cambridge University Press; Cambridge, UK: 2020.
Takai K., Tsujimura S., Kang F., Inagaki M. Graphene: Preparations, Properties, Applications, and Prospects. Elsevier; Amsterdam, The Netherlands: 2020.
Dimiev A.M., Eigler S. Graphene Oxide: Fundamentals and Applications. John Wiley and Sons; Chichester, UK: 2017.
Tanaka K., Iijima S. Carbon Nanotubes and Graphene. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2014.
Liao C., Li Y., Tjong S.C. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 2018;19:E3564. doi: 10.3390/ijms19113564. PubMed DOI PMC
Maiti D., Tong X.M., Mou X.Z., Yang K. Carbon-based nanomaterials for biomedical applications: A recent study. Front. Pharmacol. 2019;9:1401. doi: 10.3389/fphar.2018.01401. PubMed DOI PMC
Ghosal K., Sarkar K. Biomedical applications of graphene nanomaterials and beyond. ACS Biomater. Sci. Eng. 2018;4:2653–2703. doi: 10.1021/acsbiomaterials.8b00376. PubMed DOI
Madannejad R., Shoaie N., Jahanpeyma F., Darvishi M.H., Azimzadeh M., Javadi H. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Biol. Interact. 2019;307:206–222. doi: 10.1016/j.cbi.2019.04.036. PubMed DOI
Jia P.P., Sun T., Junaid M., Yang L., Ma Y.B., Cui Z.S., Wei D.P., Shi H.F., Pei D.S. Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Environ. Pollut. 2019;247:595–606. doi: 10.1016/j.envpol.2019.01.072. PubMed DOI
Ameta S.C., Kodolov V.I., Vakhrushev A.V., Haghi A.K. Carbon Nanotubes and Nanoparticles: Current and Potential Applications. Apple Academic Press & CRC Press; Palm Bay, FL, USA: 2019.
Chung S., Revia R.A., Zhang M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv Mater. 2019;12:e1904362. doi: 10.1002/adma.201904362. PubMed DOI PMC
Rajakumar G., Zhang X.H., Gomathi T., Wang S.F., Ansari M.A., Mydhili G., Nirmala G., Alzohairy M.A., Chung I.M. Current use of carbon-based materials for biomedical applications—A prospective and review. Processes. 2020;8:355. doi: 10.3390/pr8030355. DOI
Crista M.A., da Silva J.C.G.E., da Silva L.P. Evaluation of different bottom-up routes for the fabrication of carbon dots. Nanomaterials. 2020;10:1316. doi: 10.3390/nano10071316. PubMed DOI PMC
Zarzycki P.K. Pure and Functionalized Carbon Based Nanomaterials: Analytical, Biomedical, Civil and Environmental Engineering Applications. CRC Press; Boca Raton, FL, USA: 2020.
European Union Observatory for Nanomaterials. [(accessed on 20 January 2021)];2021 Available online: https://euon.echa.europa.eu/medicine.
Rahmati M., Mozafari M. Biological response to carbon-family nanomaterials: Interactions at the nano-bio interface. Front. Bioeng. Biotechnol. 2019;7:4. doi: 10.3389/fbioe.2019.00004. PubMed DOI PMC
Kitko K.E., Zhang Q. Graphene-based nanomaterials: From production to integration with modern tools in neuroscience. Front. Syst. Neurosci. 2019;13:26. doi: 10.3389/fnsys.2019.00026. PubMed DOI PMC
Jun S.W., Manivasagan P., Kwon J., Nguyen V.T., Mondal S., Ly C.D., Lee J., Kang Y.H., Kim C.S., Oh J. Folic acid-conjugated chitosan-functionalized graphene oxide for highly efficient photoacoustic imaging-guided tumor-targeted photothermal therapy. Int. J. Biol. Macromol. 2020;155:961–971. doi: 10.1016/j.ijbiomac.2019.11.055. PubMed DOI
Wong X.Y., Quesada-Gonzalez D., Manickam S., New S.Y., Muthoosamy K., Merkoci A. Integrating gold nanoclusters, folic acid and reduced graphene oxide for nanosensing of glutathione based on “turn-off” fluorescence. Sci. Rep. 2021;11:2375. doi: 10.1038/s41598-021-81677-8. PubMed DOI PMC
Hwang H.S., Jeong J.W., Kim Y.A., Chang M. Carbon nanomaterials as versatile platforms for biosensing applications. Micromachines. 2020;11:814. doi: 10.3390/mi11090814. PubMed DOI PMC
Jeon S., Lee J., Park R., Jeong J., Shin M.C., Eom S.U., Park J., Hong S.W. Graphene templated DNA arrays and biotin-streptavidin sensitive bio-transistors patterned by dynamic self-assembly of polymeric films confined within a roll-on-plate geometry. Nanomaterials. 2020;10:1468. doi: 10.3390/nano10081468. PubMed DOI PMC
Wang S., Hossain M.Z., Han T., Shinozuka K., Suzuki T., Kuwana A., Kobayashi H. Avidin–biotin technology in gold nanoparticle-decorated graphene field effect transistors for detection of biotinylated macromolecules with ultrahigh sensitivity and specificity. ACS Omega. 2020;5:30037–30046. doi: 10.1021/acsomega.0c04429. PubMed DOI PMC
Wahid F., Zhao X.J., Jia S.R., Bai H., Zhong C. Nanocomposite hydrogels as multifunctional systems for biomedical applications: Current state and perspectives. Compos. Part B Eng. 2020;200:108208. doi: 10.1016/j.compositesb.2020.108208. DOI
Cao W.J., He L., Cao W.D., Huang X.B., Jia K., Dai J.Y. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomater. 2020;112:14–28. doi: 10.1016/j.actbio.2020.06.009. PubMed DOI
Yi J., Choe G., Park J., Lee J.Y. Graphene oxide-incorporated hydrogels for biomedical applications. Polym. J. 2020;52:823–837. doi: 10.1038/s41428-020-0350-9. DOI
Gong M., Sun J., Liu G., Li L., Wu S., Xiang Z. Graphene oxide–modified 3D acellular cartilage extracellular matrix scaffold for cartilage regeneration. Mat. Sci. Eng. C Mater. 2021;119:111603. doi: 10.1016/j.msec.2020.111603. PubMed DOI
Luo S., Jin S., Yang T., Wu B., Xu C., Luo L., Chen Y. Sustained release of tulobuterol from graphene oxide laden hydrogel to manage asthma. J. Biomater. Sci. Polym. Ed. 2021 doi: 10.1080/09205063.2020.1849921. in press. PubMed DOI
Marsh H., Rodriguez-Reinoso F. Activated Carbon. Elsevier; Amsterdam, The Netherlands: 2006.
McDougall G.J. The physical nature and manufacture of activated carbon. J. S. Afr. Inst. Min. Metal. 1991;91:109–120.
Roy G.M. Activated Carbon Applications in the Food and Pharmaceutical Industries. Technomic Publishing Company; Lancaster, PA, USA: 1995.
Kerihuel J.C. Effect of activated charcoal dressings on healing outcomes of chronic wounds. J. Wound Care. 2010;19:208. doi: 10.12968/jowc.2010.19.5.48047. PubMed DOI
Afrin M.R., Arumugam S., Pitchaimani V., Karuppagounder V., Thandavarayan R.A., Harima M., Hossain C.F., Suzuki K., Sone H., Matsubayashi Y., et al. Le Carbone prevents liver damage in non-alcoholic steatohepatitis-hepatocellular carcinoma mouse model via AMPKα-SIRT1 signaling pathway activation. Heliyon. 2021;7:e05888. doi: 10.1016/j.heliyon.2020.e05888. PubMed DOI PMC
Ramanayaka S., Vithanage M., Alessi D.S., Liu W.J., Jayasundera A.C.A., Ok Y.S. Nanobiochar: Production, properties, and multifunctional applications. Environ. Sci. Nano. 2020;7:3279–3302. doi: 10.1039/D0EN00486C. DOI
Jampilek J., Kralova K. Potential of Nanoscale Carbon-Based Materials for Remediation of Pesticide-Contaminated Environment. In: Abd-Elsalam K.A., editor. Carbon Nanomaterials for Agri-Food and Environmental Applications. Elsevier; Amsterdam, The Netherlands: 2020. pp. 359–399.
Jampilek J., Kralova K. Synthesis of Nanocomposite from Agricultural Waste. In: Abd-Elsalam K.A., editor. Multifunctional Hybrid Nanomaterials for Sustainable Agri-food and Ecosystems. Elsevier; Amsterdam, The Netherlands: 2020. pp. 51–98.
