Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes

. 2021 Feb 24 ; 14 (5) : . [epub] 20210224

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33668271

Grantová podpora
APVV-18-0302 Slovak Research and Development Agency

Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.

Zobrazit více v PubMed

Roy J. An Introduction to Pharmaceutical Sciences: Production, Chemistry, Techniques and Technology. Woodhead Publishing & Elsevier; Cambridge, UK: 2011.

Tovey G.D. Pharmaceutical Formulation: The Science and Technology of Dosage Forms. Royal Society of Chemistry; Croydon, UK: 2018.

Buschmann H., Holenz J., Mannhold R., Bachhav Y.G. Innovative Dosage Forms: Design and Development at Early Stage. Wiley-VCH; Wienheim, Germany: 2019.

State Institute for Drug Control—About Drugs, Encyclopedia. [(accessed on 21 January 2021)];2021 Available online: www.olecich.cz. (In Czech)

Tekade R.K. Drug Delivery Systems. Academic Press & Elsevier; London, UK: 2019.

Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. PubMed DOI PMC

Chyzy A., Tomczykowa M., Plonska-Brzezinska M.E. Hydrogels as potential nano-, micro- and macro-scale systems for controlled drug delivery. Materials. 2020;13:188. doi: 10.3390/ma13010188. PubMed DOI PMC

Jampilek J., Kralova K., Campos E.V.R., Fraceto L.F. Bio-Based Nanoemulsion Formulations Applicable in Agriculture, Medicine and Food Industry. In: Prasad R., Kumar V., Kumar M., Choudhary D.K., editors. Nanobiotechnology in Bioformulations. Springer; Cham, Switzerland: 2019. pp. 33–84.

Jampilek J., Kralova K. Application of Nanobioformulations For Controlled Release and Targeted Biodistribution of Drugs. In: Sharma A.K., Keservani R.K., Kesharwani R.K., editors. Nanobiomaterials: Applications in Drug Delivery. CRC Press; Warentown, NJ, USA: 2018. pp. 131–208.

Jampilek J., Kralova K. Nanotechnology Based Formulations for Drug Targeting to Central Nervous System. In: Keservani R.K., Sharma A.K., editors. Nanoparticulate Drug Delivery Systems. Apple Academic Press & CRC Press; Warentown, NJ, USA: 2019. pp. 151–220.

Jampilek J., Kralova K. Recent Advances in Lipid Nanocarriers Applicable in the Fight Against Cancer. In: Grumezescu A.M., editor. Nanoarchitectonics in Biomedicine. Elsevier; Amsterdam, The Netherlands: 2019. pp. 219–294.

Jampilek J., Kralova K. Natural Biopolymeric Nanoformulations for Brain Drug Delivery. In: Keservani R.K., Sharma A.K., Kesharwani R.K., editors. Nanocarriers for Brain Targeting: Principles and Applications. Apple Academic Press & CRC Press; Warentown, NJ, USA: 2020. pp. 131–203.

Calzoni E., Cesaretti A., Polchi A., Di Michele A., Tancini B., Emiliani C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater. 2019;10:4. doi: 10.3390/jfb10010004. PubMed DOI PMC

Fortuni B., Inose T., Ricci M., Fujita Y., Van Zundert I., Masuhara A., Fron E., Mizuno H., Latterini L., Rocha S., et al. Polymeric engineering of nanoparticles for highly efficient multifunctional drug delivery systems. Sci. Rep. 2019;9:2666. doi: 10.1038/s41598-019-39107-3. PubMed DOI PMC

Singh S., Dhawan A., Karhana S., Bhat A., Dinda A.K. Quantum dots: An emerging tool for point-of-care testing. Micromachines. 2020;11:1058. doi: 10.3390/mi11121058. PubMed DOI PMC

Zhao M.X., Zhu B.J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett. 2016;11:207. doi: 10.1186/s11671-016-1394-9. PubMed DOI PMC

Chis A.A., Dobrea C., Morgovan C., Arseniu A.M., Rus L.L., Butuca A., Juncan A.M., Totan M., Vonica-Tincu A.L., Cormos G., et al. Applications and limitations of dendrimers in biomedicine. Molecules. 2020;25:3982. doi: 10.3390/molecules25173982. PubMed DOI PMC

Su S., Kang P.M. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics. 2020;12:837. doi: 10.3390/pharmaceutics12090837. PubMed DOI PMC

Jampilek J., Kralova K. Nano-Antimicrobials: Activity, Benefits and Weaknesses. In: Ficai A., Grumezescu A.M., editors. Nanostructures for Antimicrobial Therapy. Elsevier; Amsterdam, The Netherlands: 2017. pp. 23–54.

Jampilek J., Kralova K. Nanoformulations—Valuable Tool in Therapy of Viral Diseases Attacking Humans and Animals. In: Rai M., Jamil B., editors. Nanotheranostic—Applications and Limitations. Springer Nature; Cham, Switzerland: 2019. pp. 137–178.

Jampilek J., Kralova K. Impact of Nanoparticles on Toxigenic Fungi. In: Rai M., Abd-Elsalam K.A., editors. Nanomycotoxicology—Treating Mycotoxins in the Nano Way. Academic Press & Elsevier; London, UK: 2020. pp. 309–348.

Jampilek J., Kralova K. Nanocomposites: Synergistic Nanotools for Management Mycotoxigenic Fungi. In: Rai M., Abd-Elsalam K.A., editors. Nanomycotoxicology—Treating Mycotoxins in the Nano Way. Academic Press & Elsevier; London, UK: 2020. pp. 349–383.

Jampilek J., Kralova K. Nanoweapons against Tuberculosis. In: Talegaonkar S., Rai M., editors. Nanoformulations in Human Health—Challenges and Approaches. Springer Nature; Cham, Switzerland: 2020. pp. 469–502.

Pentak D., Kozik V., Bak A., Dybal P., Sochanik A., Jampilek J. Methotrexate and cytarabine—Loaded nanocarriers for multidrug cancer therapy. Spectroscopic study. Molecules. 2016;21:1689. doi: 10.3390/molecules21121689. PubMed DOI PMC

Kozik V., Bak A., Pentak D., Hachula B., Pytlakowska K., Rojkiewicz M., Jampilek J., Sieron K., Jazowiecka-Rakus J., Sochanik A. Derivatives of graphene oxide as potential drug carriers. J. Nanosci. Nanotechnol. 2019;19:2489–2492. doi: 10.1166/jnn.2019.15855. PubMed DOI

Placha D., Jampilek J. Graphenic materials for biomedical applications. Nanomaterials. 2019;9:1758. doi: 10.3390/nano9121758. PubMed DOI PMC

Shi Z., Zhou Y., Fan T., Lin Y., Zhang H., Mei L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater. Med. 2020;1:32–47. doi: 10.1016/j.smaim.2020.05.002. DOI

Dhas N., Parekh K., Pandey A., Kudarha R., Mutalik S., Mehta T. Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. J. Control. Release. 2019;308:130–161. doi: 10.1016/j.jconrel.2019.07.016. PubMed DOI

Panwar N., Soehartono A.M., Chan K.K., Zeng S., Xu G., Qu J., Coquet P., Yong K.T., Chen X. Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery. Chem. Rev. 2019;119:9559–9656. doi: 10.1021/acs.chemrev.9b00099. PubMed DOI

Zainal-Abidin M.H., Hayyan M., Ngoh G.C., Wong W.F. From nanoengineering to nanomedicine: A facile route to enhance biocompatibility of graphene as a potential nano-carrier for targeted drug delivery using natural deep eutectic solvents. Chem. Eng. Sci. 2019;195:95–106. doi: 10.1016/j.ces.2018.11.013. DOI

Jendrzejewska I., Knizek K., Kubacki J., Goraus J., Goryczka T., Pietrasik E., Barsova Z., Jampilek J., Witkowska-Kita B. Structure and properties of nano- and polycrystalline Mn-doped CuCr2Se4 obtained by ceramic method and grain reduction. Mater. Res. Bull. 2021;137:111174. doi: 10.1016/j.materresbull.2020.111174. DOI

Vaculikova E., Grunwaldová V., Kral V., Dohnal J., Jampilek J. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules. 2012;17:13221–13234. doi: 10.3390/molecules171113221. PubMed DOI PMC

Vaculikova E., Cernikova A., Placha D., Pisarcik M., Peikertova P., Dedkova K., Devinsky F., Jampilek J. Preparation of hydrochlorothiazide nanoparticles for solubility enhancement. Molecules. 2016;21:1005. doi: 10.3390/molecules21081005. PubMed DOI PMC

Jampilek J., Kos J., Kralova K. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials. 2019;9:296. doi: 10.3390/nano9020296. PubMed DOI PMC

Jampilek J., Kralova K. Potential of nanonutraceuticals in increasing immunity. Nanomaterials. 2020;10:2224. doi: 10.3390/nano10112224. PubMed DOI PMC

Placha D., Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics. 2021;13:642019. doi: 10.3390/pharmaceutics13010064. PubMed DOI PMC

Jampilek J., Kralova K., Novak P., Novak M. In: Nanobiotechnology in Neurodegenerative Diseases. Rai M., Yadav A., editors. Springer Nature; Cham, Switzerland: 2019. pp. 65–138.

Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI

Martinez G., Merinero M., Perez-Aranda M., Perez-Soriano E.M., Ortiz T., Begines B., Alcudia A. Environmental impact of nanoparticles’ application as an emerging technology: A review. Materials. 2021;14:166. doi: 10.3390/ma14010166. PubMed DOI PMC

Canaparo R., Foglietta F., Limongi T., Serpe L. Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials. 2021;14:53. doi: 10.3390/ma14010053. PubMed DOI PMC

Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 2010;624:25–37. PubMed

Clemons T.D., Singh R., Sorolla A., Chaudhari N., Hubbard A., Iyer K.S. Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy. Langmuir. 2018;34:15343–15349. doi: 10.1021/acs.langmuir.8b02946. PubMed DOI

Shukla T., Upmanyu N., Pandey S.P., Sudheesh M.S. Site-Specific Drug Delivery, Targeting, and Gene Therapy. In: Grumezescu A.M., editor. Nanoarchitectonics in Biomedicine. Elsevier; Amsterdam, The Netherlands: 2019. pp. 473–505.

Attia M.F., Anton N., Wallyn J., Omran Z., Vandamme T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019;71:1185–1198. doi: 10.1111/jphp.13098. PubMed DOI

Zhang M., Cheng S., Jin Y., Zhang N., Wang Y. Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics. Clin. Transl. Med. 2021;11:e292. doi: 10.1002/ctm2.292. PubMed DOI PMC

De Sousa M., de Luna L.A.V., Fonseca L.C., Giorgio S., Alves O.L. Folic-acid-functionalized graphene oxide nanocarrier: Synthetic approaches, characterization, drug delivery study, and antitumor screening. ACS Appl. Nano Mater. 2018;1:922–932. doi: 10.1021/acsanm.7b00324. DOI

Sharma H., Mondal S. Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: A promising material in nanomedicine. Int. J. Mol. Sci. 2020;21:6280. doi: 10.3390/ijms21176280. PubMed DOI PMC

Han X.M., Zheng K.W., Wang R.L., Yue S.F., Chen J., Zhao Z.W., Song F., Su Y., Ma Q. Functionalization and optimization-strategy of graphene oxide-based nanomaterials for gene and drug delivery. Am. J. Transl. Res. 2020;12:1515–1534. PubMed PMC

Mahor A., Singh P.P., Bharadwaj P., Sharma N., Yadav S., Rosenholm J.M., Bansal K.K. Carbon-based nanomaterials for delivery of biologicals and therapeutics: A cutting-edge technology. C. 2021;7:19.

