Advances in Biologically Applicable Graphene-Based 2D Nanomaterials
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VEGA 1/0116/22
Minister of Education, Science, Research and Sports of the Slovak Republic and Slovak Academy of Sciences
APVV-17-0318
Slovak Research and Development Agency
PubMed
35682931
PubMed Central
PMC9181547
DOI
10.3390/ijms23116253
PII: ijms23116253
Knihovny.cz E-zdroje
- Klíčová slova
- agrochemicals, drugs, graphene, graphene oxide, graphene oxide quantum dots, graphene quantum dots, nanocarriers, reduced graphene oxide,
- MeSH
- grafit * MeSH
- kvantové tečky * terapeutické užití MeSH
- lidé MeSH
- nanostruktury * MeSH
- nanotechnologie MeSH
- uhlík MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- grafit * MeSH
- uhlík MeSH
Climate change and increasing contamination of the environment, due to anthropogenic activities, are accompanied with a growing negative impact on human life. Nowadays, humanity is threatened by the increasing incidence of difficult-to-treat cancer and various infectious diseases caused by resistant pathogens, but, on the other hand, ensuring sufficient safe food for balanced human nutrition is threatened by a growing infestation of agriculturally important plants, by various pathogens or by the deteriorating condition of agricultural land. One way to deal with all these undesirable facts is to try to develop technologies and sophisticated materials that could help overcome these negative effects/gloomy prospects. One possibility is to try to use nanotechnology and, within this broad field, to focus also on the study of two-dimensional carbon-based nanomaterials, which have excellent prospects to be used in various economic sectors. In this brief up-to-date overview, attention is paid to recent applications of graphene-based nanomaterials, i.e., graphene, graphene quantum dots, graphene oxide, graphene oxide quantum dots, and reduced graphene oxide. These materials and their various modifications and combinations with other compounds are discussed, regarding their biomedical and agro-ecological applications, i.e., as materials investigated for their antineoplastic and anti-invasive effects, for their effects against various plant pathogens, and as carriers of bioactive agents (drugs, pesticides, fertilizers) as well as materials suitable to be used in theranostics. The negative effects of graphene-based nanomaterials on living organisms, including their mode of action, are analyzed as well.
Zobrazit více v PubMed
Rafiei-Sarmazdeh Z., Zahedi-Dizaji S.M., Kang A.K. Two-dimensional nanomaterials. In: Ameen S., editor. Nanostructures. InTech Open; Rieka, Croatia: 2019. [(accessed on 25 April 2022)]. Chapter 3. Available online: https://www.intechopen.com/chapters/67053.
Singh V., Yadav P., Mishra V. Recent advances on classification, properties, synthesis, and characterization of nanomaterials. In: Srivastava N., Srivastava M., Mishra P.K., Gupta V.K., editors. Green Synthesis of Nanomaterials for Bioenergy Applications. John Wiley & Sons; Hoboken, NJ, USA: 2021. pp. 83–97.
Chimene D., Alge D.L., Gaharwar A.K. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater. 2015;27:7261–7284. doi: 10.1002/adma.201502422. PubMed DOI
Tan C., Cao X., Wu X.J., He Q., Yang J., Zhang X., Chen J., Zhao W., Han S., Nam G.H., et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017;117:6225–6331. doi: 10.1021/acs.chemrev.6b00558. PubMed DOI
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010;22:3906–3924. doi: 10.1002/adma.201001068. PubMed DOI
Smith A.T., LaChance A.M., Zeng S., Liu B., Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nanomat. Sci. 2019;1:31–47. doi: 10.1016/j.nanoms.2019.02.004. DOI
Weiss N.O., Zhou H., Liao L., Liu Y., Jiang S., Huang Y., Duan X. Graphene: An emerging electronic material. Adv. Mater. 2012;24:5782–5825. doi: 10.1002/adma.201201482. PubMed DOI PMC
An X., Butler T.W., Washington M., Nayak S.K., Kar S. Optical and sensing properties of 1-pyrenecarboxylic acid-functionalized graphene films laminated on polydimethylsiloxane membranes. ACS Nano. 2011;5:1003–10011. doi: 10.1021/nn102415c. PubMed DOI
Speranza G. Carbon nanomaterials: Synthesis, functionalization and sensing applications. Nanomaterials. 2021;11:967. doi: 10.3390/nano11040967. PubMed DOI PMC
Balandin A.A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902–907. doi: 10.1021/nl0731872. PubMed DOI
Graphene—What Is It? Graphenea, Inc.; Cambridge, MA, USA: [(accessed on 25 April 2022)]. Available online: https://www.graphenea.com/pages/graphene#.YnexYlTP2M8.