Farjadian F., Abbaspour S., Sadatlu M.A.A., Mirkiani S., Ghasemi A., Hoseini-Ghahfarokhi M., Mozaffari N., Karimi M., Hamblin M.R. Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: A review. ChemistrySelect. 2020;5:10200–10219. doi: 10.1002/slct.202002501. DOI
Zhu W.Q., Huang H.T., Dong Y., Han C.Y., Sui X.Y., Jian B.Y. Multi-walled carbon nanotube-based systems for improving the controlled release of insoluble drug dipyridamole. Exp. Ther. Med. 2019;17:4610–4616. doi: 10.3892/etm.2019.7510. PubMed DOI PMC
Jones A.D., Mi G., Webster T.J. A status report on FDA approval of medical devices containing nanostructured materials. Trends Biotechnol. 2019;37:117–120. doi: 10.1016/j.tibtech.2018.06.003. PubMed DOI
Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019;4:e10143. doi: 10.1002/btm2.10143. PubMed DOI PMC
Nanotechnology, US FDA. [(accessed on 20 January 2021)];2021 Available online: https://www.fda.gov/about-fda/nctr-research-focus-areas/nanotechnology.
A Brief Review of FDA Approved Nano-Drugs, NBIC+, StatNano. [(accessed on 20 January 2021)];2021 Available online: https://statnano.com/news/61107/A-Brief-Review-of-FDA-Approved-Nano-drugs.
Gustavsson P., Hedmer M., Rissler J. Carbon Nanotubes—Exposure, Toxicology and Protective Measures in the Work Environment. Arbetsmiljöverket; Stockholm, Sweden: 2011. [(accessed on 20 January 2021)]. Available online: https://www.av.se/globalassets/filer/publikationer/kunskapssammanstallningar/carbon-nanotubes-knowledge-compliation-2011-1-eng.pdf.
National Industrial Chemicals Notification and Assessment Scheme (NICNAS) Human Health Hazard Assessment and Classification of Carbon Nanotubes. Safe Work Australia; Canberra, Australia: 2012. [(accessed on 20 January 2021)]. Available online: https://www.safeworkaustralia.gov.au/system/files/documents/1702/human_health_hazard_assessment_and_classification_of_carbon_nanotubes.pdf.
Garriga R., Herrero-Continente T., Palos M., Cebolla V.L., Osada J., Muñoz E., Rodríguez-Yoldi M.J. Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines. Nanomaterials. 2020;10:1617. doi: 10.3390/nano10081617. PubMed DOI PMC
Yan H., Xue Z., Xie J., Dong Y., Ma Z., Sun X., Kebebe Borga D., Liu Z., Li J. Toxicity of carbon nanotubes as anti-tumor drug carriers. Int. J. Nanomed. 2019;14:10179–10194. doi: 10.2147/IJN.S220087. PubMed DOI PMC
Keservani R.K., Sharma A.K. Nanoconjugate Nanocarriers for Drug Delivery. CRC Press; Warentown, NJ, USA: 2018.
Thakur V.K., Thakur M.K. Chemical Functionalization of Carbon Nanomaterials. CRC Press; Warentown, NJ, USA: 2018.
Li L., Wu G., Yang G., Peng J., Zhao J., Zhu J.J. Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale. 2013;5:4015–4039. doi: 10.1039/c3nr33849e. PubMed DOI
Younis M.R., He G., Lin J., Huang P. Recent advances on graphene quantum dots for bioimaging applications. Front. Chem. 2020;8:424. doi: 10.3389/fchem.2020.00424. PubMed DOI PMC
Li M., Chen T., Gooding J.J., Liu J. Review of carbon and graphene quantum dots for sensing. ACS Sens. 2019;4:1732–1748. doi: 10.1021/acssensors.9b00514. PubMed DOI
Henna T.K., Pramod K. Graphene quantum dots redefine nanobiomedicine. Mater. Sci. Eng. C. 2020;110:110651. doi: 10.1016/j.msec.2020.110651. PubMed DOI
Kortel M., Mansuriya B.D., Vargas Santana N., Altintas Z. Graphene quantum dots as flourishing nanomaterials for bio-imaging, therapy development, and micro-supercapacitors. Micromachines. 2020;11:866. doi: 10.3390/mi11090866. PubMed DOI PMC
Lesiak A., Drzozga K., Cabaj J., Banski M., Malecha K., Podhorodecki A. Optical sensors based on II-VI quantum dots. Nanomaterials. 2019;9:192. doi: 10.3390/nano9020192. PubMed DOI PMC
Tajik S., Dourandish Z., Zhang K., Beitollahi H., Le Q.V., Jang H.W., Shokouhimehr M. Carbon and graphene quantum dots: A review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 2020;10:15406–15429. doi: 10.1039/D0RA00799D. PubMed DOI PMC
Zhang M., Bishop B.P., Thompson N.L., Hildahl K., Dang B., Mironchuk O., Chen N., Aoki R., Holmberg V.C., Nance E. Quantum dot cellular uptake and toxicity in the developing brain: Implications for use as imaging probes. Nanoscale Adv. 2019;1:342–3442. doi: 10.1039/C9NA00334G. PubMed DOI PMC
Perini G., Palmieri V., Ciasca G., De Spirito M., Papi M. Unravelling the potential of graphene quantum dots in biomedicine and neuroscience. Int. J. Mol. Sci. 2020;21:3712. doi: 10.3390/ijms21103712. PubMed DOI PMC
Jha S., Mathur P., Ramteke S., Jain N.K. Pharmaceutical potential of quantum dots. Artif. Cells Nanomed. Biotechnol. 2018;46:57–65. doi: 10.1080/21691401.2017.1411932. PubMed DOI
Levy M., Chowdhury P.P., Nagpal P. Quantum dot therapeutics: A new class of radical therapies. J. Biol. Eng. 2019;13:48. doi: 10.1186/s13036-019-0173-4. PubMed DOI PMC
Zhao C.H., Song X.B., Liu Y., Fu Y.F., Ye L.L., Wang N., Wang F., Li L., Mohammadniaei M., Zhang M., et al. Synthesis of graphene quantum dots and their applications in drug delivery. J. Nanobiotechnology. 2020;18:142. doi: 10.1186/s12951-020-00698-z. PubMed DOI PMC
Hashemi M.S., Gharbi S., Jafarinejad-Farsangi S., Ansari-Asl Z., Dezfuli A.S. Secondary toxic effect of graphene oxide and graphene quantum dots alters the expression of miR-21 and miR-29a in human cell lines. Toxicol. In Vitro. 2020;65:104796. doi: 10.1016/j.tiv.2020.104796. PubMed DOI
Du J.J., Feng B., Dong Y.Q., Zhao M., Yang X.D. Vanadium coordination compounds loaded on graphene quantum dots (GQDs) exhibit improved pharmaceutical properties and enhanced anti-diabetic effects. Nanoscale. 2020;12:9219–9230. doi: 10.1039/D0NR00810A. PubMed DOI
Rakhshaei R., Namazi H., Hamishehkar H., Rahimi M. Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties. Int. J. Biol. Macromol. 2020;150:1121–1129. doi: 10.1016/j.ijbiomac.2019.10.118. PubMed DOI
Liang J.L., Huang Q.W., Hua C.X., Hu J.H., Chen B.L., Wan J.M., Hu Z.W., Wang B. pH-Responsive nanoparticles loaded with graphene quantum dots and doxorubicin for intracellular imaging, drug delivery and efficient cancer therapy. ChemistrySelect. 2019;4:6004–6012. doi: 10.1002/slct.201803807. DOI
Sheng Y.S., Dai W., Gao J., Li H.D., Tan W.S., Wang J.W., Deng L.H., Kong Y. pH-sensitive drug delivery based on chitosan wrapped graphene quantum dots with enhanced fluorescent stability. Mat. Sci. Eng. C Mater. 2020;112:110888. doi: 10.1016/j.msec.2020.110888. PubMed DOI
Havanur S., Batish I., Cheruku S.P., Gourishetti K., JagadeeshBabu P.E., Kumar N. Poly(N,N-diethyl acrylamide)/functionalized graphene quantum dots hydrogels loaded with doxorubicin as a nano-drug carrier for metastatic lung cancer in mice. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;105:110094. doi: 10.1016/j.msec.2019.110094. PubMed DOI
Nasrollahi F., Sana B., Paramelle D., Ahadian S., Khademhosseini A., Lim S. Incorporation of graphene quantum dots, iron, and doxorubicin in/on ferritin nanocages for bimodal imaging and drug delivery. Adv. Ther. 2020;3:1900183. doi: 10.1002/adtp.201900183. DOI
Karimi S., Namazi H. Simple preparation of maltose-functionalized dendrimer/graphene quantum dots as a pH-sensitive biocompatible carrier for targeted delivery of doxorubicin. Int. J. Biol. Macromol. 2020;156:648–659. doi: 10.1016/j.ijbiomac.2020.04.037. PubMed DOI
Yao X.X., Niu X.X., Ma K.X., Huang P., Grothe J., Kaskel S., Zhu Y.F. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small. 2017;13:1602225. doi: 10.1002/smll.201602225. PubMed DOI