Sajjadi M., Nasrollahzadeh M., Jaleh B., Jamalipour Soufi G., Iravani S. Carbon-based nanomaterials for targeted cancer nanotherapy: Recent trends and future prospects. J. Drug Target. 2021 doi: 10.1080/1061186X.2021.1886301. in press. PubMed DOI

Barthelmy D. Mineral Species Containing Carbon. In Mineralogy Database. [(accessed on 20 January 2021)];2021 Available online: http://webmineral.com/chem/Chem-C.shtml#.YAn3SxaLqM8.

Hirsch A. The era of carbon allotropes. Nat. Mater. 2010;9:868–871. doi: 10.1038/nmat2885. PubMed DOI

Nasir S., Hussein M.Z., Zainal Z., Yusof N.A. Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials. 2018;11:295. doi: 10.3390/ma11020295. PubMed DOI PMC

Allotropes of Carbon. Lumen Learning: Portland, OR, USA. [(accessed on 20 January 2021)]; Available online: https://courses.lumenlearning.com/introchem/chapter/allotropes-of-carbon/

The Nobel Prize in Physics 2010. NobelPrize.org. Nobel Media AB. [(accessed on 14 January 2021)];2021 Available online: https://www.nobelprize.org/prizes/physics/2010/summary/

Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009;81:109–162. doi: 10.1103/RevModPhys.81.109. DOI

Marconcini P., Macucci M. The k.p method and its application to graphene, carbon nanotubes and graphene nanoribbons: The Dirac equation. Riv. Nuovo Cim. 2011;34:489–584.

Nurunnabi M., McCarthy J.R. Biomedical Applications of Graphene and 2D Nanomaterials (Micro and Nano Technologies) Elsevier; Amsterdam, The Netherlands: 2019.

Singh R.K., Kumar R., Singh D.P. Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv. 2016;6:64993–65011. doi: 10.1039/C6RA07626B. DOI

Ranjan P., Agrawal S., Sinha A., Rao T.R., Balakrishnan J., Thakur A.D. A low-cost non-explosive synthesis of graphene oxide for scalable applications. Sci. Rep. 2018;8:12007. doi: 10.1038/s41598-018-30613-4. PubMed DOI PMC

Neustroev E.P. Plasma Treatment of Graphene Oxide. In: Kamble G.S., editor. Graphene Oxide Applications and Opportunities. IntechOpen; Rijeka, Croatia: 2018. pp. 7–24.

Shabin M., Hanaa H., Ranwen O., Shasha L., Hongyu M., Xiaofang C., Tam S., Huanting W. Effect of oxygen plasma treatment on the nanofiltration performance of reduced graphene oxide/cellulose nanofiber composite membranes. Green Chem. Eng. 2021 doi: 10.1016/j.gce.2020.12.001. in press. DOI

Etching with Plasma. Diener Electronic, Plasma—Surface—Technology, Ebhausen, Germany. [(accessed on 18 February 2021)]; Available online: https://www.plasma.com/en/etching-with-plasma/?kampagne=1&gclid=Cj0KCQiAvbiBBhD-ARIsAGM48bzt1bCEbT4CqRUWwSqgJWCitReALhY-T5EBVf9B6c5AkWFWNdVxSxUaAkU0EALw_wcB.

Smith A.T., LaChance A.M., Zeng S., Liu B., Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mat. Sci. 2019;1:31–47. doi: 10.1016/j.nanoms.2019.02.004. DOI

Joshi S., Siddiqui R., Sharma P., Kumar R., Verma G., Saini A. Green synthesis of peptide functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity. Sci. Rep. 2020;10:9441. doi: 10.1038/s41598-020-66230-3. PubMed DOI PMC

Kang J., Wei Z.M., Li J.B. Graphyne and its family: Recent theoretical advances. ACS Appl. Mater. Interfaces. 2019;11:2692–2706. doi: 10.1021/acsami.8b03338. PubMed DOI

Gao X., Liu H.B., Wang D., Zhang J. Graphdiyne: Synthesis, properties, and applications. Chem. Soc. Rev. 2019;48:908–936. doi: 10.1039/C8CS00773J. PubMed DOI

Nanowerk: Carbon Nanotubes—What They Are, How They Are Made, What They Are Used For. [(accessed on 21 January 2021)];2021 Available online: https://www.nanowerk.com/nanotechnology/introduction/introduction_to_nanotechnology_22.php.

Foa Torres L.E.F., Roche S., Charlier J.C. Introduction to Graphene-Based Nanomaterials. 2nd ed. Cambridge University Press; Cambridge, UK: 2020.

Takai K., Tsujimura S., Kang F., Inagaki M. Graphene: Preparations, Properties, Applications, and Prospects. Elsevier; Amsterdam, The Netherlands: 2020.

Dimiev A.M., Eigler S. Graphene Oxide: Fundamentals and Applications. John Wiley and Sons; Chichester, UK: 2017.

Tanaka K., Iijima S. Carbon Nanotubes and Graphene. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2014.

Liao C., Li Y., Tjong S.C. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 2018;19:E3564. doi: 10.3390/ijms19113564. PubMed DOI PMC

Maiti D., Tong X.M., Mou X.Z., Yang K. Carbon-based nanomaterials for biomedical applications: A recent study. Front. Pharmacol. 2019;9:1401. doi: 10.3389/fphar.2018.01401. PubMed DOI PMC

Ghosal K., Sarkar K. Biomedical applications of graphene nanomaterials and beyond. ACS Biomater. Sci. Eng. 2018;4:2653–2703. doi: 10.1021/acsbiomaterials.8b00376. PubMed DOI

Madannejad R., Shoaie N., Jahanpeyma F., Darvishi M.H., Azimzadeh M., Javadi H. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Biol. Interact. 2019;307:206–222. doi: 10.1016/j.cbi.2019.04.036. PubMed DOI

Jia P.P., Sun T., Junaid M., Yang L., Ma Y.B., Cui Z.S., Wei D.P., Shi H.F., Pei D.S. Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Environ. Pollut. 2019;247:595–606. doi: 10.1016/j.envpol.2019.01.072. PubMed DOI

Ameta S.C., Kodolov V.I., Vakhrushev A.V., Haghi A.K. Carbon Nanotubes and Nanoparticles: Current and Potential Applications. Apple Academic Press & CRC Press; Palm Bay, FL, USA: 2019.

Chung S., Revia R.A., Zhang M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv Mater. 2019;12:e1904362. doi: 10.1002/adma.201904362. PubMed DOI PMC

Rajakumar G., Zhang X.H., Gomathi T., Wang S.F., Ansari M.A., Mydhili G., Nirmala G., Alzohairy M.A., Chung I.M. Current use of carbon-based materials for biomedical applications—A prospective and review. Processes. 2020;8:355. doi: 10.3390/pr8030355. DOI

Crista M.A., da Silva J.C.G.E., da Silva L.P. Evaluation of different bottom-up routes for the fabrication of carbon dots. Nanomaterials. 2020;10:1316. doi: 10.3390/nano10071316. PubMed DOI PMC

Zarzycki P.K. Pure and Functionalized Carbon Based Nanomaterials: Analytical, Biomedical, Civil and Environmental Engineering Applications. CRC Press; Boca Raton, FL, USA: 2020.

European Union Observatory for Nanomaterials. [(accessed on 20 January 2021)];2021 Available online: https://euon.echa.europa.eu/medicine.

Rahmati M., Mozafari M. Biological response to carbon-family nanomaterials: Interactions at the nano-bio interface. Front. Bioeng. Biotechnol. 2019;7:4. doi: 10.3389/fbioe.2019.00004. PubMed DOI PMC

Kitko K.E., Zhang Q. Graphene-based nanomaterials: From production to integration with modern tools in neuroscience. Front. Syst. Neurosci. 2019;13:26. doi: 10.3389/fnsys.2019.00026. PubMed DOI PMC

Jun S.W., Manivasagan P., Kwon J., Nguyen V.T., Mondal S., Ly C.D., Lee J., Kang Y.H., Kim C.S., Oh J. Folic acid-conjugated chitosan-functionalized graphene oxide for highly efficient photoacoustic imaging-guided tumor-targeted photothermal therapy. Int. J. Biol. Macromol. 2020;155:961–971. doi: 10.1016/j.ijbiomac.2019.11.055. PubMed DOI

Wong X.Y., Quesada-Gonzalez D., Manickam S., New S.Y., Muthoosamy K., Merkoci A. Integrating gold nanoclusters, folic acid and reduced graphene oxide for nanosensing of glutathione based on “turn-off” fluorescence. Sci. Rep. 2021;11:2375. doi: 10.1038/s41598-021-81677-8. PubMed DOI PMC

Hwang H.S., Jeong J.W., Kim Y.A., Chang M. Carbon nanomaterials as versatile platforms for biosensing applications. Micromachines. 2020;11:814. doi: 10.3390/mi11090814. PubMed DOI PMC

Jeon S., Lee J., Park R., Jeong J., Shin M.C., Eom S.U., Park J., Hong S.W. Graphene templated DNA arrays and biotin-streptavidin sensitive bio-transistors patterned by dynamic self-assembly of polymeric films confined within a roll-on-plate geometry. Nanomaterials. 2020;10:1468. doi: 10.3390/nano10081468. PubMed DOI PMC

Wang S., Hossain M.Z., Han T., Shinozuka K., Suzuki T., Kuwana A., Kobayashi H. Avidin–biotin technology in gold nanoparticle-decorated graphene field effect transistors for detection of biotinylated macromolecules with ultrahigh sensitivity and specificity. ACS Omega. 2020;5:30037–30046. doi: 10.1021/acsomega.0c04429. PubMed DOI PMC

Wahid F., Zhao X.J., Jia S.R., Bai H., Zhong C. Nanocomposite hydrogels as multifunctional systems for biomedical applications: Current state and perspectives. Compos. Part B Eng. 2020;200:108208. doi: 10.1016/j.compositesb.2020.108208. DOI

Cao W.J., He L., Cao W.D., Huang X.B., Jia K., Dai J.Y. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomater. 2020;112:14–28. doi: 10.1016/j.actbio.2020.06.009. PubMed DOI

Yi J., Choe G., Park J., Lee J.Y. Graphene oxide-incorporated hydrogels for biomedical applications. Polym. J. 2020;52:823–837. doi: 10.1038/s41428-020-0350-9. DOI

Gong M., Sun J., Liu G., Li L., Wu S., Xiang Z. Graphene oxide–modified 3D acellular cartilage extracellular matrix scaffold for cartilage regeneration. Mat. Sci. Eng. C Mater. 2021;119:111603. doi: 10.1016/j.msec.2020.111603. PubMed DOI

Luo S., Jin S., Yang T., Wu B., Xu C., Luo L., Chen Y. Sustained release of tulobuterol from graphene oxide laden hydrogel to manage asthma. J. Biomater. Sci. Polym. Ed. 2021 doi: 10.1080/09205063.2020.1849921. in press. PubMed DOI

Marsh H., Rodriguez-Reinoso F. Activated Carbon. Elsevier; Amsterdam, The Netherlands: 2006.