Graphene—All You Need to Know, NanoWerk. [(accessed on 25 April 2022)]. Available online: https://www.nanowerk.com/what_is_graphene.php.
Rauti R., Musto M., Bosi S., Prato M., Ballerini L. Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come? Carbon. 2019;143:430–446. doi: 10.1016/j.carbon.2018.11.026. DOI
Nayak L., Rahaman M., Giri R. Surface modification/functionalization of carbon materials by different techniques: An overview. In: Rahaman M., Khastgir D., Aldalbahi A., editors. Carbon-Containing Polymer Composites. Springer; Singapore: 2019. pp. 65–98. (Springer Series on Polymer and Composite Materials).
Barhoum A., Barhoum A., Shalan A.E., El-Hout S.I., Ali G.A.M., Abdelbasir S.M., Abu Serea E.S., Ibrahim A.H., Pal K. A broad family of carbon nanomaterials: Classification, properties, synthesis, and emerging applications. In: Barhoum A., Bechelany M., Makhlouf A., editors. Handbook of Nanofibers. Springer; Cham, Switzerland: 2019. pp. 1–40.
Derakhshi M., Daemi S., Shahini P., Habibzadeh A., Mostafavi E., Ashkarran A.A. Two-dimensional nanomaterials beyond graphene for biomedical applications. J. Funct. Biomater. 2022;13:27. doi: 10.3390/jfb13010027. PubMed DOI PMC
Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano. 2015;9:9451–9469. doi: 10.1021/acsnano.5b05040. PubMed DOI
Thomas S., Sarathchandran C., Ilangovan S.A., Moreno-Pirajan J.C. Handbook of Carbon-Based Nanomaterials: Micro and Nano Technologies. Elsevier; Amsterdam, The Netherlands: 2021.
Wang J., Wang S. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coord. Chem. Rev. 2022;453:214338. doi: 10.1016/j.ccr.2021.214338. DOI
Liu H., Wang X., Wang H., Nie R. Synthesis and biomedical applications of graphitic carbon nitride quantum dots. J. Mater. Chem. B. 2019;7:5432–5448. doi: 10.1039/C9TB01410A. PubMed DOI
Abulyazied D.E., Ene A. An investigative study on the progress of nanoclay-reinforced polymers: Preparation, properties, and applications: A review. Polymers. 2021;13:4401. doi: 10.3390/polym13244401. PubMed DOI PMC
Guo F., Aryana S., Han Y., Jiao Y. A review of the synthesis and applications of polymer–nanoclay composites. Appl. Sci. 2018;8:1696. doi: 10.3390/app8091696. DOI
Pizzoferrato R., Richetta M. Layered double hydroxides (LDHs) Crystals. 2020;10:1121. doi: 10.3390/cryst10121121. DOI
Zhang Y., Xua H., Lu S. Preparation and application of layered double hydroxide nanosheets. RSC Adv. 2021;11:24254–24281. doi: 10.1039/D1RA03289E. PubMed DOI PMC
Wijitwongwan R., Intasa-ard S., Ogawa M. Preparation of layered double hydroxides toward precisely designed hierarchical organization. ChemEngineering. 2019;3:68. doi: 10.3390/chemengineering3030068. DOI
Zhao B., Shen D., Zhang Z., Lu P., Hossain M., Li J., Li B., Duan X. 2D metallic transition-metal dichalcogenides: Structures, synthesis, properties, and applications. Adv. Funct. Mater. 2021;31:2105132. doi: 10.1002/adfm.202105132. DOI
Song L., Li H., Zhang Y., Shi J. Recent progress of two-dimensional metallic transition metal dichalcogenides: Syntheses, physical properties, and applications featured. Int. J. Appl. Phys. 2022;131:060902. doi: 10.1063/5.0083929. DOI
Yin J., Wang J., Ma Y., Yu J., Zhou J., Fan Z. Recent advances in the controlled synthesis and catalytic applications of two-dimensional rhodium nanomaterials. ACS Mater. Lett. 2021;3:121–133. doi: 10.1021/acsmaterialslett.0c00473. DOI
Zhao Y., Duan H. Photocatalysis Using 2D Nanomaterials. Royal Society of Chemistry; London, UK: 2022.