Gao Y., Zhong S.L., Xu L.F., He S.H., Dou Y.M., Zhao S.N., Chen P., Cui X.J. Mesoporous silica nanoparticles capped with graphene quantum dots as multifunctional drug carriers for photo-thermal and redox-responsive release. Microporous Mesoporous Mater. 2019;278:130–137. doi: 10.1016/j.micromeso.2018.11.030. DOI
Wang N., Xu H.H., Sun S.A., Guo P.Y., Wang Y., Qian C.T., Zhong Y.Y., Yang D.Z. Wound therapy via a photo-responsively antibacterial nano-graphene quantum dots conjugate. J. Photochem. Photobiol. B. 2020;210:111978. doi: 10.1016/j.jphotobiol.2020.111978. PubMed DOI
Zheng S.H., Jin Z., Han C.P., Li J.J., Xu H., Park S., Park J.O., Choi E., Xu K. Graphene quantum dots-decorated hollow copper sulfide nanoparticles for controlled intracellular drug release and enhanced photothermal-chemotherapy. J. Mater. Sci. 2020;55:1184–1197. doi: 10.1007/s10853-019-04062-x. DOI
Yu L., Tian X., Gao D.X., Lang Y., Zhang X.X., Yang C., Gu M.M., Shi J.M., Zhou P.K., Shang Z.F. Oral administration of hydroxylated-graphene quantum dots induces intestinal injury accompanying the loss of intestinal stem cells and proliferative progenitor cells. Nanotoxicology. 2019;13:1409–1421. doi: 10.1080/17435390.2019.1668068. PubMed DOI
Li Z., Fan J.L., Tong C.Y., Zhou H.Y., Wang W.M., Li B., Liu B., Wang W. A smart drug-delivery nanosystem based on carboxylated graphene quantum dots for tumor-targeted chemotherapy. Nanomedicine. 2019;14:2011–2025. doi: 10.2217/nnm-2018-0378. PubMed DOI
Perini G., Palmieri V., Ciasca G., D’Ascenzo M., Primiano A., Gervasoni J., De Maio F., De Spirito M., Papi M. Enhanced chemotherapy for glioblastoma multiforme mediated by functionalized graphene quantum dots. Materials. 2020;13:4139. doi: 10.3390/ma13184139. PubMed DOI PMC
Perini G., Palmieri V., Ciasca G., D’Ascenzo M., Gervasoni J., Primiano A., Rinaldi M., Fioretti D., Prampolini C., Tiberio F., et al. Graphene quantum dots’ surface chemistry modulates the sensitivity of glioblastoma cells to chemotherapeutics. Int. J. Mol. Sci. 2020;21:6301. doi: 10.3390/ijms21176301. PubMed DOI PMC
Xue Z.Y., Sun Q., Zhang L., Kang Z.Z., Liang L.J., Wang Q., Shen J.W. Graphene quantum dot assisted translocation of drugs into a cell membrane. Nanoscale. 2019;11:4503–4514. doi: 10.1039/C8NR10091H. PubMed DOI
Iannazzo D., Pistone A., Salamo M., Galvagno S., Romeo R., Giofre S.V., Branca C., Visalli G., Di Pietro A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm. 2017;518:185–192. doi: 10.1016/j.ijpharm.2016.12.060. PubMed DOI
Jiang W.J., Chen J.Y., Gong C.A., Wang Y.Y., Gao Y., Yuan Y.F. Intravenous delivery of enzalutamide based on high drug loading multifunctional graphene oxide nanoparticles for castration-resistant prostate cancer therapy. J. Nanobiotechnology. 2020;18:50. doi: 10.1186/s12951-020-00607-4. PubMed DOI PMC
Vatanparast M., Shariatinia Z. Revealing the role of different nitrogen functionalities in the drug delivery performance of graphene quantum dots: A combined density functional theory and molecular dynamics approach. J. Mater. Chem. B. 2019;7:6156–6171. doi: 10.1039/C9TB00971J. PubMed DOI
Senel B., Demir N., Buyukkoroglu G., Yildiz M. Graphene quantum dots: Synthesis, characterization, cell viability, genotoxicity for biomedical applications. Saudi Pharm J. 2019;27:846–858. doi: 10.1016/j.jsps.2019.05.006. PubMed DOI PMC
Ramachandran P., Lee C.Y., Doong R.A., Oon C.E., Thanh N.T.K., Lee H.L. A titanium dioxide/nitrogen-doped graphene quantum dot nanocomposite to mitigate cytotoxicity: Synthesis, characterisation, and cell viability evaluation. RSC Adv. 2020;10:21795–21805. doi: 10.1039/D0RA02907F. PubMed DOI PMC
Ahmadi-Kashani M., Dehghani H., Zarrabi A. A biocompatible nanoplatform formed by MgAl-layered double hydroxide modified Mn3O4/N-graphene quantum dot conjugated-polyaniline for pH-triggered release of doxorubicin. Mat. Sci. Eng. C Mater. 2020;114:111055. doi: 10.1016/j.msec.2020.111055. PubMed DOI
Shende P., Augustine S., Prabhakar B. A review on graphene nanoribbons for advanced biomedical applications. Carbon Lett. 2020;30:465–475. doi: 10.1007/s42823-020-00125-1. DOI
Johnson A.P., Gangadharappa H.V., Pramod K. Graphene nanoribbons: A promising nanomaterial for biomedical applications. J. Control. Release. 2020;325:141–162. doi: 10.1016/j.jconrel.2020.06.034. PubMed DOI
Mousavi S.M., Soroshnia S., Hashemi S.A., Babapoor A., Ghasemi Y., Savardashtaki A., Amani A.M. Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy and drug delivery applications. Drug Metab. Rev. 2019;51:91–104. doi: 10.1080/03602532.2019.1582661. PubMed DOI
Janani K., Thiruvadigal D.J. Density functional study on covalent functionalization of zigzag graphene nanoribbon through l-Phenylalanine and boron doping: Effective nanocarriers in drug delivery applications. Appl. Surf. Sci. 2018;449:815–822.
Mari E., Mardente S., Morgante E., Tafani M., Lococo E., Fico F., Valentini F., Zicari A. Graphene oxide nanoribbons induce autophagic vacuoles in neuroblastoma cell lines. Int. J. Mol. Sci. 2016;17:1995. doi: 10.3390/ijms17121995. PubMed DOI PMC
Chowdhury S.M., Zafar S., Tellez V., Sitharaman B. Graphene nanoribbon-based platform for highly efficacious nuclear gene delivery. ACS Biomater. Sci. Eng. 2016;2:798–808. doi: 10.1021/acsbiomaterials.5b00562. PubMed DOI
Foreman H.C.C., Lalwani G., Kalra J., Krug L.T., Sitharaman B. Gene delivery to mammalian cells using a graphene nanoribbon platform. J. Mater. Chem. B. 2017;5:2347–2354. doi: 10.1039/C6TB03010F. PubMed DOI
Chowdhury S.M., Fang J., Sitharaman B. Interaction of graphene nanoribbons with components of the blood vascular system. Future Sci. OA. 2015;1:FSO19. doi: 10.4155/fso.15.17. PubMed DOI PMC
Chowdhury S.M., Manepalli P., Sitharaman B. Graphene nanoribbons elicit cell specific uptake and delivery via activation of epidermal growth factor receptor enhanced by human papillomavirus E5 protein. Acta Biomater. 2014;10:4494–4504. doi: 10.1016/j.actbio.2014.06.030. PubMed DOI PMC
Chowdhury S.M., Lalwani G., Zhang K., Yang J.Y., Neville K., Sitharaman B. Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials. 2013;34:283–293. doi: 10.1016/j.biomaterials.2012.09.057. PubMed DOI PMC
Chowdhury S.M., Surhland C., Sanchez Z., Chaudhary P., Kumar M.A.S., Lee S., Pena L.A., Waring M., Sitharaman B., Naidu M. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomedicine. 2015;11:109–118. doi: 10.1016/j.nano.2014.08.001. PubMed DOI PMC
Lu Y.J., Lin C.W., Yang H.W., Lin K.J., Wey S.P., Sun C.L., Wei K.C., Yen T.C., Lin C.I., Ma C.C.M., et al. Biodistribution of PEGylated graphene oxide nanoribbons and their application in cancer chemo-photothermal therapy. Carbon. 2014;74:83–95. doi: 10.1016/j.carbon.2014.03.007. DOI
Chng E.L.K., Chua C.K., Pumera M. Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets. Nanoscale. 2014;6:10792–10797. doi: 10.1039/C4NR03608E. PubMed DOI
Peng E.X., Todorova N., Yarovsky I. Effects of size and functionalization on the structure and properties of graphene oxide nanoflakes: An in silico investigation. ACS Omega. 2018;3:11497–11503. doi: 10.1021/acsomega.8b00866. PubMed DOI PMC