McDougall G.J. The physical nature and manufacture of activated carbon. J. S. Afr. Inst. Min. Metal. 1991;91:109–120.

Roy G.M. Activated Carbon Applications in the Food and Pharmaceutical Industries. Technomic Publishing Company; Lancaster, PA, USA: 1995.

Kerihuel J.C. Effect of activated charcoal dressings on healing outcomes of chronic wounds. J. Wound Care. 2010;19:208. doi: 10.12968/jowc.2010.19.5.48047. PubMed DOI

Afrin M.R., Arumugam S., Pitchaimani V., Karuppagounder V., Thandavarayan R.A., Harima M., Hossain C.F., Suzuki K., Sone H., Matsubayashi Y., et al. Le Carbone prevents liver damage in non-alcoholic steatohepatitis-hepatocellular carcinoma mouse model via AMPKα-SIRT1 signaling pathway activation. Heliyon. 2021;7:e05888. doi: 10.1016/j.heliyon.2020.e05888. PubMed DOI PMC

Ramanayaka S., Vithanage M., Alessi D.S., Liu W.J., Jayasundera A.C.A., Ok Y.S. Nanobiochar: Production, properties, and multifunctional applications. Environ. Sci. Nano. 2020;7:3279–3302. doi: 10.1039/D0EN00486C. DOI

Jampilek J., Kralova K. Potential of Nanoscale Carbon-Based Materials for Remediation of Pesticide-Contaminated Environment. In: Abd-Elsalam K.A., editor. Carbon Nanomaterials for Agri-Food and Environmental Applications. Elsevier; Amsterdam, The Netherlands: 2020. pp. 359–399.

Jampilek J., Kralova K. Synthesis of Nanocomposite from Agricultural Waste. In: Abd-Elsalam K.A., editor. Multifunctional Hybrid Nanomaterials for Sustainable Agri-food and Ecosystems. Elsevier; Amsterdam, The Netherlands: 2020. pp. 51–98.

Farjadian F., Abbaspour S., Sadatlu M.A.A., Mirkiani S., Ghasemi A., Hoseini-Ghahfarokhi M., Mozaffari N., Karimi M., Hamblin M.R. Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: A review. ChemistrySelect. 2020;5:10200–10219. doi: 10.1002/slct.202002501. DOI

Zhu W.Q., Huang H.T., Dong Y., Han C.Y., Sui X.Y., Jian B.Y. Multi-walled carbon nanotube-based systems for improving the controlled release of insoluble drug dipyridamole. Exp. Ther. Med. 2019;17:4610–4616. doi: 10.3892/etm.2019.7510. PubMed DOI PMC

Jones A.D., Mi G., Webster T.J. A status report on FDA approval of medical devices containing nanostructured materials. Trends Biotechnol. 2019;37:117–120. doi: 10.1016/j.tibtech.2018.06.003. PubMed DOI

Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019;4:e10143. doi: 10.1002/btm2.10143. PubMed DOI PMC

Nanotechnology, US FDA. [(accessed on 20 January 2021)];2021 Available online: https://www.fda.gov/about-fda/nctr-research-focus-areas/nanotechnology.

A Brief Review of FDA Approved Nano-Drugs, NBIC+, StatNano. [(accessed on 20 January 2021)];2021 Available online: https://statnano.com/news/61107/A-Brief-Review-of-FDA-Approved-Nano-drugs.

Gustavsson P., Hedmer M., Rissler J. Carbon Nanotubes—Exposure, Toxicology and Protective Measures in the Work Environment. Arbetsmiljöverket; Stockholm, Sweden: 2011. [(accessed on 20 January 2021)]. Available online: https://www.av.se/globalassets/filer/publikationer/kunskapssammanstallningar/carbon-nanotubes-knowledge-compliation-2011-1-eng.pdf.

National Industrial Chemicals Notification and Assessment Scheme (NICNAS) Human Health Hazard Assessment and Classification of Carbon Nanotubes. Safe Work Australia; Canberra, Australia: 2012. [(accessed on 20 January 2021)]. Available online: https://www.safeworkaustralia.gov.au/system/files/documents/1702/human_health_hazard_assessment_and_classification_of_carbon_nanotubes.pdf.

Garriga R., Herrero-Continente T., Palos M., Cebolla V.L., Osada J., Muñoz E., Rodríguez-Yoldi M.J. Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines. Nanomaterials. 2020;10:1617. doi: 10.3390/nano10081617. PubMed DOI PMC

Yan H., Xue Z., Xie J., Dong Y., Ma Z., Sun X., Kebebe Borga D., Liu Z., Li J. Toxicity of carbon nanotubes as anti-tumor drug carriers. Int. J. Nanomed. 2019;14:10179–10194. doi: 10.2147/IJN.S220087. PubMed DOI PMC

Keservani R.K., Sharma A.K. Nanoconjugate Nanocarriers for Drug Delivery. CRC Press; Warentown, NJ, USA: 2018.

Thakur V.K., Thakur M.K. Chemical Functionalization of Carbon Nanomaterials. CRC Press; Warentown, NJ, USA: 2018.

Li L., Wu G., Yang G., Peng J., Zhao J., Zhu J.J. Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale. 2013;5:4015–4039. doi: 10.1039/c3nr33849e. PubMed DOI

Younis M.R., He G., Lin J., Huang P. Recent advances on graphene quantum dots for bioimaging applications. Front. Chem. 2020;8:424. doi: 10.3389/fchem.2020.00424. PubMed DOI PMC

Li M., Chen T., Gooding J.J., Liu J. Review of carbon and graphene quantum dots for sensing. ACS Sens. 2019;4:1732–1748. doi: 10.1021/acssensors.9b00514. PubMed DOI

Henna T.K., Pramod K. Graphene quantum dots redefine nanobiomedicine. Mater. Sci. Eng. C. 2020;110:110651. doi: 10.1016/j.msec.2020.110651. PubMed DOI

Kortel M., Mansuriya B.D., Vargas Santana N., Altintas Z. Graphene quantum dots as flourishing nanomaterials for bio-imaging, therapy development, and micro-supercapacitors. Micromachines. 2020;11:866. doi: 10.3390/mi11090866. PubMed DOI PMC

Lesiak A., Drzozga K., Cabaj J., Banski M., Malecha K., Podhorodecki A. Optical sensors based on II-VI quantum dots. Nanomaterials. 2019;9:192. doi: 10.3390/nano9020192. PubMed DOI PMC

Tajik S., Dourandish Z., Zhang K., Beitollahi H., Le Q.V., Jang H.W., Shokouhimehr M. Carbon and graphene quantum dots: A review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 2020;10:15406–15429. doi: 10.1039/D0RA00799D. PubMed DOI PMC

Zhang M., Bishop B.P., Thompson N.L., Hildahl K., Dang B., Mironchuk O., Chen N., Aoki R., Holmberg V.C., Nance E. Quantum dot cellular uptake and toxicity in the developing brain: Implications for use as imaging probes. Nanoscale Adv. 2019;1:342–3442. doi: 10.1039/C9NA00334G. PubMed DOI PMC

Perini G., Palmieri V., Ciasca G., De Spirito M., Papi M. Unravelling the potential of graphene quantum dots in biomedicine and neuroscience. Int. J. Mol. Sci. 2020;21:3712. doi: 10.3390/ijms21103712. PubMed DOI PMC

Jha S., Mathur P., Ramteke S., Jain N.K. Pharmaceutical potential of quantum dots. Artif. Cells Nanomed. Biotechnol. 2018;46:57–65. doi: 10.1080/21691401.2017.1411932. PubMed DOI

Levy M., Chowdhury P.P., Nagpal P. Quantum dot therapeutics: A new class of radical therapies. J. Biol. Eng. 2019;13:48. doi: 10.1186/s13036-019-0173-4. PubMed DOI PMC

Zhao C.H., Song X.B., Liu Y., Fu Y.F., Ye L.L., Wang N., Wang F., Li L., Mohammadniaei M., Zhang M., et al. Synthesis of graphene quantum dots and their applications in drug delivery. J. Nanobiotechnology. 2020;18:142. doi: 10.1186/s12951-020-00698-z. PubMed DOI PMC

Hashemi M.S., Gharbi S., Jafarinejad-Farsangi S., Ansari-Asl Z., Dezfuli A.S. Secondary toxic effect of graphene oxide and graphene quantum dots alters the expression of miR-21 and miR-29a in human cell lines. Toxicol. In Vitro. 2020;65:104796. doi: 10.1016/j.tiv.2020.104796. PubMed DOI

Du J.J., Feng B., Dong Y.Q., Zhao M., Yang X.D. Vanadium coordination compounds loaded on graphene quantum dots (GQDs) exhibit improved pharmaceutical properties and enhanced anti-diabetic effects. Nanoscale. 2020;12:9219–9230. doi: 10.1039/D0NR00810A. PubMed DOI

Rakhshaei R., Namazi H., Hamishehkar H., Rahimi M. Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties. Int. J. Biol. Macromol. 2020;150:1121–1129. doi: 10.1016/j.ijbiomac.2019.10.118. PubMed DOI

Liang J.L., Huang Q.W., Hua C.X., Hu J.H., Chen B.L., Wan J.M., Hu Z.W., Wang B. pH-Responsive nanoparticles loaded with graphene quantum dots and doxorubicin for intracellular imaging, drug delivery and efficient cancer therapy. ChemistrySelect. 2019;4:6004–6012. doi: 10.1002/slct.201803807. DOI

Sheng Y.S., Dai W., Gao J., Li H.D., Tan W.S., Wang J.W., Deng L.H., Kong Y. pH-sensitive drug delivery based on chitosan wrapped graphene quantum dots with enhanced fluorescent stability. Mat. Sci. Eng. C Mater. 2020;112:110888. doi: 10.1016/j.msec.2020.110888. PubMed DOI

Havanur S., Batish I., Cheruku S.P., Gourishetti K., JagadeeshBabu P.E., Kumar N. Poly(N,N-diethyl acrylamide)/functionalized graphene quantum dots hydrogels loaded with doxorubicin as a nano-drug carrier for metastatic lung cancer in mice. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;105:110094. doi: 10.1016/j.msec.2019.110094. PubMed DOI

Nasrollahi F., Sana B., Paramelle D., Ahadian S., Khademhosseini A., Lim S. Incorporation of graphene quantum dots, iron, and doxorubicin in/on ferritin nanocages for bimodal imaging and drug delivery. Adv. Ther. 2020;3:1900183. doi: 10.1002/adtp.201900183. DOI