Gong C., Hu K., Wang X., Wangyang P., Yan C., Chu J., Liao M., Dai L., Zhai T., Wang C., et al. 2D nanomaterial arrays for electronics and optoelectronics. Adv. Funct. Mater. 2018;28:1706559. doi: 10.1002/adfm.201706559. DOI
Khan R., Radoi A., Rashid S., Hayat A., Vasilescu A., Andreescu S. Two-dimensional nanostructures for electrochemical biosensor. Sensors. 2021;21:3369. doi: 10.3390/s21103369. PubMed DOI PMC
Shamkhalichenar H., Choi J.W. Review—non-enzymatic hydrogen peroxide electrochemical sensors based on reduced graphene oxide. J. Electrochem. Soc. 2020;167:037531. doi: 10.1149/1945-7111/ab644a. DOI
Zafeiratos S. 2D Nanomaterials for Energy Applications: Graphene and Beyond. Elsevier; Amsterdam, The Netherlands: 2019.
Glavin N.R., Rao R., Varshney V., Bianco E., Apte A., Roy A., Ringe E., Ajayan P.M. Emerging applications of elemental 2D materials. Adv. Mat. 2020;32:1904302. doi: 10.1002/adma.201904302. PubMed DOI
Hu T., Mei X., Wang Y., Weng X., Liang R., Wei M. Two-dimensional nanomaterials: Fascinating materials in biomedical field. Sci. Bull. 2019;64:1707–1727. doi: 10.1016/j.scib.2019.09.021. PubMed DOI
Placha D., Jampilek J. Graphenic materials for biomedical applications. Nanomaterials. 2019;9:1758. doi: 10.3390/nano9121758. PubMed DOI PMC
Mukherjee S., Bytesnikova Z., Ashrafi A.M., Adam V., Richtera L. Graphene oxide as a nanocarrier for biochemical molecules: Current understanding and trends. Processes. 2020;8:1636. doi: 10.3390/pr8121636. DOI
Alkhouzaam A., Qiblawey H. Synergetic effects of dodecylamine-functionalized graphene oxide nanoparticles on antifouling and antibacterial properties of polysulfone ultrafiltration membranes. J. Water Process. Eng. 2021;42:102120. doi: 10.1016/j.jwpe.2021.102120. DOI
Zou X., Zhang L., Wang Z., Luo Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 2016;138:2064–2077. doi: 10.1021/jacs.5b11411. PubMed DOI
Kozik V., Bak A., Pentak D., Hachula B., Pytlakowska K., Rojkiewicz M., Jampilek J., Sieron K., Jazowiecka-Rakus J., Sochanik A. Derivatives of graphene oxide as potential drug carriers. J. Nanosci. Nanotechnol. 2019;19:2489–2492. doi: 10.1166/jnn.2019.15855. PubMed DOI
Mohammed H., Kumar A., Bekyarova E., Al-Hadeethi Y., Zhang X., Chen M., Ansari M.S., Cochis A., Rimondini L. Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. A scope review. Front. Bioeng. Biotechnol. 2020;8:465. doi: 10.3389/fbioe.2020.00465. PubMed DOI PMC
Jampilek J., Kralova K. Advances in drug delivery nanosystems using graphene-based materials and carbon nanotubes. Materials. 2021;14:1059. doi: 10.3390/ma14051059. PubMed DOI PMC
Placha D., Jampilek J. Chronic Inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics. 2021;13:64. doi: 10.3390/pharmaceutics13010064. PubMed DOI PMC
Jampilek J., Placha D. Advances in use of nanomaterials for musculoskeletal regeneration. Pharmaceutics. 2021;13:1994. doi: 10.3390/pharmaceutics13121994. PubMed DOI PMC
Jampilek J., Kralova K. Advances in nanostructures for antimicrobial therapy. Materials. 2022;15:2388. doi: 10.3390/ma15072388. PubMed DOI PMC