Duverger E., Picaud F., Stauffer L., Sonnet P. Simulations of a graphene nanoflake as a nanovector to improve ZnPc phototherapy toxicity: From vacuum to cell membrane. ACS Appl. Mater. Interfaces. 2017;9:37554–37562. doi: 10.1021/acsami.7b09054. PubMed DOI
Lamb J., Fischer E., Rosillo-Lopez M., Salzmann C.G., Holland J.P. Multi-functionalised graphene nanoflakes as tumour-targeting theranostic drug-delivery vehicles. Chem. Sci. 2019;10:8880–8888. doi: 10.1039/C9SC03736E. PubMed DOI PMC
Yurt F., Ersoz O.A., Harputlu E., Ocakoglu K. Preparation and evaluation of effect on Escherichia coli and Staphylococcus aureus of radiolabeled ampicillin-loaded graphene oxide nanoflakes. Chem. Biol. Drug Des. 2018;91:1094–1100. doi: 10.1111/cbdd.13171. PubMed DOI
Vovusha H., Sanyal S., Sanyal B. Interaction of nucleobases and aromatic amino acids with graphene oxide and graphene flakes. J. Phys. Chem. Lett. 2013;4:3710–3718. doi: 10.1021/jz401929h. DOI
Chhabra P., Chauhan G., Kumar A. Augmented healing of full thickness chronic excision wound by rosmarinic acid loaded chitosan encapsulated graphene nanopockets. Drug Dev. Ind. Pharm. 2020;46:878–888. doi: 10.1080/03639045.2020.1762200. PubMed DOI
Newman L., Jasim D.A., Prestat E., Lozano N., de Lazaro I., Nam Y., Assas B.M., Pennock J., Haigh S.J., Bussy C., et al. Splenic capture and in vivo intracellular biodegradation of biological-grade graphene oxide sheets. ACS Nano. 2020;14:10168–10186. doi: 10.1021/acsnano.0c03438. PubMed DOI PMC
Nizami M.Z.I., Takashiba S., Nishina Y. Graphene oxide: A new direction in dentistry. Appl. Mater. Today. 2020;19:100576. doi: 10.1016/j.apmt.2020.100576. DOI
Jagiello J., Chlanda A., Baran M., Gwiazda M., Lipinska L. Synthesis and characterization of graphene oxide and reduced graphene oxide composites with inorganic nanoparticles for biomedical applications. Nanomaterials. 2020;10:1846. doi: 10.3390/nano10091846. PubMed DOI PMC
Malik S.A., Mohanta Z., Srivastava C., Atreya H.S. Modulation of protein-graphene oxide interactions with varying degrees of oxidation. Nanoscale Adv. 2020;2:1904–1912. doi: 10.1039/C9NA00807A. PubMed DOI PMC
Chen Y.L., Yang Y.K., Xiang Y.W., Singh P., Feng J.L., Cui S.F., Carrier A., Oakes K., Luan T.G., Zhang X. Multifunctional graphene-oxide-reinforced dissolvable polymeric microneedles for transdermal drug delivery. ACS Appl. Mater. Interfaces. 2020;12:352–360. doi: 10.1021/acsami.9b19518. PubMed DOI
Gupta N., Bhagat S., Singh M., Jangid A.K., Bansal V., Singh S., Pooja D., Kulhari H. Site-specific delivery of a natural chemotherapeutic agent to human lung cancer cells using biotinylated 2D rGO nanocarriers. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;112:110884. doi: 10.1016/j.msec.2020.110884. PubMed DOI
Cuevas-Flores M.D., Bartolomei M., Garcia-Revilla M.A., Coletti C. Interaction and reactivity of cisplatin physisorbed on graphene oxide nano-prototypes. Nanomaterials. 2020;10:1074. doi: 10.3390/nano10061074. PubMed DOI PMC
Shahabi M., Raissi H. Payload delivery of anticancer drug Tegafur with the assistance of graphene oxide nanosheet during biomembrane penetration: Molecular dynamics simulation survey. Appl. Surf. Sci. 2020;517:146186. doi: 10.1016/j.apsusc.2020.146186. DOI
Boran G., Tavakoli S., Dierking I., Kamali A.R., Ege D. Synergistic effect of graphene oxide and zoledronic acid for osteoporosis and cancer treatment. Sci. Rep. 2020;10:7827. doi: 10.1038/s41598-020-64760-4. PubMed DOI PMC
Matulewicz K., Kazmierski L., Wisniewski M., Roszkowski S., Roszkowski K., Kowalczyk O., Roy A., Tylkowski B., Bajek A. Ciprofloxacin and graphene oxide combination—New face of a known drug. Materials. 2020;13:4224. doi: 10.3390/ma13194224. PubMed DOI PMC
Heo J., Tanum J., Park S., Choi D., Jeong H., Han U., Hong J. Controlling physicochemical properties of graphene oxide for efficient cellular delivery. J. Ind. Eng. Chem. 2020;88:312–318. doi: 10.1016/j.jiec.2020.04.030. DOI
Yang Z.Q., Yang D.T., Zeng K., Li D.R., Qin L., Cai Y.F., Jin J. Simultaneous delivery of antimiR-21 and doxorubicin by graphene oxide for reducing toxicity in cancer therapy. ACS Omega. 2020;5:14437–14443. doi: 10.1021/acsomega.0c01010. PubMed DOI PMC
Chen S.Y., Yang K., Leng X.Y., Chen M.S., Novoselov K.S., Andreeva D.V. Perspectives in the design and application of composites based on graphene derivatives and bio-based polymers. Polym. Int. 2020;69:1173–1186. doi: 10.1002/pi.6080. DOI
Belaid H., Nagarajan S., Teyssier C., Barou C., Bares J., Balme S., Garay H., Huon V., Cornu D., Cavailles V., et al. Development of new biocompatible 3D printed graphene oxide-based scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;110:110595. doi: 10.1016/j.msec.2019.110595. PubMed DOI
Huang C., Zhang X., Li Y.C., Yang X.L. Hyaluronic acid and graphene oxide loaded silicon contact lens for corneal epithelial healing. J. Biomater. Sci. Polym. Ed. 2020 doi: 10.1080/09205063.2020.1836926. PubMed DOI
Yun Y.J., Wu H.W., Gao J., Dai W., Deng L.H., Lv O., Kong Y. Facile synthesis of Ca2+-crosslinked sodium alginate/graphene oxide hybrids as electro- and pH-responsive drug carrier. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;108:110380. doi: 10.1016/j.msec.2019.110380. PubMed DOI
Liu Y.X., Song R., Zhang X.H., Zhang D.W. Enhanced antimicrobial activity and pH-responsive sustained release of chitosan/poly (vinyl alcohol)/graphene oxide nanofibrous membrane loading with allicin. Int. J. Biol. Macromol. 2020;161:1405–1413. doi: 10.1016/j.ijbiomac.2020.08.051. PubMed DOI
Liang Y., Wang M.Q., Zhang Z.C., Ren G.H., Liu Y.J., Wu S.S., Shen J. Facile synthesis of ZnO QDs@GO-CS hydrogel for synergetic antibacterial applications and enhanced wound healing. Chem. Eng. J. 2019;378:122043. doi: 10.1016/j.cej.2019.122043. DOI
Yu C.H., Chen G.Y., Xia M.Y., Xie Y., Chi Y.Q., He Z.Y., Zhang C.L., Zhang T., Chen Q.M., Peng Q. Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids Surf. B Biointerfaces. 2020;191:111009. doi: 10.1016/j.colsurfb.2020.111009. PubMed DOI
Rostami F., Tamjid E., Behmanesh M. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;115:111102. doi: 10.1016/j.msec.2020.111102. PubMed DOI
Schneible J.D., Shi K.H., Young A.T., Ramesh S., He N.F., Dowdey C.E., Dubnansky J.M., Libya R.L., Gao W., Santiso E., et al. Modified graphene oxide (GO) particles in peptide hydrogels: A hybrid system enabling scheduled delivery of synergistic combinations of chemotherapeutics. J. Mater. Chem. B. 2020;8:3852–3868. doi: 10.1039/D0TB00064G. PubMed DOI PMC
Buskaran K., Hussein M.Z., Moklas M.A.M., Fakurazi S. Morphological changes and cellular uptake of functionalized graphene oxide loaded with protocatechuic acid and folic acid in hepatocellular carcinoma cancer cell. Int. J. Mol. Sci. 2020;21:5874. doi: 10.3390/ijms21165874. PubMed DOI PMC
Katuwavila N.P., Amarasekara Y., Jayaweera V., Rajaphaksha C., Gunasekara C., Perera I.C., Amaratunga G.A.J., Weerasinghe L. Graphene oxide-based manocomposite for sustained release of cephalexin. J. Pharm. Sci. 2020;109:1130–1135. doi: 10.1016/j.xphs.2019.09.022. PubMed DOI
Liu Y.J., Lv X.G., Xia S.L., Hao B.J., Huang X.Y., Shi P. PEGylated graphene oxide as a nanocarrier of the disulfide prodrug of podophyllotoxin for cancer therapy. J. Nanoparticle Res. 2020;22:281. doi: 10.1007/s11051-020-05003-5. DOI
Tas A., Cakmak N.K. Synthesis of PEGylated nanographene oxide as a nanocarrier for docetaxel drugs and anticancer activity on prostate cancer cell lines. Hum. Exp. Toxicol. 2021;40:172–182. doi: 10.1177/0960327120950008. PubMed DOI