Karimi S., Namazi H. Simple preparation of maltose-functionalized dendrimer/graphene quantum dots as a pH-sensitive biocompatible carrier for targeted delivery of doxorubicin. Int. J. Biol. Macromol. 2020;156:648–659. doi: 10.1016/j.ijbiomac.2020.04.037. PubMed DOI

Yao X.X., Niu X.X., Ma K.X., Huang P., Grothe J., Kaskel S., Zhu Y.F. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small. 2017;13:1602225. doi: 10.1002/smll.201602225. PubMed DOI

Gao Y., Zhong S.L., Xu L.F., He S.H., Dou Y.M., Zhao S.N., Chen P., Cui X.J. Mesoporous silica nanoparticles capped with graphene quantum dots as multifunctional drug carriers for photo-thermal and redox-responsive release. Microporous Mesoporous Mater. 2019;278:130–137. doi: 10.1016/j.micromeso.2018.11.030. DOI

Wang N., Xu H.H., Sun S.A., Guo P.Y., Wang Y., Qian C.T., Zhong Y.Y., Yang D.Z. Wound therapy via a photo-responsively antibacterial nano-graphene quantum dots conjugate. J. Photochem. Photobiol. B. 2020;210:111978. doi: 10.1016/j.jphotobiol.2020.111978. PubMed DOI

Zheng S.H., Jin Z., Han C.P., Li J.J., Xu H., Park S., Park J.O., Choi E., Xu K. Graphene quantum dots-decorated hollow copper sulfide nanoparticles for controlled intracellular drug release and enhanced photothermal-chemotherapy. J. Mater. Sci. 2020;55:1184–1197. doi: 10.1007/s10853-019-04062-x. DOI

Yu L., Tian X., Gao D.X., Lang Y., Zhang X.X., Yang C., Gu M.M., Shi J.M., Zhou P.K., Shang Z.F. Oral administration of hydroxylated-graphene quantum dots induces intestinal injury accompanying the loss of intestinal stem cells and proliferative progenitor cells. Nanotoxicology. 2019;13:1409–1421. doi: 10.1080/17435390.2019.1668068. PubMed DOI

Li Z., Fan J.L., Tong C.Y., Zhou H.Y., Wang W.M., Li B., Liu B., Wang W. A smart drug-delivery nanosystem based on carboxylated graphene quantum dots for tumor-targeted chemotherapy. Nanomedicine. 2019;14:2011–2025. doi: 10.2217/nnm-2018-0378. PubMed DOI

Perini G., Palmieri V., Ciasca G., D’Ascenzo M., Primiano A., Gervasoni J., De Maio F., De Spirito M., Papi M. Enhanced chemotherapy for glioblastoma multiforme mediated by functionalized graphene quantum dots. Materials. 2020;13:4139. doi: 10.3390/ma13184139. PubMed DOI PMC

Perini G., Palmieri V., Ciasca G., D’Ascenzo M., Gervasoni J., Primiano A., Rinaldi M., Fioretti D., Prampolini C., Tiberio F., et al. Graphene quantum dots’ surface chemistry modulates the sensitivity of glioblastoma cells to chemotherapeutics. Int. J. Mol. Sci. 2020;21:6301. doi: 10.3390/ijms21176301. PubMed DOI PMC

Xue Z.Y., Sun Q., Zhang L., Kang Z.Z., Liang L.J., Wang Q., Shen J.W. Graphene quantum dot assisted translocation of drugs into a cell membrane. Nanoscale. 2019;11:4503–4514. doi: 10.1039/C8NR10091H. PubMed DOI

Iannazzo D., Pistone A., Salamo M., Galvagno S., Romeo R., Giofre S.V., Branca C., Visalli G., Di Pietro A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm. 2017;518:185–192. doi: 10.1016/j.ijpharm.2016.12.060. PubMed DOI

Jiang W.J., Chen J.Y., Gong C.A., Wang Y.Y., Gao Y., Yuan Y.F. Intravenous delivery of enzalutamide based on high drug loading multifunctional graphene oxide nanoparticles for castration-resistant prostate cancer therapy. J. Nanobiotechnology. 2020;18:50. doi: 10.1186/s12951-020-00607-4. PubMed DOI PMC

Vatanparast M., Shariatinia Z. Revealing the role of different nitrogen functionalities in the drug delivery performance of graphene quantum dots: A combined density functional theory and molecular dynamics approach. J. Mater. Chem. B. 2019;7:6156–6171. doi: 10.1039/C9TB00971J. PubMed DOI

Senel B., Demir N., Buyukkoroglu G., Yildiz M. Graphene quantum dots: Synthesis, characterization, cell viability, genotoxicity for biomedical applications. Saudi Pharm J. 2019;27:846–858. doi: 10.1016/j.jsps.2019.05.006. PubMed DOI PMC

Ramachandran P., Lee C.Y., Doong R.A., Oon C.E., Thanh N.T.K., Lee H.L. A titanium dioxide/nitrogen-doped graphene quantum dot nanocomposite to mitigate cytotoxicity: Synthesis, characterisation, and cell viability evaluation. RSC Adv. 2020;10:21795–21805. doi: 10.1039/D0RA02907F. PubMed DOI PMC

Ahmadi-Kashani M., Dehghani H., Zarrabi A. A biocompatible nanoplatform formed by MgAl-layered double hydroxide modified Mn3O4/N-graphene quantum dot conjugated-polyaniline for pH-triggered release of doxorubicin. Mat. Sci. Eng. C Mater. 2020;114:111055. doi: 10.1016/j.msec.2020.111055. PubMed DOI

Shende P., Augustine S., Prabhakar B. A review on graphene nanoribbons for advanced biomedical applications. Carbon Lett. 2020;30:465–475. doi: 10.1007/s42823-020-00125-1. DOI

Johnson A.P., Gangadharappa H.V., Pramod K. Graphene nanoribbons: A promising nanomaterial for biomedical applications. J. Control. Release. 2020;325:141–162. doi: 10.1016/j.jconrel.2020.06.034. PubMed DOI

Mousavi S.M., Soroshnia S., Hashemi S.A., Babapoor A., Ghasemi Y., Savardashtaki A., Amani A.M. Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy and drug delivery applications. Drug Metab. Rev. 2019;51:91–104. doi: 10.1080/03602532.2019.1582661. PubMed DOI

Janani K., Thiruvadigal D.J. Density functional study on covalent functionalization of zigzag graphene nanoribbon through l-Phenylalanine and boron doping: Effective nanocarriers in drug delivery applications. Appl. Surf. Sci. 2018;449:815–822.

Mari E., Mardente S., Morgante E., Tafani M., Lococo E., Fico F., Valentini F., Zicari A. Graphene oxide nanoribbons induce autophagic vacuoles in neuroblastoma cell lines. Int. J. Mol. Sci. 2016;17:1995. doi: 10.3390/ijms17121995. PubMed DOI PMC

Chowdhury S.M., Zafar S., Tellez V., Sitharaman B. Graphene nanoribbon-based platform for highly efficacious nuclear gene delivery. ACS Biomater. Sci. Eng. 2016;2:798–808. doi: 10.1021/acsbiomaterials.5b00562. PubMed DOI

Foreman H.C.C., Lalwani G., Kalra J., Krug L.T., Sitharaman B. Gene delivery to mammalian cells using a graphene nanoribbon platform. J. Mater. Chem. B. 2017;5:2347–2354. doi: 10.1039/C6TB03010F. PubMed DOI

Chowdhury S.M., Fang J., Sitharaman B. Interaction of graphene nanoribbons with components of the blood vascular system. Future Sci. OA. 2015;1:FSO19. doi: 10.4155/fso.15.17. PubMed DOI PMC

Chowdhury S.M., Manepalli P., Sitharaman B. Graphene nanoribbons elicit cell specific uptake and delivery via activation of epidermal growth factor receptor enhanced by human papillomavirus E5 protein. Acta Biomater. 2014;10:4494–4504. doi: 10.1016/j.actbio.2014.06.030. PubMed DOI PMC

Chowdhury S.M., Lalwani G., Zhang K., Yang J.Y., Neville K., Sitharaman B. Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials. 2013;34:283–293. doi: 10.1016/j.biomaterials.2012.09.057. PubMed DOI PMC

Chowdhury S.M., Surhland C., Sanchez Z., Chaudhary P., Kumar M.A.S., Lee S., Pena L.A., Waring M., Sitharaman B., Naidu M. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomedicine. 2015;11:109–118. doi: 10.1016/j.nano.2014.08.001. PubMed DOI PMC

Lu Y.J., Lin C.W., Yang H.W., Lin K.J., Wey S.P., Sun C.L., Wei K.C., Yen T.C., Lin C.I., Ma C.C.M., et al. Biodistribution of PEGylated graphene oxide nanoribbons and their application in cancer chemo-photothermal therapy. Carbon. 2014;74:83–95. doi: 10.1016/j.carbon.2014.03.007. DOI

Chng E.L.K., Chua C.K., Pumera M. Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets. Nanoscale. 2014;6:10792–10797. doi: 10.1039/C4NR03608E. PubMed DOI

Peng E.X., Todorova N., Yarovsky I. Effects of size and functionalization on the structure and properties of graphene oxide nanoflakes: An in silico investigation. ACS Omega. 2018;3:11497–11503. doi: 10.1021/acsomega.8b00866. PubMed DOI PMC

Duverger E., Picaud F., Stauffer L., Sonnet P. Simulations of a graphene nanoflake as a nanovector to improve ZnPc phototherapy toxicity: From vacuum to cell membrane. ACS Appl. Mater. Interfaces. 2017;9:37554–37562. doi: 10.1021/acsami.7b09054. PubMed DOI

Lamb J., Fischer E., Rosillo-Lopez M., Salzmann C.G., Holland J.P. Multi-functionalised graphene nanoflakes as tumour-targeting theranostic drug-delivery vehicles. Chem. Sci. 2019;10:8880–8888. doi: 10.1039/C9SC03736E. PubMed DOI PMC

Yurt F., Ersoz O.A., Harputlu E., Ocakoglu K. Preparation and evaluation of effect on Escherichia coli and Staphylococcus aureus of radiolabeled ampicillin-loaded graphene oxide nanoflakes. Chem. Biol. Drug Des. 2018;91:1094–1100. doi: 10.1111/cbdd.13171. PubMed DOI

Vovusha H., Sanyal S., Sanyal B. Interaction of nucleobases and aromatic amino acids with graphene oxide and graphene flakes. J. Phys. Chem. Lett. 2013;4:3710–3718. doi: 10.1021/jz401929h. DOI

Chhabra P., Chauhan G., Kumar A. Augmented healing of full thickness chronic excision wound by rosmarinic acid loaded chitosan encapsulated graphene nanopockets. Drug Dev. Ind. Pharm. 2020;46:878–888. doi: 10.1080/03639045.2020.1762200. PubMed DOI