Barani M., Zeeshan M., Kalantar-Neyestanaki D., Farooq M.A., Rahdar A., Jha N.K., Sargazi S., Gupta P.K., Thakur V.K. Nanomaterials in the Management of Gram-Negative Bacterial Infections. Nanomaterials. 2021;11:2535. doi: 10.3390/nano11102535. PubMed DOI PMC
Cai S., Rong Y. Two-dimensional nanomaterials with enzyme-like properties for biomedical applications. Front. Chem. 2020;8:565940. doi: 10.3389/fchem.2020.565940. PubMed DOI PMC
Presutti D., Agarwal T., Zarepour A., Celikkin N., Hooshmand S., Nayak C., Ghomi M., Zarrabi A., Costantini M., Behera B., et al. Transition metal dichalcogenides (TMDC)-based nanozymes for biosensing and therapeutic applications. Materials. 2022;15:337. doi: 10.3390/ma15010337. PubMed DOI PMC
Hadji H., Bouchemal K. Effect of micro- and nanoparticle shape on biological processes. J. Control. Release. 2022;342:93–110. doi: 10.1016/j.jconrel.2021.12.032. PubMed DOI
Newman L., Jasim D.A., Prestat E., Lozano N., de Lazaro I., Nam Y., Assas B.M., Pennock J., Haigh S.J., Bussy C., et al. Splenic capture and in vivo intracellular biodegradation of biological-grade graphene oxide sheets. ACS Nano. 2020;14:10168–10186. doi: 10.1021/acsnano.0c03438. PubMed DOI PMC
Munoz-Wolf N., Lavelle E.C. Promotion of trained innate immunity by nanoparticles. Semin. Immunol. 2021;56:101542. doi: 10.1016/j.smim.2021.101542. PubMed DOI
Arkowski J., Obremska M., Kedzierski K., Slawuta A., Wawrzynska M. Applications for graphene and its derivatives in medical devices: Current knowledge and future applications. Adv. Clin. Exp. Med. 2020;29:1497–1504. doi: 10.17219/acem/130601. PubMed DOI
Dziewięcka M., Pawlyta M., Majchrzycki L., Balin K., Barteczko S., Czerkawska M., Augustyniak M. The structure–properties–cytotoxicity interplay: A crucial pathway to determining graphene oxide biocompatibility. Int. J. Mol. Sci. 2021;22:5401. doi: 10.3390/ijms22105401. PubMed DOI PMC
Pan P., Svirskis D., Rees S.W.P., Barker D., Waterhouse G.I.N., Wu Z. Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications. J. Control. Release. 2021;338:446–461. doi: 10.1016/j.jconrel.2021.08.053. PubMed DOI
Li J., Zeng H., Zeng Z., Zeng Y., Xie T. Promising graphene-based nanomaterials and their biomedical applications and potential risks: A comprehensive review. ACS Biomater. Sci. Eng. 2021;7:5363–5396. doi: 10.1021/acsbiomaterials.1c00875. PubMed DOI
Kabiri S., Degryse F., Tran D.N.H., da Silva R.C., McLaughlin M.J., Losic D. Graphene oxide: A new carrier for slow release of plant micronutrients. ACS Appl. Mater. Interfaces. 2017;9:43325–43335. doi: 10.1021/acsami.7b07890. PubMed DOI
May A., Coelho L.F., da Silva E.H.F.M., da Viana R.S., Vieira N.A., Ferreira W.P.M. Graphene: A new technology for agriculture. Res. Soc. Dev. 2021;10:e56610212827. doi: 10.33448/rsd-v10i2.12827. DOI
Rehan S. Carbon-Based Nanomaterials in Agriculture. AzoNano. [(accessed on 26 April 2022)]. Available online: https://www.azonano.com/article.aspx?ArticleID=6098.