Lan M.Y., Hsu Y.B., Lan M.C., Chen J.P., Lu Y.J. Polyethylene glycol-boated graphene oxide loaded with erlotinib as an effective therapeutic agent for treating nasopharyngeal cancer cells. Int. J. Nanomed. 2020;15:7569–7582. doi: 10.2147/IJN.S265437. PubMed DOI PMC
Rahdar A., Hajinezhad M.R., Hamishekar H., Ghamkhari A., Kyzas G.Z. Copolymer/graphene oxide nanocomposites as potential anticancer agents. Polym. Bull. 2020 doi: 10.1007/s00289-020-03354-6. DOI
Zeng Y.Y., Zhou M.R., Chen L.F., Fang H.M., Liu S.K., Zhou C.C., Sun J.M., Wang Z.X. Alendronate loaded graphene oxide functionalized collagen sponge for the dual effects of osteogenesis and anti-osteoclastogenesis in osteoporotic rats. Bioact. Mater. 2020;5:859–870. doi: 10.1016/j.bioactmat.2020.06.010. PubMed DOI PMC
Amiryaghoubi N., Pesyan N.N., Fathi M., Omidi Y. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering. Int. J. Biol. Macromol. 2020;162:1338–1357. doi: 10.1016/j.ijbiomac.2020.06.138. PubMed DOI
Kheiltash F., Parivar K., Roodbari N.H., Sadeghi B., Badiei A. Effects of 8-hydroxyquinoline-coated graphene oxide on cell death and apoptosis in MCF-7 and MCF-10 breast cell lines. Iran. J. Basic Med. Sci. 2020;23:871–878. PubMed PMC
Foroushani M.S., Shervedani R.K., Kefayat A., Torabi M., Ghahremani F., Yaghoobi F. Near-infrared, light-triggered, on-demand anti-inflammatories and antibiotics folate-graphene chelate manganese nanoparticles as a theranostic system for colon cancer MR imaging and drug delivery: In-vivo examinations. J. Drug Deliv. Sci. Technol. 2019;54:101223. doi: 10.1016/j.jddst.2019.101223. DOI
Mahanta A.K., Patel D.K., Maiti P. Nanohybrid scaffold of chitosan and functionalized graphene oxide for controlled drug delivery and bone regeneration. ACS Biomater. Sci. Eng. 2019;5:5139–5149. doi: 10.1021/acsbiomaterials.9b00829. PubMed DOI
Gholami A., Emadi F., Nazem M., Aghayi R., Khalvati B., Amini A., Ghasemi Y. Expression of key apoptotic genes in hepatocellular carcinoma cell line treated with etoposide-loaded graphene oxide. J. Drug Deliv. Sci. Technol. 2020;57:101725. doi: 10.1016/j.jddst.2020.101725. DOI
Izadi S., Moslehi A., Kheiry H., Kiani F.K., Ahmadi A., Masjedi A., Ghani S., Rafiee B., Karpisheh V., Hajizadeh F., et al. Codelivery of HIF-1α siRNA and Dinaciclib by carboxylated graphene oxide-trimethyl chitosan-hyaluronate nanoparticles significantly suppresses cancer cell progression. Pharm. Res. 2020;37:196. doi: 10.1007/s11095-020-02892-y. PubMed DOI
Liu Z.G., He J., Zhu T.Y., Hu C., Bo R.N., Wusiman A., Hu Y.L., Wang D.Y. Lentinan-functionalized graphene oxide is an effective antigen delivery system that modulates innate immunity and improves adaptive immunity. ACS Appl. Mater. Interfaces. 2020;12:39014–39023. doi: 10.1021/acsami.0c12078. PubMed DOI
Wang L.H., Liu J.Y., Sui L., Zhao P.H., Ma H.D., Wei Z., Wang Y.L. Folate-modified graphene oxide as the drug delivery system to load temozolomide. Curr. Pharm. Biotechnol. 2020;21:1088–1098. doi: 10.2174/1389201021666200226122742. PubMed DOI
Assy L., Gemeay A., Gomaa S., Aldubayan M.A., Salem M.L. Impact of graphene oxide nano sheets loaded with chemotherapeutic drug on tumor cells. J. Nanopart. Res. 2020;22:79. doi: 10.1007/s11051-020-04790-1. DOI
Wang Y.F., Sun G.P., Gong Y.Y., Zhang Y.Y., Liang X.F., Yang L.Q. Functionalized folate-modified graphene oxide/PEI siRNA nanocomplexes for targeted ovarian cancer gene therapy. Nanoscale Res. Lett. 2020;15:57. doi: 10.1186/s11671-020-3281-7. PubMed DOI PMC
Lu T.C., Nong Z.Z., Wei L.Y., Wei M., Li G., Wu N.N., Liu C., Tang B.L., Qin Q.X., Li X.H., et al. Preparation and anti-cancer activity of transferrin/folic acid double-targeted graphene oxide drug delivery system. J. Biomater. Appl. 2020;35:15–27. doi: 10.1177/0885328220913976. PubMed DOI
Wang P.Y., Wang X., Tang Q., Chen H., Zhang Q., Jiang H.Y., Wang Z. Functionalized graphene oxide against U251 glioma cells and its molecular mechanism. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;116:111187. doi: 10.1016/j.msec.2020.111187. PubMed DOI
Ezzati N., Mahjoub A.R., Shokrollahi S., Amiri A., Shahrnoy A.A. Novel biocompatible amino acids-functionalized three-dimensional graphene foams: As the attractive and promising cisplatin carriers for sustained release goals. Int. J. Pharm. 2020;589:119857. doi: 10.1016/j.ijpharm.2020.119857. PubMed DOI
Verde V., Longo A., Cucci L.M., Sanfilippo V., Magri A., Satriano C., Anfuso C.D., Lupo G., La Mendola D. Anti-angiogenic and anti-proliferative graphene oxide nanosheets for tumor cell therapy. Int. J. Mol. Sci. 2020;21:5571. doi: 10.3390/ijms21155571. PubMed DOI PMC
Wang W., Liu Y., Yang C., Jia W.T., Qi X., Liu C.S., Li X.L. Delivery of salvianolic acid B for efficient osteogenesis and angiogenesis from silk fibroin combined with graphene oxide. ACS Biomater. Sci. Eng. 2020;6:3539–3549. doi: 10.1021/acsbiomaterials.0c00558. PubMed DOI
Pourjavadi A., Asgari S., Hosseini S.H. Graphene oxide functionalized with oxygen -rich polymers as a pH -sensitive carrier for co -delivery of hydrophobic and hydrophilic drugs. J. Drug Deliv. Sci. Technol. 2020;56 Pt A:101542. doi: 10.1016/j.jddst.2020.101542. DOI
Kazempour M., Edjlali L., Akbarzadeh A., Davaran S., Farid S.S. Synthesis and characterization of dual pH-and thermo-responsive graphene-based nanocarrier for effective anticancer drug delivery. J. Drug Deliv. Sci. Technol. 2019;54:101158. doi: 10.1016/j.jddst.2019.101158. DOI
Abdel-Bary A.S., Tolan D.A., Nassar M.Y., Taketsugu T., El-Nahas A.M. Chitosan, magnetite, silicon dioxide, and graphene oxide nanocomposites: Synthesis, characterization, efficiency as cisplatin drug delivery, and DFT calculations. Int. J. Biol. Macromol. 2020;154:621–633. doi: 10.1016/j.ijbiomac.2020.03.106. PubMed DOI
Pooresmaeil M., Javanbakht S., Nia S.B., Namazi H. Carboxymethyl cellulose/mesoporous magnetic graphene oxide as a safe and sustained ibuprofen delivery bio-system: Synthesis, characterization, and study of drug release kinetic. Colloids Surf. A Physicochem. Eng. Asp. 2020;594:124662. doi: 10.1016/j.colsurfa.2020.124662. DOI
Pourjavadi A., Kohestanian M., Yaghoubi M. Poly(glycidyl methacrylate)-coated magnetic graphene oxide as a highly efficient nanocarrier: Preparation, characterization, and targeted DOX delivery. New J. Chem. 2019;43:18647–18656. doi: 10.1039/C9NJ04623B. DOI
Qi J.X., Chen Y.H., Xue T.T., Lin Y., Huang S.Y., Cao S.Y., Wang X.N., Su Y., Lin Z.K. Graphene oxide-based magnetic nanocomposites for the delivery of melittin to cervical cancer HeLa cells. Nanotechnology. 2020;31:065102. doi: 10.1088/1361-6528/ab5084. PubMed DOI
Salem M.L., Gemeay A., Gomaa S., Aldubayan M.A., Assy L. Superparamagnetic graphene oxide/magnetite nanocomposite delivery system for doxorubicin-induced distinguished tumor cell cycle arrest and apoptosis. J. Nanoparticle Res. 2020;22:219. doi: 10.1007/s11051-020-04932-5. DOI
Yang Y.F., Meng F.Y., Li X.H., Wu N.N., Deng Y.H., Wei L.Y., Zeng X.P. Magnetic graphene oxide-Fe3O4-PANI nanoparticle adsorbed platinum drugs as drug delivery systems for cancer therapy. J. Nanosci. Nanotechnol. 2019;19:7517–7525. doi: 10.1166/jnn.2019.16768. PubMed DOI