Newman L., Jasim D.A., Prestat E., Lozano N., de Lazaro I., Nam Y., Assas B.M., Pennock J., Haigh S.J., Bussy C., et al. Splenic capture and in vivo intracellular biodegradation of biological-grade graphene oxide sheets. ACS Nano. 2020;14:10168–10186. doi: 10.1021/acsnano.0c03438. PubMed DOI PMC

Nizami M.Z.I., Takashiba S., Nishina Y. Graphene oxide: A new direction in dentistry. Appl. Mater. Today. 2020;19:100576. doi: 10.1016/j.apmt.2020.100576. DOI

Jagiello J., Chlanda A., Baran M., Gwiazda M., Lipinska L. Synthesis and characterization of graphene oxide and reduced graphene oxide composites with inorganic nanoparticles for biomedical applications. Nanomaterials. 2020;10:1846. doi: 10.3390/nano10091846. PubMed DOI PMC

Malik S.A., Mohanta Z., Srivastava C., Atreya H.S. Modulation of protein-graphene oxide interactions with varying degrees of oxidation. Nanoscale Adv. 2020;2:1904–1912. doi: 10.1039/C9NA00807A. PubMed DOI PMC

Chen Y.L., Yang Y.K., Xiang Y.W., Singh P., Feng J.L., Cui S.F., Carrier A., Oakes K., Luan T.G., Zhang X. Multifunctional graphene-oxide-reinforced dissolvable polymeric microneedles for transdermal drug delivery. ACS Appl. Mater. Interfaces. 2020;12:352–360. doi: 10.1021/acsami.9b19518. PubMed DOI

Gupta N., Bhagat S., Singh M., Jangid A.K., Bansal V., Singh S., Pooja D., Kulhari H. Site-specific delivery of a natural chemotherapeutic agent to human lung cancer cells using biotinylated 2D rGO nanocarriers. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;112:110884. doi: 10.1016/j.msec.2020.110884. PubMed DOI

Cuevas-Flores M.D., Bartolomei M., Garcia-Revilla M.A., Coletti C. Interaction and reactivity of cisplatin physisorbed on graphene oxide nano-prototypes. Nanomaterials. 2020;10:1074. doi: 10.3390/nano10061074. PubMed DOI PMC

Shahabi M., Raissi H. Payload delivery of anticancer drug Tegafur with the assistance of graphene oxide nanosheet during biomembrane penetration: Molecular dynamics simulation survey. Appl. Surf. Sci. 2020;517:146186. doi: 10.1016/j.apsusc.2020.146186. DOI

Boran G., Tavakoli S., Dierking I., Kamali A.R., Ege D. Synergistic effect of graphene oxide and zoledronic acid for osteoporosis and cancer treatment. Sci. Rep. 2020;10:7827. doi: 10.1038/s41598-020-64760-4. PubMed DOI PMC

Matulewicz K., Kazmierski L., Wisniewski M., Roszkowski S., Roszkowski K., Kowalczyk O., Roy A., Tylkowski B., Bajek A. Ciprofloxacin and graphene oxide combination—New face of a known drug. Materials. 2020;13:4224. doi: 10.3390/ma13194224. PubMed DOI PMC

Heo J., Tanum J., Park S., Choi D., Jeong H., Han U., Hong J. Controlling physicochemical properties of graphene oxide for efficient cellular delivery. J. Ind. Eng. Chem. 2020;88:312–318. doi: 10.1016/j.jiec.2020.04.030. DOI

Yang Z.Q., Yang D.T., Zeng K., Li D.R., Qin L., Cai Y.F., Jin J. Simultaneous delivery of antimiR-21 and doxorubicin by graphene oxide for reducing toxicity in cancer therapy. ACS Omega. 2020;5:14437–14443. doi: 10.1021/acsomega.0c01010. PubMed DOI PMC

Chen S.Y., Yang K., Leng X.Y., Chen M.S., Novoselov K.S., Andreeva D.V. Perspectives in the design and application of composites based on graphene derivatives and bio-based polymers. Polym. Int. 2020;69:1173–1186. doi: 10.1002/pi.6080. DOI

Belaid H., Nagarajan S., Teyssier C., Barou C., Bares J., Balme S., Garay H., Huon V., Cornu D., Cavailles V., et al. Development of new biocompatible 3D printed graphene oxide-based scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;110:110595. doi: 10.1016/j.msec.2019.110595. PubMed DOI

Huang C., Zhang X., Li Y.C., Yang X.L. Hyaluronic acid and graphene oxide loaded silicon contact lens for corneal epithelial healing. J. Biomater. Sci. Polym. Ed. 2020 doi: 10.1080/09205063.2020.1836926. PubMed DOI

Yun Y.J., Wu H.W., Gao J., Dai W., Deng L.H., Lv O., Kong Y. Facile synthesis of Ca2+-crosslinked sodium alginate/graphene oxide hybrids as electro- and pH-responsive drug carrier. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;108:110380. doi: 10.1016/j.msec.2019.110380. PubMed DOI

Liu Y.X., Song R., Zhang X.H., Zhang D.W. Enhanced antimicrobial activity and pH-responsive sustained release of chitosan/poly (vinyl alcohol)/graphene oxide nanofibrous membrane loading with allicin. Int. J. Biol. Macromol. 2020;161:1405–1413. doi: 10.1016/j.ijbiomac.2020.08.051. PubMed DOI

Liang Y., Wang M.Q., Zhang Z.C., Ren G.H., Liu Y.J., Wu S.S., Shen J. Facile synthesis of ZnO QDs@GO-CS hydrogel for synergetic antibacterial applications and enhanced wound healing. Chem. Eng. J. 2019;378:122043. doi: 10.1016/j.cej.2019.122043. DOI

Yu C.H., Chen G.Y., Xia M.Y., Xie Y., Chi Y.Q., He Z.Y., Zhang C.L., Zhang T., Chen Q.M., Peng Q. Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids Surf. B Biointerfaces. 2020;191:111009. doi: 10.1016/j.colsurfb.2020.111009. PubMed DOI

Rostami F., Tamjid E., Behmanesh M. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;115:111102. doi: 10.1016/j.msec.2020.111102. PubMed DOI

Schneible J.D., Shi K.H., Young A.T., Ramesh S., He N.F., Dowdey C.E., Dubnansky J.M., Libya R.L., Gao W., Santiso E., et al. Modified graphene oxide (GO) particles in peptide hydrogels: A hybrid system enabling scheduled delivery of synergistic combinations of chemotherapeutics. J. Mater. Chem. B. 2020;8:3852–3868. doi: 10.1039/D0TB00064G. PubMed DOI PMC

Buskaran K., Hussein M.Z., Moklas M.A.M., Fakurazi S. Morphological changes and cellular uptake of functionalized graphene oxide loaded with protocatechuic acid and folic acid in hepatocellular carcinoma cancer cell. Int. J. Mol. Sci. 2020;21:5874. doi: 10.3390/ijms21165874. PubMed DOI PMC

Katuwavila N.P., Amarasekara Y., Jayaweera V., Rajaphaksha C., Gunasekara C., Perera I.C., Amaratunga G.A.J., Weerasinghe L. Graphene oxide-based manocomposite for sustained release of cephalexin. J. Pharm. Sci. 2020;109:1130–1135. doi: 10.1016/j.xphs.2019.09.022. PubMed DOI

Liu Y.J., Lv X.G., Xia S.L., Hao B.J., Huang X.Y., Shi P. PEGylated graphene oxide as a nanocarrier of the disulfide prodrug of podophyllotoxin for cancer therapy. J. Nanoparticle Res. 2020;22:281. doi: 10.1007/s11051-020-05003-5. DOI

Tas A., Cakmak N.K. Synthesis of PEGylated nanographene oxide as a nanocarrier for docetaxel drugs and anticancer activity on prostate cancer cell lines. Hum. Exp. Toxicol. 2021;40:172–182. doi: 10.1177/0960327120950008. PubMed DOI

Lan M.Y., Hsu Y.B., Lan M.C., Chen J.P., Lu Y.J. Polyethylene glycol-boated graphene oxide loaded with erlotinib as an effective therapeutic agent for treating nasopharyngeal cancer cells. Int. J. Nanomed. 2020;15:7569–7582. doi: 10.2147/IJN.S265437. PubMed DOI PMC

Rahdar A., Hajinezhad M.R., Hamishekar H., Ghamkhari A., Kyzas G.Z. Copolymer/graphene oxide nanocomposites as potential anticancer agents. Polym. Bull. 2020 doi: 10.1007/s00289-020-03354-6. DOI

Zeng Y.Y., Zhou M.R., Chen L.F., Fang H.M., Liu S.K., Zhou C.C., Sun J.M., Wang Z.X. Alendronate loaded graphene oxide functionalized collagen sponge for the dual effects of osteogenesis and anti-osteoclastogenesis in osteoporotic rats. Bioact. Mater. 2020;5:859–870. doi: 10.1016/j.bioactmat.2020.06.010. PubMed DOI PMC

Amiryaghoubi N., Pesyan N.N., Fathi M., Omidi Y. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering. Int. J. Biol. Macromol. 2020;162:1338–1357. doi: 10.1016/j.ijbiomac.2020.06.138. PubMed DOI

Kheiltash F., Parivar K., Roodbari N.H., Sadeghi B., Badiei A. Effects of 8-hydroxyquinoline-coated graphene oxide on cell death and apoptosis in MCF-7 and MCF-10 breast cell lines. Iran. J. Basic Med. Sci. 2020;23:871–878. PubMed PMC

Foroushani M.S., Shervedani R.K., Kefayat A., Torabi M., Ghahremani F., Yaghoobi F. Near-infrared, light-triggered, on-demand anti-inflammatories and antibiotics folate-graphene chelate manganese nanoparticles as a theranostic system for colon cancer MR imaging and drug delivery: In-vivo examinations. J. Drug Deliv. Sci. Technol. 2019;54:101223. doi: 10.1016/j.jddst.2019.101223. DOI

Mahanta A.K., Patel D.K., Maiti P. Nanohybrid scaffold of chitosan and functionalized graphene oxide for controlled drug delivery and bone regeneration. ACS Biomater. Sci. Eng. 2019;5:5139–5149. doi: 10.1021/acsbiomaterials.9b00829. PubMed DOI

Gholami A., Emadi F., Nazem M., Aghayi R., Khalvati B., Amini A., Ghasemi Y. Expression of key apoptotic genes in hepatocellular carcinoma cell line treated with etoposide-loaded graphene oxide. J. Drug Deliv. Sci. Technol. 2020;57:101725. doi: 10.1016/j.jddst.2020.101725. DOI

Izadi S., Moslehi A., Kheiry H., Kiani F.K., Ahmadi A., Masjedi A., Ghani S., Rafiee B., Karpisheh V., Hajizadeh F., et al. Codelivery of HIF-1α siRNA and Dinaciclib by carboxylated graphene oxide-trimethyl chitosan-hyaluronate nanoparticles significantly suppresses cancer cell progression. Pharm. Res. 2020;37:196. doi: 10.1007/s11095-020-02892-y. PubMed DOI