Zhang X., Cao H., Wang H., Zhao J., Gao K., Qiao J., Li J., Ge S. The effects of graphene-family nanomaterials on plant growth: A review. Nanomaterials. 2022;12:936. doi: 10.3390/nano12060936. PubMed DOI PMC
Dasari Shareena T.P., McShan D., Dasmahapatra A.K., Tchounwou P.B. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nanomicro. Lett. 2018;10:53. doi: 10.1007/s40820-018-0206-4. PubMed DOI PMC
Bellet P., Gasparotto M., Pressi S., Fortunato A., Scapin G., Mba M., Menna E., Filippini F. Graphene-based scaffolds for regenerative medicine. Nanomaterials. 2021;11:404. doi: 10.3390/nano11020404. PubMed DOI PMC
Song J., Cui N., Sun S., Lu X., Wang Y., Shi H., Lee E.-S., Jiang H.-B. Controllability of graphene oxide doxorubicin loading capacity based on density functional theory. Nanomaterials. 2022;12:479. doi: 10.3390/nano12030479. PubMed DOI PMC
Chen S.H., Bell D.R., Luan B. Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Adv. Drug Deliv. Rev. 2022:114336. doi: 10.1016/j.addr.2022.114336. PubMed DOI PMC
Li Z., Lei H., Kan A., Xie H., Yu W. Photothermal applications based on graphene and its derivatives: A state-of-the-art review. Energy. 2021;216:119262. doi: 10.1016/j.energy.2020.119262. DOI
Lagos K.J., Buzza H.H., Bagnato V.S., Romero M.P. Carbon-based materials in photodynamic and photothermal therapies applied to tumor destruction. Int. J. Mol. Sci. 2022;23:22. doi: 10.3390/ijms23010022. PubMed DOI PMC
Wang Y., Li J., Li X., Shi J., Jiang Z., Zhang C.Y. Graphene-based nanomaterials for cancer therapy and anti-infections. Bioact. Mater. 2022;14:335–349. doi: 10.1016/j.bioactmat.2022.01.045. PubMed DOI PMC
Robinson J.T., Tabakman S.M., Liang Y., Wang H., Casalongue H.S., Vinh D., Dai H. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 2011;133:6825–6831. doi: 10.1021/ja2010175. PubMed DOI
Guo C., Zhang J., Xu W., Liu K., Yuan X., Qin S., Zhu Z. Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications. Nanomaterials. 2018;8:1033. doi: 10.3390/nano8121033. PubMed DOI PMC
Liu B., Yu W., Yan Z., Cai P., Gao F., Tang C., Gu P., Liu Z., Chen J. The light absorption enhancement in graphene monolayer resulting from the diffraction coupling of surface plasmon polariton resonance. Nanomaterials. 2022;12:216. doi: 10.3390/nano12020216. PubMed DOI PMC
Kim T.-H., Lee T., El-Said W.A., Choi J.-W. Graphene-based materials for stem cell applications. Materials. 2015;8:8674–8690. doi: 10.3390/ma8125481. PubMed DOI PMC
Pena-Paras L., Sanchez-Fernandez J.A., Vidaltamayo R. Nanoclays for biomedical applications. In: Martinez L., Kharissova O., Kharisov B., editors. Handbook of Ecomaterials. Springer; Cham, Switzerland: 2018. pp. 1–19.