Wang L.H., Sui L., Zhao P.H., Ma H.D., Liu J.Y., Wei Z., Zhan Z.J., Wang Y.L. A composite of graphene oxide and iron oxide nanoparticles for targeted drug delivery of temozolomide. Pharmazie. 2020;75:313–317. PubMed
Zhang B., Yu Q.L., Liu Y. Alternating magnetic field controlled targeted drug delivery based on graphene oxide-grafted nanosupramolecules. Chem. Eur. J. 2020;26:13698–13703. doi: 10.1002/chem.202003328. PubMed DOI
Xue J.M., Wang X.C., Wang E.D., Li T., Chang J., Wu C.T. Bioinspired multifunctional biomaterials with hierarchical microstructure for wound dressing. Acta Biomater. 2019;100:270–279. doi: 10.1016/j.actbio.2019.10.012. PubMed DOI
Shen Z.Y., Shen B.Q., Shen A.J., Zhu X.H. Cavitation-enhanced delivery of the nanomaterial graphene oxide-doxorubicin to hepatic tumors in nude mice using 20 kHz low-frequency ultrasound and microbubbles. J. Nanomater. 2020;2020:3136078. doi: 10.1155/2020/3136078. DOI
Quagliarini E., Di Santo R., Pozzi D., Tentori P., Cardarelli F., Caracciolo G. Mechanistic insights into the release of doxorubicin from graphene oxide in cancer cells. Nanomaterials. 2020;10:1482. doi: 10.3390/nano10081482. PubMed DOI PMC
Tu Z.X., Donskyi E.S., Qiao H.S., Zhu Z.L., Unger W.E.S., Hackenberger C.P.R., Chen W., Adeli M., Haag R. Graphene oxide-cyclic R10 peptide nuclear translocation nanoplatforms for the surmounting of multiple-drug resistance. Adv. Funct. Mater. 2020:2000933. doi: 10.1002/adfm.202000933. DOI
Huang X., Chen J., Wu W., Yang W.B., Zhong B.L., Qing X.C., Shao Z.W. Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma. Acta Biomater. 2020;109:229–243. doi: 10.1016/j.actbio.2020.04.009. PubMed DOI
Alipour N., Namazi H. Chelating ZnO-dopamine on the surface of graphene oxide and its application as pH-responsive and antibacterial nanohybrid delivery agent for doxorubicin. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;108:110459. doi: 10.1016/j.msec.2019.110459. PubMed DOI
Qiu Z.C., Hu J., Li Z.W., Yang X.X., Hu J., You Q.J., Bai S., Mao Y., Hua D., Yin J. Graphene oxide-based nanocomposite enabled highly efficient targeted synergistic therapy for colorectal cancer. Colloids Surf. A Physicochem. Eng. Asp. 2020;593:124585. doi: 10.1016/j.colsurfa.2020.124585. DOI
Qi Z.E., Shi J., Zhang Z., Cao Y.C., Li J.G., Cao S.K. PEGylated graphene oxide-capped gold nanorods/silica nanoparticles as multifunctional drug delivery platform with enhanced near-infrared responsiveness. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;104:109889. doi: 10.1016/j.msec.2019.109889. PubMed DOI
Qi Z.E., Shi J., Zhu B.B., Li J.G., Cao S.K. Gold nanorods/graphene oxide nanosheets immobilized by polydopamine for efficient remotely triggered drug delivery. J. Mater. Sci. 2020;55:14530–14543. doi: 10.1007/s10853-020-05050-2. DOI
Esmaeili Y., Zarrabi A., Mirahmadi-Zare S.Z., Bidram E. Hierarchical multifunctional graphene oxide cancer nanotheranostics agent for synchronous switchable fluorescence imaging and chemical therapy. Microchim. Acta. 2020;187:553. doi: 10.1007/s00604-020-04490-6. PubMed DOI
Gautam M., Gupta B., Soe Z.C., Poudel K., Maharjan S., Jeong J.H., Choi H.G., Ku S.K., Yong C.S., Kim J.O. Stealth polymer-coated graphene oxide decorated mesoporous titania nanoplatforms for in vivo chemo-photodynamic cancer therapy. Pharm. Res. 2020;37:162. doi: 10.1007/s11095-020-02900-1. PubMed DOI
Huang S.S., Liu H.L., Liao K.D., Hu Q.Q., Guo R., Deng K.X. Functionalized GO nanovehicles with nitric oxide release and photothermal activity-based hydrogels for bacteria-infected wound healing. ACS Appl. Mater. Interfaces. 2020;12:28952–28964. PubMed
Dhanavel S., Revathy T.A., Sivaranjani T., Sivakumar K., Palani P., Narayanan V., Stephen A. 5-Fluorouracil and curcumin co-encapsulated chitosan/reduced graphene oxide nanocomposites against human colon cancer cell lines. Polym. Bull. 2020;77:213–233. doi: 10.1007/s00289-019-02734-x. DOI
Dhanavel S., Praveena P., Narayanan V., Stephen A. Chitosan/reduced graphene oxide/Pd nanocomposites for co-delivery of 5-fluorouracil and curcumin towards HT-29 colon cancer cells. Polym. Bull. 2020;77:5681–5696. doi: 10.1007/s00289-019-03039-9. DOI
Palai P.K., Mondal A., Chakraborti C.K., Banerjee I., Pal K., Rathnam V.S.S. Doxorubicin loaded green synthesized nanoceria decorated functionalized graphene nanocomposite for cancer-specific drug release. J. Clust. Sci. 2019;30:1565–1582. doi: 10.1007/s10876-019-01599-4. DOI
Singh G., Nenavathu B.P., Imtiyaz K., Rizvi M.M.A. Fabrication of chlorambucil loaded graphene-oxide nanocarrier and its application for improved antitumor activity. Biomed. Pharmacother. 2020;129:110443. doi: 10.1016/j.biopha.2020.110443. PubMed DOI
Tehrani N.S., Masoumi M., Chekin F., Baei M.S. Nitrogen doped porous reduced graphene oxide hybrid as a nanocarrier of imatinib anticancer drug. Russ. J. Appl. Chem. 2020;93:1221–1228. doi: 10.1134/S1070427220080157. DOI
Lee X.J., Lim H.N., Gowthaman N.S.K., Rahman M.B.A., Abdullah C.A.C., Muthoosamy K. In-situ surface functionalization of superparamagnetic reduced graphene oxide—Fe3O4 nanocomposite via Ganoderma lucidum extract for targeted cancer therapy application. Appl. Surf. Sci. 2020;512:145738. doi: 10.1016/j.apsusc.2020.145738. DOI
Li H., Jia Y.L., Liu C.L. Pluronic® F127 stabilized reduced graphene oxide hydrogel for transdermal delivery of ondansetron: Ex vivo and animal studies. Colloids Surf. B Biointerfaces. 2020;195:111259. doi: 10.1016/j.colsurfb.2020.111259. PubMed DOI
Li Q., Li F.M., Qi X.X., Wei F.Q., Chen H.X., Wang T. Pluronic® F127 stabilized reduced graphene oxide hydrogel for the treatment of psoriasis: In vitro and in vivo studies. Colloids Surf. B Biointerfaces. 2020;195:111246. doi: 10.1016/j.colsurfb.2020.111246. PubMed DOI
Karthika V., AlSalhi M.S., Devanesan S., Gopinath K., Arumugam A., Govindarajan M. Chitosan overlaid Fe3O4/rGO nanocomposite for targeted drug delivery, imaging, and biomedical applications. Sci. Rep. 2020;10:18912. doi: 10.1038/s41598-020-76015-3. PubMed DOI PMC
Vinothini K., Rajendran N.K., Mariappan R., Andy R., Marraiki N., Elgorban A.M. A magnetic nanoparticle functionalized reduced graphene oxide-based drug carrier system for a chemo-photodynamic cancer therapy. New J. Chem. 2020;44:5265–5277. doi: 10.1039/D0NJ00049C. DOI
Lima-Sousa R., de Melo-Diogo D., Alves C.G., Cabral C.S.D., Miguel S.P., Mendonca A.G., Correia I.J. Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;117:111294. doi: 10.1016/j.msec.2020.111294. PubMed DOI
Mohammadi E., Zeinali M., Mohammadi-Sardoo M., Iranpour M., Behnam B., Mandegary A. The effects of functionalization of carbon nanotubes on toxicological parameters in mice. Hum. Exp. Toxicol. 2020;39:1147–1167. doi: 10.1177/0960327119899988. PubMed DOI
Mohanta D., Patnaik S., Sood S., Das N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. J. Pharm. Anal. 2019;9:293–300. doi: 10.1016/j.jpha.2019.04.003. PubMed DOI PMC
Dizaji B.F., Farboudi A., Rahbar A., Azarbaijan M.H., Asgary M.R. The role of single- and multi-walled carbon nanotube in breast cancer treatment. Ther. Deliv. 2020;11:653–672. doi: 10.4155/tde-2020-0019. PubMed DOI
Antonucci A., Kupis-Rozmyslowicz J., Boghossian A.A. Noncovalent protein and peptide functionalization of single-walled carbon nanotubes for biodelivery and optical sensing applications. ACS Appl. Mater. Interfaces. 2017;9:11321–11331. doi: 10.1021/acsami.7b00810. PubMed DOI