Liu Z.G., He J., Zhu T.Y., Hu C., Bo R.N., Wusiman A., Hu Y.L., Wang D.Y. Lentinan-functionalized graphene oxide is an effective antigen delivery system that modulates innate immunity and improves adaptive immunity. ACS Appl. Mater. Interfaces. 2020;12:39014–39023. doi: 10.1021/acsami.0c12078. PubMed DOI

Wang L.H., Liu J.Y., Sui L., Zhao P.H., Ma H.D., Wei Z., Wang Y.L. Folate-modified graphene oxide as the drug delivery system to load temozolomide. Curr. Pharm. Biotechnol. 2020;21:1088–1098. doi: 10.2174/1389201021666200226122742. PubMed DOI

Assy L., Gemeay A., Gomaa S., Aldubayan M.A., Salem M.L. Impact of graphene oxide nano sheets loaded with chemotherapeutic drug on tumor cells. J. Nanopart. Res. 2020;22:79. doi: 10.1007/s11051-020-04790-1. DOI

Wang Y.F., Sun G.P., Gong Y.Y., Zhang Y.Y., Liang X.F., Yang L.Q. Functionalized folate-modified graphene oxide/PEI siRNA nanocomplexes for targeted ovarian cancer gene therapy. Nanoscale Res. Lett. 2020;15:57. doi: 10.1186/s11671-020-3281-7. PubMed DOI PMC

Lu T.C., Nong Z.Z., Wei L.Y., Wei M., Li G., Wu N.N., Liu C., Tang B.L., Qin Q.X., Li X.H., et al. Preparation and anti-cancer activity of transferrin/folic acid double-targeted graphene oxide drug delivery system. J. Biomater. Appl. 2020;35:15–27. doi: 10.1177/0885328220913976. PubMed DOI

Wang P.Y., Wang X., Tang Q., Chen H., Zhang Q., Jiang H.Y., Wang Z. Functionalized graphene oxide against U251 glioma cells and its molecular mechanism. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;116:111187. doi: 10.1016/j.msec.2020.111187. PubMed DOI

Ezzati N., Mahjoub A.R., Shokrollahi S., Amiri A., Shahrnoy A.A. Novel biocompatible amino acids-functionalized three-dimensional graphene foams: As the attractive and promising cisplatin carriers for sustained release goals. Int. J. Pharm. 2020;589:119857. doi: 10.1016/j.ijpharm.2020.119857. PubMed DOI

Verde V., Longo A., Cucci L.M., Sanfilippo V., Magri A., Satriano C., Anfuso C.D., Lupo G., La Mendola D. Anti-angiogenic and anti-proliferative graphene oxide nanosheets for tumor cell therapy. Int. J. Mol. Sci. 2020;21:5571. doi: 10.3390/ijms21155571. PubMed DOI PMC

Wang W., Liu Y., Yang C., Jia W.T., Qi X., Liu C.S., Li X.L. Delivery of salvianolic acid B for efficient osteogenesis and angiogenesis from silk fibroin combined with graphene oxide. ACS Biomater. Sci. Eng. 2020;6:3539–3549. doi: 10.1021/acsbiomaterials.0c00558. PubMed DOI

Pourjavadi A., Asgari S., Hosseini S.H. Graphene oxide functionalized with oxygen -rich polymers as a pH -sensitive carrier for co -delivery of hydrophobic and hydrophilic drugs. J. Drug Deliv. Sci. Technol. 2020;56 Pt A:101542. doi: 10.1016/j.jddst.2020.101542. DOI

Kazempour M., Edjlali L., Akbarzadeh A., Davaran S., Farid S.S. Synthesis and characterization of dual pH-and thermo-responsive graphene-based nanocarrier for effective anticancer drug delivery. J. Drug Deliv. Sci. Technol. 2019;54:101158. doi: 10.1016/j.jddst.2019.101158. DOI

Abdel-Bary A.S., Tolan D.A., Nassar M.Y., Taketsugu T., El-Nahas A.M. Chitosan, magnetite, silicon dioxide, and graphene oxide nanocomposites: Synthesis, characterization, efficiency as cisplatin drug delivery, and DFT calculations. Int. J. Biol. Macromol. 2020;154:621–633. doi: 10.1016/j.ijbiomac.2020.03.106. PubMed DOI

Pooresmaeil M., Javanbakht S., Nia S.B., Namazi H. Carboxymethyl cellulose/mesoporous magnetic graphene oxide as a safe and sustained ibuprofen delivery bio-system: Synthesis, characterization, and study of drug release kinetic. Colloids Surf. A Physicochem. Eng. Asp. 2020;594:124662. doi: 10.1016/j.colsurfa.2020.124662. DOI

Pourjavadi A., Kohestanian M., Yaghoubi M. Poly(glycidyl methacrylate)-coated magnetic graphene oxide as a highly efficient nanocarrier: Preparation, characterization, and targeted DOX delivery. New J. Chem. 2019;43:18647–18656. doi: 10.1039/C9NJ04623B. DOI

Qi J.X., Chen Y.H., Xue T.T., Lin Y., Huang S.Y., Cao S.Y., Wang X.N., Su Y., Lin Z.K. Graphene oxide-based magnetic nanocomposites for the delivery of melittin to cervical cancer HeLa cells. Nanotechnology. 2020;31:065102. doi: 10.1088/1361-6528/ab5084. PubMed DOI

Salem M.L., Gemeay A., Gomaa S., Aldubayan M.A., Assy L. Superparamagnetic graphene oxide/magnetite nanocomposite delivery system for doxorubicin-induced distinguished tumor cell cycle arrest and apoptosis. J. Nanoparticle Res. 2020;22:219. doi: 10.1007/s11051-020-04932-5. DOI

Yang Y.F., Meng F.Y., Li X.H., Wu N.N., Deng Y.H., Wei L.Y., Zeng X.P. Magnetic graphene oxide-Fe3O4-PANI nanoparticle adsorbed platinum drugs as drug delivery systems for cancer therapy. J. Nanosci. Nanotechnol. 2019;19:7517–7525. doi: 10.1166/jnn.2019.16768. PubMed DOI

Wang L.H., Sui L., Zhao P.H., Ma H.D., Liu J.Y., Wei Z., Zhan Z.J., Wang Y.L. A composite of graphene oxide and iron oxide nanoparticles for targeted drug delivery of temozolomide. Pharmazie. 2020;75:313–317. PubMed

Zhang B., Yu Q.L., Liu Y. Alternating magnetic field controlled targeted drug delivery based on graphene oxide-grafted nanosupramolecules. Chem. Eur. J. 2020;26:13698–13703. doi: 10.1002/chem.202003328. PubMed DOI

Xue J.M., Wang X.C., Wang E.D., Li T., Chang J., Wu C.T. Bioinspired multifunctional biomaterials with hierarchical microstructure for wound dressing. Acta Biomater. 2019;100:270–279. doi: 10.1016/j.actbio.2019.10.012. PubMed DOI

Shen Z.Y., Shen B.Q., Shen A.J., Zhu X.H. Cavitation-enhanced delivery of the nanomaterial graphene oxide-doxorubicin to hepatic tumors in nude mice using 20 kHz low-frequency ultrasound and microbubbles. J. Nanomater. 2020;2020:3136078. doi: 10.1155/2020/3136078. DOI

Quagliarini E., Di Santo R., Pozzi D., Tentori P., Cardarelli F., Caracciolo G. Mechanistic insights into the release of doxorubicin from graphene oxide in cancer cells. Nanomaterials. 2020;10:1482. doi: 10.3390/nano10081482. PubMed DOI PMC

Tu Z.X., Donskyi E.S., Qiao H.S., Zhu Z.L., Unger W.E.S., Hackenberger C.P.R., Chen W., Adeli M., Haag R. Graphene oxide-cyclic R10 peptide nuclear translocation nanoplatforms for the surmounting of multiple-drug resistance. Adv. Funct. Mater. 2020:2000933. doi: 10.1002/adfm.202000933. DOI

Huang X., Chen J., Wu W., Yang W.B., Zhong B.L., Qing X.C., Shao Z.W. Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma. Acta Biomater. 2020;109:229–243. doi: 10.1016/j.actbio.2020.04.009. PubMed DOI

Alipour N., Namazi H. Chelating ZnO-dopamine on the surface of graphene oxide and its application as pH-responsive and antibacterial nanohybrid delivery agent for doxorubicin. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;108:110459. doi: 10.1016/j.msec.2019.110459. PubMed DOI

Qiu Z.C., Hu J., Li Z.W., Yang X.X., Hu J., You Q.J., Bai S., Mao Y., Hua D., Yin J. Graphene oxide-based nanocomposite enabled highly efficient targeted synergistic therapy for colorectal cancer. Colloids Surf. A Physicochem. Eng. Asp. 2020;593:124585. doi: 10.1016/j.colsurfa.2020.124585. DOI

Qi Z.E., Shi J., Zhang Z., Cao Y.C., Li J.G., Cao S.K. PEGylated graphene oxide-capped gold nanorods/silica nanoparticles as multifunctional drug delivery platform with enhanced near-infrared responsiveness. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;104:109889. doi: 10.1016/j.msec.2019.109889. PubMed DOI

Qi Z.E., Shi J., Zhu B.B., Li J.G., Cao S.K. Gold nanorods/graphene oxide nanosheets immobilized by polydopamine for efficient remotely triggered drug delivery. J. Mater. Sci. 2020;55:14530–14543. doi: 10.1007/s10853-020-05050-2. DOI

Esmaeili Y., Zarrabi A., Mirahmadi-Zare S.Z., Bidram E. Hierarchical multifunctional graphene oxide cancer nanotheranostics agent for synchronous switchable fluorescence imaging and chemical therapy. Microchim. Acta. 2020;187:553. doi: 10.1007/s00604-020-04490-6. PubMed DOI

Gautam M., Gupta B., Soe Z.C., Poudel K., Maharjan S., Jeong J.H., Choi H.G., Ku S.K., Yong C.S., Kim J.O. Stealth polymer-coated graphene oxide decorated mesoporous titania nanoplatforms for in vivo chemo-photodynamic cancer therapy. Pharm. Res. 2020;37:162. doi: 10.1007/s11095-020-02900-1. PubMed DOI

Huang S.S., Liu H.L., Liao K.D., Hu Q.Q., Guo R., Deng K.X. Functionalized GO nanovehicles with nitric oxide release and photothermal activity-based hydrogels for bacteria-infected wound healing. ACS Appl. Mater. Interfaces. 2020;12:28952–28964. PubMed

Dhanavel S., Revathy T.A., Sivaranjani T., Sivakumar K., Palani P., Narayanan V., Stephen A. 5-Fluorouracil and curcumin co-encapsulated chitosan/reduced graphene oxide nanocomposites against human colon cancer cell lines. Polym. Bull. 2020;77:213–233. doi: 10.1007/s00289-019-02734-x. DOI