Gaharwar A.K., Cross L.M., Peak C.W., Gold K., Carrow J.K., Brokesh A., Singh K.A. 2D Nanoclay for biomedical applications: Regenerative medicine, therapeutic delivery, and additive manufacturing. Adv. Mater. 2019;31:e1900332. doi: 10.1002/adma.201900332. PubMed DOI PMC
Safder A. 8 Sustainable Applications of Nanoclays. Nanografi Nano Technology. 2022. [(accessed on 25 May 2022)]. Available online: https://nanografi.com/blog/8-sustainable-applications-of-nanoclays/
Rozhina E., Batasheva S., Miftakhova R., Yan X., Vikulina A., Volodkin D., Fakhrullin R. Comparative cytotoxicity of kaolinite, halloysite, multiwalled carbon nanotubes and graphene oxide. Appl. Clay Sci. 2021;205:106041. doi: 10.1016/j.clay.2021.106041. DOI
Kryuchkova M., Fakhrullin R. Kaolin alleviates graphene oxide toxicity. Environ. Sci. Technol. Lett. 2018;5:295–300. doi: 10.1021/acs.estlett.8b00135. DOI
Rozhina E., Batasheva S., Danilushkina A., Kryuchkova M., Gomzikova M., Cherednichenko Y., Nigamatzyanova L., Akhatova F., Fakhrullin R. Kaolin alleviates the toxicity of graphene oxide for mammalian cells. Med. Chem. Commun. 2019;10:1457–1464. doi: 10.1039/C8MD00633D. PubMed DOI PMC
Mbayachi V.B., Ndayiragije E., Sammani T., Taj S., Mbuta E.R., Khan A.U. Graphene synthesis, characterization and its applications: A review. Results Chem. 2021;3:100163. doi: 10.1016/j.rechem.2021.100163. DOI
Tewari C., Tatrari G., Kumar S., Pandey S., Rana A., Pal M., Sahoo N.G. Green and cost-effective synthesis of 2D and 3D graphene-based nanomaterials from Drepanostachyum falcatum for bio-imaging and water purification applications. Chem. Eng. J. Adv. 2022;10:100265. doi: 10.1016/j.ceja.2022.100265. DOI
Nurunnabi M., McCarthy J. Biomedical Applications of Graphene and 2D Nanomaterials. Elsevier; Amsterdam, The Netherlands: 2019.
Tufano I., Vecchione R., Netti P.A. Methods to scale down graphene oxide size and size implication in anti-cancer applications. Front. Bioeng. Biotechnol. 2020;8:613280. doi: 10.3389/fbioe.2020.613280. PubMed DOI PMC
Chen W., Pan W., Wang J., Cheng L., Wang J., Song L., Hu Y., Ma X. Emerging two-dimensional monoelemental materials (Xenes): Fabrication, modification, and applications thereof in the field of bioimaging as nanocarriers. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022;14:e1750. doi: 10.1002/wnan.1750. PubMed DOI
Davis R., Urbanowski R.A., Gaharwar A.K. 2D layered nanomaterials for therapeutics delivery. Curr. Opin. Biomed. Eng. 2021;20:100319. doi: 10.1016/j.cobme.2021.100319. PubMed DOI PMC
Manisekaran R., Garcia-Contreras R., Chettiar A.D.R., Serrano-Diaz P., Lopez-Ayuso C.A., Arenas-Arrocena M.C., Hernandez-Padron G., Lopez-Marin L.M., Acosta-Torres L.S. 2D nanosheets-A new class of therapeutic formulations against cancer. Pharmaceutics. 2021;13:1803. doi: 10.3390/pharmaceutics13111803. PubMed DOI PMC