Assali M., Zaid A.N., Kittana N., Hamad D., Amer J. Covalent functionalization of SWCNT with combretastatin A4 for cancer therapy. Nanotechnology. 2018;29:245101. doi: 10.1088/1361-6528/aab9f2. PubMed DOI
Sahoo A.K., Kanchi S., Mandal T., Dasgupta C., Maiti P.K. Translocation of bioactive molecules through carbon nanotubes embedded in the lipid membrane. ACS Appl. Mater. Interfaces. 2018;10:6168–6179. doi: 10.1021/acsami.7b18498. PubMed DOI
Zhang L., Peng G.T., Li J.C., Liang L.J., Kong Z., Wang H.B., Jia L.J., Wang X.P., Zhang W., Shen J.W. Molecular dynamics study on the configuration and arrangement of doxorubicin in carbon nanotubes. J. Mol. Liq. 2018;262:295–301. doi: 10.1016/j.molliq.2018.04.097. DOI
Singh N., Sachdev A., Gopinath P. Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J. Nanosci. Nanotechnol. 2018;18:1534–1541. doi: 10.1166/jnn.2018.14222. PubMed DOI
Chegeni M., Rozbahani Z.S., Ghasemian M., Mehri M. Synthesis and application of the calcium alginate/SWCNT-Gl as a bio-nanocomposite for the curcumin delivery. Int. J. Biol. Macromol. 2020;156:504–513. doi: 10.1016/j.ijbiomac.2020.04.068. PubMed DOI
Ahmadi H., Ramezani M., Yazdian-Robati R., Behnam B., Azarkhiavi K.R., Nia A.H., Mokhtarzadeh A., Riahi M.M., Razavi B.M., Abnous K. Acute toxicity of functionalized single wall carbon nanotubes: A biochemical, histopathologic and proteomics approach. Chem. Biol. Interact. 2017;275:196–209. doi: 10.1016/j.cbi.2017.08.004. PubMed DOI
Ohta T., Hashida Y., Yamashita F., Hashida M. Development of novel drug and gene delivery carriers composed of single- walled carbon nanotubes and designed peptides with PEGylation. J. Pharm. Sci. 2016;105:2815–2824. doi: 10.1016/j.xphs.2016.03.031. PubMed DOI
Razzazan A., Atyabi F., Kazemi B., Dinarvand R. In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;62:614–625. doi: 10.1016/j.msec.2016.01.076. PubMed DOI
Li B., Zhang X.X., Huang H.Y., Chen L.Q., Cui J.H., Liu Y.L., Jin H.H., Lee B.J., Cao Q.R. Effective deactivation of A549 tumor cells in vitro and in vivo by RGD-decorated chitosan-functionalized single-walled carbon nanotube loading docetaxel. Int. J. Pharm. 2018;543:8–20. doi: 10.1016/j.ijpharm.2018.03.017. PubMed DOI
Karnati K.R., Wang Y.X. Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations. Phys. Chem. Chem. Phys. 2018;20:9389–9400. doi: 10.1039/C8CP00124C. PubMed DOI PMC
Pinto A.V., Magalhaes A.L. Intramolecular hydrogen bonds in tip-functionalized single-walled carbon nanotubes as pH-sensitive gates. J. Phys. Chem. A. 2020;124:9542–9551. doi: 10.1021/acs.jpca.0c03710. PubMed DOI
Garg K., Negi S. Exploring the charge configuration of an armchair single walled carbon nanotube for drug delivery. Mater. Today Proc. 2020;28:185–187. doi: 10.1016/j.matpr.2020.01.536. DOI
Gajewska A., Pawlowska A., Szwajca A., Da Ros T., Pluskota-Karwatka D. Synthesis and structural characterization of single-walled carbon nanotubes functionalized with fluorinated phosphonate analogues of phenylglycine, as promising materials for synthetic and biomedical applications. J. Mol. Struct. 2020;1210:128027. doi: 10.1016/j.molstruc.2020.128027. DOI
Ghadri Z., Raissi H., Shahabi M., Farzad F. Molecular dynamics simulation study of Glycine tip-functionalisation of single-walled carbon nanotubes as emerging nanovectors for the delivery of anticancer drugs. Mol. Simul. 2020;46:111–120. doi: 10.1080/08927022.2019.1679363. DOI
Liu D., Zhang Q., Wang J., Fan L., Zhu W.Q., Cai D.F. Hyaluronic acid-coated single-walled carbon nanotubes loaded with doxorubicin for the treatment of breast cancer. Pharmazie. 2019;74:83–90. PubMed
Phan Q.T., Patil M.P., Tu T.T.K., Le C.M.Q., Kim G.D., Lim K.T. Polyampholyte-grafted single walled carbon nanotubes prepared via a green process for anticancer drug delivery application. Polymer. 2020;193:122340. doi: 10.1016/j.polymer.2020.122340. DOI
Tavakolifard S., Biazar E., Pourshamsian K., Moslemin M.H. Synthesis and evaluation of single-wall carbon nanotube-paclitaxel-folic acid conjugate as an anti-cancer targeting agent. Artif. Cells Nanomed. Biotechnol. 2016;44:1247–1253. doi: 10.3109/21691401.2015.1019670. PubMed DOI
Gangrade A., Mandal B.B. Injectable carbon nanotube impregnated silk based multifunctional hydrogel for localized targeted and on-demand anticancer drug delivery. ACS Biomater. Sci. Eng. 2019;5:2365–2381. doi: 10.1021/acsbiomaterials.9b00416. PubMed DOI
Liu X.H., Xu D.Q., Liao C.C., Fang Y.Q., Guo B.H. Development of a promising drug delivery for formononetin: Cyclodextrin-modified single-walled carbon nanotubes. J. Drug Deliv. Sci. Technol. 2018;43:461–468. doi: 10.1016/j.jddst.2017.11.018. DOI
Fernandes R.S., Lemos J.A., de Barros A.L.B., Geraldo V., da Silva E.E., Alisaraie L., Soares D.C.F. Carboxylated versus bisphosphonate SWCNT: Functionalization effects on the biocompatibility and in vivo behaviors in tumor-bearing mice. J. Drug Deliv. Sci. Technol. 2019;50:266–277. doi: 10.1016/j.jddst.2019.01.036. DOI
Ershadi N., Safaiee R., Golshan M.M. Functionalized (4,0) or (8,0) SWCNT as novel carriers of the anticancer drug 5-FU; a first-principle investigation. Appl. Surf. Sci. 2021;536:147718. doi: 10.1016/j.apsusc.2020.147718. DOI
Al Faraj A., Shaik A.S., Halwani R., Alfuraih A. Magnetic targeting and delivery of drug-loaded SWCNTs theranostic nanoprobes to lung metastasis in breast cancer animal model: Noninvasive monitoring using magnetic resonance imaging. Mol. Imaging Biol. 2016;18:315–324. doi: 10.1007/s11307-015-0902-0. PubMed DOI
Zhang M., Wang W.T., Cui Y.J., Chu X.H., Sun B.H., Zhou N.L., Shen J. Magnetofluorescent Fe3O4/carbon quantum dots coated single-walled carbon nanotubes as dual-modal targeted imaging and chemo/photodynamic/photothermal triple-modal therapeutic agents. Chem. Eng. J. 2018;338:526–538. doi: 10.1016/j.cej.2018.01.081. DOI
Sheikhpour M., Naghinejad M., Kasaeian A., Lohrasbi A., Shahraeini S.S., Zomorodbakhsh S. The applications of carbon nanotubes in the diagnosis and treatment of lung cancer: A critical review. Int. J. Nanomed. 2020;15:7063–7078. doi: 10.2147/IJN.S263238. PubMed DOI PMC
Mehta L., Kumari S., Singh R.P. Carbon nanotubes modulate activity of cytotoxic compounds via a Trojan horse mechanism. Chem. Res. Toxicol. 2020;33:1206–1214. doi: 10.1021/acs.chemrestox.9b00370. PubMed DOI
Nahle S., Cassidy H., Leroux M.M., Mercier R., Ghanbaja J., Doumandji Z., Matallanas D., Rihn B.H., Joubert O., Ferrari L. Genes expression profiling of alveolar macrophages exposed to non-functionalized, anionic and cationic multi-walled carbon nanotubes shows three different mechanisms of toxicity. J. Nanobiotechnol. 2020;18:36. doi: 10.1186/s12951-020-0587-7. PubMed DOI PMC
Dlamini N., Mukaya H.E., Van Zyl R.L., Chen C.T., Zeevaart R.J., Mbianda X.Y. Synthesis, characterization, kinetic drug release and anticancer activity of bisphosphonates multi-walled carbon nanotube conjugates. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;104:109967. doi: 10.1016/j.msec.2019.109967. PubMed DOI
Zomorodbakhsh S., Abbasian Y., Naghinejad M., Sheikhpour M. The effects study of isoniazid conjugated multi-wall carbon nanotubes nanofluid on Mycobacterium tuberculosis. Int. J. Nanomed. 2020;15:5901–5909. doi: 10.2147/IJN.S251524. PubMed DOI PMC