Dhanavel S., Praveena P., Narayanan V., Stephen A. Chitosan/reduced graphene oxide/Pd nanocomposites for co-delivery of 5-fluorouracil and curcumin towards HT-29 colon cancer cells. Polym. Bull. 2020;77:5681–5696. doi: 10.1007/s00289-019-03039-9. DOI

Palai P.K., Mondal A., Chakraborti C.K., Banerjee I., Pal K., Rathnam V.S.S. Doxorubicin loaded green synthesized nanoceria decorated functionalized graphene nanocomposite for cancer-specific drug release. J. Clust. Sci. 2019;30:1565–1582. doi: 10.1007/s10876-019-01599-4. DOI

Singh G., Nenavathu B.P., Imtiyaz K., Rizvi M.M.A. Fabrication of chlorambucil loaded graphene-oxide nanocarrier and its application for improved antitumor activity. Biomed. Pharmacother. 2020;129:110443. doi: 10.1016/j.biopha.2020.110443. PubMed DOI

Tehrani N.S., Masoumi M., Chekin F., Baei M.S. Nitrogen doped porous reduced graphene oxide hybrid as a nanocarrier of imatinib anticancer drug. Russ. J. Appl. Chem. 2020;93:1221–1228. doi: 10.1134/S1070427220080157. DOI

Lee X.J., Lim H.N., Gowthaman N.S.K., Rahman M.B.A., Abdullah C.A.C., Muthoosamy K. In-situ surface functionalization of superparamagnetic reduced graphene oxide—Fe3O4 nanocomposite via Ganoderma lucidum extract for targeted cancer therapy application. Appl. Surf. Sci. 2020;512:145738. doi: 10.1016/j.apsusc.2020.145738. DOI

Li H., Jia Y.L., Liu C.L. Pluronic® F127 stabilized reduced graphene oxide hydrogel for transdermal delivery of ondansetron: Ex vivo and animal studies. Colloids Surf. B Biointerfaces. 2020;195:111259. doi: 10.1016/j.colsurfb.2020.111259. PubMed DOI

Li Q., Li F.M., Qi X.X., Wei F.Q., Chen H.X., Wang T. Pluronic® F127 stabilized reduced graphene oxide hydrogel for the treatment of psoriasis: In vitro and in vivo studies. Colloids Surf. B Biointerfaces. 2020;195:111246. doi: 10.1016/j.colsurfb.2020.111246. PubMed DOI

Karthika V., AlSalhi M.S., Devanesan S., Gopinath K., Arumugam A., Govindarajan M. Chitosan overlaid Fe3O4/rGO nanocomposite for targeted drug delivery, imaging, and biomedical applications. Sci. Rep. 2020;10:18912. doi: 10.1038/s41598-020-76015-3. PubMed DOI PMC

Vinothini K., Rajendran N.K., Mariappan R., Andy R., Marraiki N., Elgorban A.M. A magnetic nanoparticle functionalized reduced graphene oxide-based drug carrier system for a chemo-photodynamic cancer therapy. New J. Chem. 2020;44:5265–5277. doi: 10.1039/D0NJ00049C. DOI

Lima-Sousa R., de Melo-Diogo D., Alves C.G., Cabral C.S.D., Miguel S.P., Mendonca A.G., Correia I.J. Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;117:111294. doi: 10.1016/j.msec.2020.111294. PubMed DOI

Mohammadi E., Zeinali M., Mohammadi-Sardoo M., Iranpour M., Behnam B., Mandegary A. The effects of functionalization of carbon nanotubes on toxicological parameters in mice. Hum. Exp. Toxicol. 2020;39:1147–1167. doi: 10.1177/0960327119899988. PubMed DOI

Mohanta D., Patnaik S., Sood S., Das N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. J. Pharm. Anal. 2019;9:293–300. doi: 10.1016/j.jpha.2019.04.003. PubMed DOI PMC

Dizaji B.F., Farboudi A., Rahbar A., Azarbaijan M.H., Asgary M.R. The role of single- and multi-walled carbon nanotube in breast cancer treatment. Ther. Deliv. 2020;11:653–672. doi: 10.4155/tde-2020-0019. PubMed DOI

Antonucci A., Kupis-Rozmyslowicz J., Boghossian A.A. Noncovalent protein and peptide functionalization of single-walled carbon nanotubes for biodelivery and optical sensing applications. ACS Appl. Mater. Interfaces. 2017;9:11321–11331. doi: 10.1021/acsami.7b00810. PubMed DOI

Assali M., Zaid A.N., Kittana N., Hamad D., Amer J. Covalent functionalization of SWCNT with combretastatin A4 for cancer therapy. Nanotechnology. 2018;29:245101. doi: 10.1088/1361-6528/aab9f2. PubMed DOI

Sahoo A.K., Kanchi S., Mandal T., Dasgupta C., Maiti P.K. Translocation of bioactive molecules through carbon nanotubes embedded in the lipid membrane. ACS Appl. Mater. Interfaces. 2018;10:6168–6179. doi: 10.1021/acsami.7b18498. PubMed DOI

Zhang L., Peng G.T., Li J.C., Liang L.J., Kong Z., Wang H.B., Jia L.J., Wang X.P., Zhang W., Shen J.W. Molecular dynamics study on the configuration and arrangement of doxorubicin in carbon nanotubes. J. Mol. Liq. 2018;262:295–301. doi: 10.1016/j.molliq.2018.04.097. DOI

Singh N., Sachdev A., Gopinath P. Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J. Nanosci. Nanotechnol. 2018;18:1534–1541. doi: 10.1166/jnn.2018.14222. PubMed DOI

Chegeni M., Rozbahani Z.S., Ghasemian M., Mehri M. Synthesis and application of the calcium alginate/SWCNT-Gl as a bio-nanocomposite for the curcumin delivery. Int. J. Biol. Macromol. 2020;156:504–513. doi: 10.1016/j.ijbiomac.2020.04.068. PubMed DOI

Ahmadi H., Ramezani M., Yazdian-Robati R., Behnam B., Azarkhiavi K.R., Nia A.H., Mokhtarzadeh A., Riahi M.M., Razavi B.M., Abnous K. Acute toxicity of functionalized single wall carbon nanotubes: A biochemical, histopathologic and proteomics approach. Chem. Biol. Interact. 2017;275:196–209. doi: 10.1016/j.cbi.2017.08.004. PubMed DOI

Ohta T., Hashida Y., Yamashita F., Hashida M. Development of novel drug and gene delivery carriers composed of single- walled carbon nanotubes and designed peptides with PEGylation. J. Pharm. Sci. 2016;105:2815–2824. doi: 10.1016/j.xphs.2016.03.031. PubMed DOI

Razzazan A., Atyabi F., Kazemi B., Dinarvand R. In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;62:614–625. doi: 10.1016/j.msec.2016.01.076. PubMed DOI

Li B., Zhang X.X., Huang H.Y., Chen L.Q., Cui J.H., Liu Y.L., Jin H.H., Lee B.J., Cao Q.R. Effective deactivation of A549 tumor cells in vitro and in vivo by RGD-decorated chitosan-functionalized single-walled carbon nanotube loading docetaxel. Int. J. Pharm. 2018;543:8–20. doi: 10.1016/j.ijpharm.2018.03.017. PubMed DOI

Karnati K.R., Wang Y.X. Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations. Phys. Chem. Chem. Phys. 2018;20:9389–9400. doi: 10.1039/C8CP00124C. PubMed DOI PMC

Pinto A.V., Magalhaes A.L. Intramolecular hydrogen bonds in tip-functionalized single-walled carbon nanotubes as pH-sensitive gates. J. Phys. Chem. A. 2020;124:9542–9551. doi: 10.1021/acs.jpca.0c03710. PubMed DOI

Garg K., Negi S. Exploring the charge configuration of an armchair single walled carbon nanotube for drug delivery. Mater. Today Proc. 2020;28:185–187. doi: 10.1016/j.matpr.2020.01.536. DOI

Gajewska A., Pawlowska A., Szwajca A., Da Ros T., Pluskota-Karwatka D. Synthesis and structural characterization of single-walled carbon nanotubes functionalized with fluorinated phosphonate analogues of phenylglycine, as promising materials for synthetic and biomedical applications. J. Mol. Struct. 2020;1210:128027. doi: 10.1016/j.molstruc.2020.128027. DOI

Ghadri Z., Raissi H., Shahabi M., Farzad F. Molecular dynamics simulation study of Glycine tip-functionalisation of single-walled carbon nanotubes as emerging nanovectors for the delivery of anticancer drugs. Mol. Simul. 2020;46:111–120. doi: 10.1080/08927022.2019.1679363. DOI

Liu D., Zhang Q., Wang J., Fan L., Zhu W.Q., Cai D.F. Hyaluronic acid-coated single-walled carbon nanotubes loaded with doxorubicin for the treatment of breast cancer. Pharmazie. 2019;74:83–90. PubMed

Phan Q.T., Patil M.P., Tu T.T.K., Le C.M.Q., Kim G.D., Lim K.T. Polyampholyte-grafted single walled carbon nanotubes prepared via a green process for anticancer drug delivery application. Polymer. 2020;193:122340. doi: 10.1016/j.polymer.2020.122340. DOI

Tavakolifard S., Biazar E., Pourshamsian K., Moslemin M.H. Synthesis and evaluation of single-wall carbon nanotube-paclitaxel-folic acid conjugate as an anti-cancer targeting agent. Artif. Cells Nanomed. Biotechnol. 2016;44:1247–1253. doi: 10.3109/21691401.2015.1019670. PubMed DOI

Gangrade A., Mandal B.B. Injectable carbon nanotube impregnated silk based multifunctional hydrogel for localized targeted and on-demand anticancer drug delivery. ACS Biomater. Sci. Eng. 2019;5:2365–2381. doi: 10.1021/acsbiomaterials.9b00416. PubMed DOI

Liu X.H., Xu D.Q., Liao C.C., Fang Y.Q., Guo B.H. Development of a promising drug delivery for formononetin: Cyclodextrin-modified single-walled carbon nanotubes. J. Drug Deliv. Sci. Technol. 2018;43:461–468. doi: 10.1016/j.jddst.2017.11.018. DOI

Fernandes R.S., Lemos J.A., de Barros A.L.B., Geraldo V., da Silva E.E., Alisaraie L., Soares D.C.F. Carboxylated versus bisphosphonate SWCNT: Functionalization effects on the biocompatibility and in vivo behaviors in tumor-bearing mice. J. Drug Deliv. Sci. Technol. 2019;50:266–277. doi: 10.1016/j.jddst.2019.01.036. DOI

Ershadi N., Safaiee R., Golshan M.M. Functionalized (4,0) or (8,0) SWCNT as novel carriers of the anticancer drug 5-FU; a first-principle investigation. Appl. Surf. Sci. 2021;536:147718. doi: 10.1016/j.apsusc.2020.147718. DOI

Al Faraj A., Shaik A.S., Halwani R., Alfuraih A. Magnetic targeting and delivery of drug-loaded SWCNTs theranostic nanoprobes to lung metastasis in breast cancer animal model: Noninvasive monitoring using magnetic resonance imaging. Mol. Imaging Biol. 2016;18:315–324. doi: 10.1007/s11307-015-0902-0. PubMed DOI