Badea N., Craciun M.M., Dragomir A.S., Balas M., Dinischiotu A., Nistor C., Gavan C., Ionita D. Systems based on carbon nanotubes with potential in cancer therapy. Mater. Chem. Phys. 2020;241:122435. doi: 10.1016/j.matchemphys.2019.122435. DOI
Requardt H., Braun A., Steinberg P., Hampel S., Hansen T. Surface defects reduce carbon nanotube toxicity in vitro. Toxicol. In Vitro. 2019;60:12–18. doi: 10.1016/j.tiv.2019.03.028. PubMed DOI
Bibi A., Sadiq-ur-Rehman, Akhtar T., Akhtar K., Farooq M., Shahzad M.I. Alginate-chitosan/MWCNTs nanocomposite: A novel approach for sustained release of Ibuprofen. J. Polym. Res. 2020;27:363. doi: 10.1007/s10965-020-02342-8. DOI
Sharmeen S., Rahman A.F.M.M., Lubna M.M., Salem K.S., Islam R., Khan M.A. Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan nanocomposite: An approach for significant drug release. Bioact. Mater. 2018;3:236–244. doi: 10.1016/j.bioactmat.2018.03.001. PubMed DOI PMC
Komane P.P., Kumar P., Marimuthu T., du Toit L.C., Kondiah P.P.D., Choonara Y.E., Pillay V. Dexamethasone-loaded, PEGylated, vertically aligned, multiwalled carbon nanotubes for potential ischemic stroke intervention. Molecules. 2018;23:1406. doi: 10.3390/molecules23061406. PubMed DOI PMC
Sharma S., Naskar S., Kuotsu K. Metronomic chemotherapy of carboplatin-loaded PEGylated MWCNTs: Synthesis, characterization and in vitro toxicity in human breast cancer. Carbon Lett. 2020;30:435–447. doi: 10.1007/s42823-019-00113-0. DOI
Mazzaglia A., Scala A., Sortino G., Zagami R., Zhu Y., Sciortino M.T., Pennisi R., Pizzo M.M., Neri G., Grassi G., et al. Intracellular trafficking and therapeutic outcome of multiwalled carbon nanotubes modified with cyclodextrins and polyethylenimine. Colloids Surf. B Biointerfaces. 2018;163:55–63. doi: 10.1016/j.colsurfb.2017.12.028. PubMed DOI
Zhu S., Huang A.G., Luo F., Li J., Li J., Zhu L., Zhao L., Zhu B., Ling F., Wang G.X. Application of virus targeting nanocarrier drug delivery system in virus-induced central nervous system disease treatment. ACS Appl. Mater. Interfaces. 2019;11:19006–19016. doi: 10.1021/acsami.9b06365. PubMed DOI
Nasari M., Semnani D., Hadjianfar M., Amanpour S. Poly(ε-caprolactone)/poly(N-vinyl-2-pyrrolidone) core-shell nanofibers loaded by multi-walled carbon nanotubes and 5-fluorouracil: An anticancer drug delivery system. J. Mater. Sci. 2020;55:10185–10201. doi: 10.1007/s10853-020-04784-3. DOI
Zhang R.Q., Liu Z.Q., Luo Y.L., Xu F., Chen Y.S. Tri-stimuli responsive carbon nanotubes covered by mesoporous silica graft copolymer multifunctional materials for intracellular drug delivery. J. Ind. Eng. Chem. 2019;80:431–443. doi: 10.1016/j.jiec.2019.08.023. DOI
Karthika V., Kaleeswarran P., Gopinath K., Arumugam A., Govindarajan M., Alharbi N.S., Khaled J.M., Al-anbr M.N., Benelli G. Biocompatible properties of nano-drug carriers using TiO2-Au embedded on multiwall carbon nanotubes for targeted drug delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;90:589–601. doi: 10.1016/j.msec.2018.04.094. PubMed DOI
Chowdhry A., Kaur J., Khatri M., Puri V., Tuli R., Puri S. Characterization of functionalized multiwalled carbon nanotubes and comparison of their cellular toxicity between HEK 293 cells and zebra fish in vivo. Heliyon. 2019;5:e02605. doi: 10.1016/j.heliyon.2019.e02605. PubMed DOI PMC
Karimi A., Erfan M., Mortazavi S.A., Ghorbani-Bidkorbeh F., Landi B., Kobarfard F., Shirazi F.H. The photothermal effect of targeted methotrexate-functionalized multi-walled carbon nanotubes on MCF7 cells. Iran. J. Pharm. Res. 2019;18:221–236. PubMed PMC
Kumar M., Sharma G., Misra C., Kumar R., Singh B., Katare O.P., Raza K. N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;89:274–282. doi: 10.1016/j.msec.2018.03.033. PubMed DOI
Badea M.A., Prodana M., Dinischiotu A., Crihana C., Ionita D., Balas M. Cisplatin loaded multiwalled carbon nanotubes induce resistance in triple negative breast cancer cells. Pharmaceutics. 2018;10:228. doi: 10.3390/pharmaceutics10040228. PubMed DOI PMC
Uttekar P.S., Lakade S.H., Beldar V.K., Harde M.T. Facile synthesis of multi-walled carbon nanotube via folic acid grafted nanoparticle for precise delivery of doxorubicin. IET Nanobiotechnol. 2019;13:688–696. doi: 10.1049/iet-nbt.2018.5421. PubMed DOI PMC
Yan Y., Wang R.Z., Hu Y., Sun R.Y., Song T., Shi X.Y., Yin S.M. Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for in vivo chemotherapy of tumors. Drug Deliv. 2018;25:1607–1616. doi: 10.1080/10717544.2018.1501120. PubMed DOI PMC
Prajapati S.K., Jain A., Shrivastava C., Jain A.K. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int. J. Biol. Macromol. 2019;123:691–703. doi: 10.1016/j.ijbiomac.2018.11.116. PubMed DOI
Singhai N.J., Maheshwari R., Ramteke S. CD44 receptor targeted ‘smart’ multi-walled carbon nanotubes for synergistic therapy of triple-negative breast cancer. Colloid Interface Sci. Commun. 2020;35:100235. doi: 10.1016/j.colcom.2020.100235. DOI
Dong Z.P., Wang Q.Y., Huo M., Zhang N.X., Li B.X., Li H.M., Xu Y.S., Chen M., Hong H., Wang Y. Mannose-modified multi-walled carbon nanotubes as a delivery nanovector optimizing the antigen presentation of dendritic cells. ChemistryOpen. 2019;8:915–921. doi: 10.1002/open.201900126. PubMed DOI PMC
Jain S., Dongave S.M., Date T., Kushwah V., Mahajan R.R., Pujara N., Kumeria T., Popat A. Succinylated β-lactoglobuline-functionalized multiwalled carbon nanotubes with improved colloidal stability and biocompatibility. ACS Biomater. Sci. Eng. 2019;5:3361–3372. doi: 10.1021/acsbiomaterials.9b00268. PubMed DOI
Suo N., Wang M.W., Jin Y., Ding J., Gao X.P., Sun X.L., Zhang H.Y., Cui M., Zheng J.L., Li N.L., et al. Magnetic multiwalled carbon nanotubes with controlled release of epirubicin: An intravesical instillation system for bladder cancer. Int. J. Nanomed. 2019;14:1241–1254. doi: 10.2147/IJN.S189688. PubMed DOI PMC
Ghoderao P., Sahare S., Alegaonkar P., Kulkarni A.A., Bhave T. Multiwalled carbon nanotubes decorated with Fe3O4 nanoparticles for efficacious doxycycline delivery. ACS Appl. Nano Mater. 2019;2:607–616. doi: 10.1021/acsanm.8b02268. DOI
Suo X.B., Eldridge B.N., Zhang H., Mao C.Q., Min Y.Z., Sun Y., Singh R., Ming X. P-Glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes. ACS Appl. Mater. Interfaces. 2018;10:33464–33473. doi: 10.1021/acsami.8b11974. PubMed DOI PMC
Karimi A., Erfan M., Mortazavi S.A., Ghorbani-Bidkorbeh F., Kobarfard F., Shirazi F.H. Functionalisation of carbon nanotubes by methotrexate and study of synchronous photothermal effect of carbon nanotube and anticancer drug on cancer cell death. IET Nanobiotechnol. 2019;13:52–57. doi: 10.1049/iet-nbt.2018.5085. PubMed DOI PMC
Yi W.H., Zhang P., Hou J., Chen W.P., Bai L., Yoo S., Khalid A., Hou X. Enhanced response of tamoxifen toward the cancer cells using a combination of chemotherapy and photothermal ablation induced by lentinan-functionalized multi-walled carbon nanotubes. Int. J. Biol. Macromol. Part B. 2018;120:1525–1532. doi: 10.1016/j.ijbiomac.2018.09.085. PubMed DOI
Clindamycin-Loaded Nanosized Calcium Phosphates Powders as a Carrier of Active Substances
Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems
Advances in Biologically Applicable Graphene-Based 2D Nanomaterials
Advances in Nanostructures for Antimicrobial Therapy
Advances in Use of Nanomaterials for Musculoskeletal Regeneration