Zhang M., Wang W.T., Cui Y.J., Chu X.H., Sun B.H., Zhou N.L., Shen J. Magnetofluorescent Fe3O4/carbon quantum dots coated single-walled carbon nanotubes as dual-modal targeted imaging and chemo/photodynamic/photothermal triple-modal therapeutic agents. Chem. Eng. J. 2018;338:526–538. doi: 10.1016/j.cej.2018.01.081. DOI

Sheikhpour M., Naghinejad M., Kasaeian A., Lohrasbi A., Shahraeini S.S., Zomorodbakhsh S. The applications of carbon nanotubes in the diagnosis and treatment of lung cancer: A critical review. Int. J. Nanomed. 2020;15:7063–7078. doi: 10.2147/IJN.S263238. PubMed DOI PMC

Mehta L., Kumari S., Singh R.P. Carbon nanotubes modulate activity of cytotoxic compounds via a Trojan horse mechanism. Chem. Res. Toxicol. 2020;33:1206–1214. doi: 10.1021/acs.chemrestox.9b00370. PubMed DOI

Nahle S., Cassidy H., Leroux M.M., Mercier R., Ghanbaja J., Doumandji Z., Matallanas D., Rihn B.H., Joubert O., Ferrari L. Genes expression profiling of alveolar macrophages exposed to non-functionalized, anionic and cationic multi-walled carbon nanotubes shows three different mechanisms of toxicity. J. Nanobiotechnol. 2020;18:36. doi: 10.1186/s12951-020-0587-7. PubMed DOI PMC

Dlamini N., Mukaya H.E., Van Zyl R.L., Chen C.T., Zeevaart R.J., Mbianda X.Y. Synthesis, characterization, kinetic drug release and anticancer activity of bisphosphonates multi-walled carbon nanotube conjugates. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;104:109967. doi: 10.1016/j.msec.2019.109967. PubMed DOI

Zomorodbakhsh S., Abbasian Y., Naghinejad M., Sheikhpour M. The effects study of isoniazid conjugated multi-wall carbon nanotubes nanofluid on Mycobacterium tuberculosis. Int. J. Nanomed. 2020;15:5901–5909. doi: 10.2147/IJN.S251524. PubMed DOI PMC

Badea N., Craciun M.M., Dragomir A.S., Balas M., Dinischiotu A., Nistor C., Gavan C., Ionita D. Systems based on carbon nanotubes with potential in cancer therapy. Mater. Chem. Phys. 2020;241:122435. doi: 10.1016/j.matchemphys.2019.122435. DOI

Requardt H., Braun A., Steinberg P., Hampel S., Hansen T. Surface defects reduce carbon nanotube toxicity in vitro. Toxicol. In Vitro. 2019;60:12–18. doi: 10.1016/j.tiv.2019.03.028. PubMed DOI

Bibi A., Sadiq-ur-Rehman, Akhtar T., Akhtar K., Farooq M., Shahzad M.I. Alginate-chitosan/MWCNTs nanocomposite: A novel approach for sustained release of Ibuprofen. J. Polym. Res. 2020;27:363. doi: 10.1007/s10965-020-02342-8. DOI

Sharmeen S., Rahman A.F.M.M., Lubna M.M., Salem K.S., Islam R., Khan M.A. Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan nanocomposite: An approach for significant drug release. Bioact. Mater. 2018;3:236–244. doi: 10.1016/j.bioactmat.2018.03.001. PubMed DOI PMC

Komane P.P., Kumar P., Marimuthu T., du Toit L.C., Kondiah P.P.D., Choonara Y.E., Pillay V. Dexamethasone-loaded, PEGylated, vertically aligned, multiwalled carbon nanotubes for potential ischemic stroke intervention. Molecules. 2018;23:1406. doi: 10.3390/molecules23061406. PubMed DOI PMC

Sharma S., Naskar S., Kuotsu K. Metronomic chemotherapy of carboplatin-loaded PEGylated MWCNTs: Synthesis, characterization and in vitro toxicity in human breast cancer. Carbon Lett. 2020;30:435–447. doi: 10.1007/s42823-019-00113-0. DOI

Mazzaglia A., Scala A., Sortino G., Zagami R., Zhu Y., Sciortino M.T., Pennisi R., Pizzo M.M., Neri G., Grassi G., et al. Intracellular trafficking and therapeutic outcome of multiwalled carbon nanotubes modified with cyclodextrins and polyethylenimine. Colloids Surf. B Biointerfaces. 2018;163:55–63. doi: 10.1016/j.colsurfb.2017.12.028. PubMed DOI

Zhu S., Huang A.G., Luo F., Li J., Li J., Zhu L., Zhao L., Zhu B., Ling F., Wang G.X. Application of virus targeting nanocarrier drug delivery system in virus-induced central nervous system disease treatment. ACS Appl. Mater. Interfaces. 2019;11:19006–19016. doi: 10.1021/acsami.9b06365. PubMed DOI

Nasari M., Semnani D., Hadjianfar M., Amanpour S. Poly(ε-caprolactone)/poly(N-vinyl-2-pyrrolidone) core-shell nanofibers loaded by multi-walled carbon nanotubes and 5-fluorouracil: An anticancer drug delivery system. J. Mater. Sci. 2020;55:10185–10201. doi: 10.1007/s10853-020-04784-3. DOI

Zhang R.Q., Liu Z.Q., Luo Y.L., Xu F., Chen Y.S. Tri-stimuli responsive carbon nanotubes covered by mesoporous silica graft copolymer multifunctional materials for intracellular drug delivery. J. Ind. Eng. Chem. 2019;80:431–443. doi: 10.1016/j.jiec.2019.08.023. DOI

Karthika V., Kaleeswarran P., Gopinath K., Arumugam A., Govindarajan M., Alharbi N.S., Khaled J.M., Al-anbr M.N., Benelli G. Biocompatible properties of nano-drug carriers using TiO2-Au embedded on multiwall carbon nanotubes for targeted drug delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;90:589–601. doi: 10.1016/j.msec.2018.04.094. PubMed DOI

Chowdhry A., Kaur J., Khatri M., Puri V., Tuli R., Puri S. Characterization of functionalized multiwalled carbon nanotubes and comparison of their cellular toxicity between HEK 293 cells and zebra fish in vivo. Heliyon. 2019;5:e02605. doi: 10.1016/j.heliyon.2019.e02605. PubMed DOI PMC

Karimi A., Erfan M., Mortazavi S.A., Ghorbani-Bidkorbeh F., Landi B., Kobarfard F., Shirazi F.H. The photothermal effect of targeted methotrexate-functionalized multi-walled carbon nanotubes on MCF7 cells. Iran. J. Pharm. Res. 2019;18:221–236. PubMed PMC

Kumar M., Sharma G., Misra C., Kumar R., Singh B., Katare O.P., Raza K. N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;89:274–282. doi: 10.1016/j.msec.2018.03.033. PubMed DOI

Badea M.A., Prodana M., Dinischiotu A., Crihana C., Ionita D., Balas M. Cisplatin loaded multiwalled carbon nanotubes induce resistance in triple negative breast cancer cells. Pharmaceutics. 2018;10:228. doi: 10.3390/pharmaceutics10040228. PubMed DOI PMC

Uttekar P.S., Lakade S.H., Beldar V.K., Harde M.T. Facile synthesis of multi-walled carbon nanotube via folic acid grafted nanoparticle for precise delivery of doxorubicin. IET Nanobiotechnol. 2019;13:688–696. doi: 10.1049/iet-nbt.2018.5421. PubMed DOI PMC

Yan Y., Wang R.Z., Hu Y., Sun R.Y., Song T., Shi X.Y., Yin S.M. Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for in vivo chemotherapy of tumors. Drug Deliv. 2018;25:1607–1616. doi: 10.1080/10717544.2018.1501120. PubMed DOI PMC

Prajapati S.K., Jain A., Shrivastava C., Jain A.K. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int. J. Biol. Macromol. 2019;123:691–703. doi: 10.1016/j.ijbiomac.2018.11.116. PubMed DOI

Singhai N.J., Maheshwari R., Ramteke S. CD44 receptor targeted ‘smart’ multi-walled carbon nanotubes for synergistic therapy of triple-negative breast cancer. Colloid Interface Sci. Commun. 2020;35:100235. doi: 10.1016/j.colcom.2020.100235. DOI

Dong Z.P., Wang Q.Y., Huo M., Zhang N.X., Li B.X., Li H.M., Xu Y.S., Chen M., Hong H., Wang Y. Mannose-modified multi-walled carbon nanotubes as a delivery nanovector optimizing the antigen presentation of dendritic cells. ChemistryOpen. 2019;8:915–921. doi: 10.1002/open.201900126. PubMed DOI PMC

Jain S., Dongave S.M., Date T., Kushwah V., Mahajan R.R., Pujara N., Kumeria T., Popat A. Succinylated β-lactoglobuline-functionalized multiwalled carbon nanotubes with improved colloidal stability and biocompatibility. ACS Biomater. Sci. Eng. 2019;5:3361–3372. doi: 10.1021/acsbiomaterials.9b00268. PubMed DOI

Suo N., Wang M.W., Jin Y., Ding J., Gao X.P., Sun X.L., Zhang H.Y., Cui M., Zheng J.L., Li N.L., et al. Magnetic multiwalled carbon nanotubes with controlled release of epirubicin: An intravesical instillation system for bladder cancer. Int. J. Nanomed. 2019;14:1241–1254. doi: 10.2147/IJN.S189688. PubMed DOI PMC

Ghoderao P., Sahare S., Alegaonkar P., Kulkarni A.A., Bhave T. Multiwalled carbon nanotubes decorated with Fe3O4 nanoparticles for efficacious doxycycline delivery. ACS Appl. Nano Mater. 2019;2:607–616. doi: 10.1021/acsanm.8b02268. DOI

Suo X.B., Eldridge B.N., Zhang H., Mao C.Q., Min Y.Z., Sun Y., Singh R., Ming X. P-Glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes. ACS Appl. Mater. Interfaces. 2018;10:33464–33473. doi: 10.1021/acsami.8b11974. PubMed DOI PMC

Karimi A., Erfan M., Mortazavi S.A., Ghorbani-Bidkorbeh F., Kobarfard F., Shirazi F.H. Functionalisation of carbon nanotubes by methotrexate and study of synchronous photothermal effect of carbon nanotube and anticancer drug on cancer cell death. IET Nanobiotechnol. 2019;13:52–57. doi: 10.1049/iet-nbt.2018.5085. PubMed DOI PMC

Yi W.H., Zhang P., Hou J., Chen W.P., Bai L., Yoo S., Khalid A., Hou X. Enhanced response of tamoxifen toward the cancer cells using a combination of chemotherapy and photothermal ablation induced by lentinan-functionalized multi-walled carbon nanotubes. Int. J. Biol. Macromol. Part B. 2018;120:1525–1532. doi: 10.1016/j.ijbiomac.2018.09.085. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...