Jonoush Z.A., Farahani M., Bohlouli M., Niknam Z., Golchin A., Hatamie S., Rezaei-Tavirani M., Omidi M., Zali H. Surface modification of graphene and its derivatives for drug delivery systems. Mini Rev. Org. Chem. 2021;18:78–92. doi: 10.2174/1570193X17999200507093954. DOI
Jaymand M., Taghipour Y.D., Rezaei A., Derakhshankhah H., Abazari M.F., Samadian H., Hamblin M.R. Radiolabeled carbon-based nanostructures: New radiopharmaceuticals for cancer therapy? Coord. Chem. Rev. 2021;440:213974. doi: 10.1016/j.ccr.2021.213974. DOI
Tabish T.A., Narayan R.J. Mitochondria-targeted graphene for advanced cancer therapeutics. Acta Biomater. 2021;129:43–56. doi: 10.1016/j.actbio.2021.04.054. PubMed DOI
Ebrahimi M., Asadi M., Akhavan O. Graphene-based nanomaterials in fighting the most challenging viruses and immunogenic disorders. ACS Biomater. Sci. Eng. 2022;8:54–81. doi: 10.1021/acsbiomaterials.1c01184. PubMed DOI
Alkatheeri M.S. An updated review on the properties of graphene nano filled composites and their applications in dentistry. Biosci. Biotechnol. Res. Commun. 2020;13:365–372. doi: 10.21786/bbrc/13.2/2. DOI
Begum S., Pramanik A., Davis D., Patibandla S., Gates K., Gao Y., Ray P.C. 2D and heterostructure nanomaterial based strategies for combating drug-resistant bacteria. ACS Omega. 2020;5:3116–3130. doi: 10.1021/acsomega.9b03919. PubMed DOI PMC
Pandit S., De M. One-pot bottom-up synthesis of a 2D graphene derivative: Application in biomolecular recognition and nanozyme activity. Nanoscale Adv. 2021;3:5102–5110. doi: 10.1039/D1NA00226K. PubMed DOI PMC
Song Y.J., Qu K.G., Zhao C., Ren J.S., Qu X.G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010;22:2206–2210. doi: 10.1002/adma.200903783. PubMed DOI
Shende P., Pathan N. Graphene nanoribbons: A state-of-the-art in health care. Int. J. Pharm. 2021;595:120269. doi: 10.1016/j.ijpharm.2021.120269. PubMed DOI
Niu G.F., Yousefi B., Qujeq D., Marjani A., Asadi J., Wang Z., Mir S.M. Melatonin and doxorubicin co-delivered via a functionalized graphene-dendrimeric system enhances apoptosis of osteosarcoma cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;119:111554. doi: 10.1016/j.msec.2020.111554. PubMed DOI
Gooneh-Farahani S., Naghib S.M., Naimi-Jamal M.R., Seyfoori A. A pH-sensitive nanocarrier based on BSA-stabilized graphene-chitosan nanocomposite for sustained and prolonged release of anticancer agents. Sci. Rep. 2021;11:17404. doi: 10.1038/s41598-021-97081-1. PubMed DOI PMC
Stevanovic M., Djosic M., Jankovic A., Kojic V., Vukasinovic-Sekulic M., Stojanovic J., Oclovic J., Sakac M.C., Yop R.K., Miskovic-Stankovic V. Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering. J. Biomed. Mater. Res. A. 2020;108:2175–2189. doi: 10.1002/jbm.a.36974. PubMed DOI
Das Jana I., Kumbhakar P., Banerjee S., Gowda C.C., Kedia N., Kuila S.K., Banerjee S., Das N.C., Das A.K., Manna I. Copper nanoparticle-graphene composite-based transparent surface coating with antiviral activity against influenza virus. ACS Appl. Nano Mater. 2021;4:352–362. doi: 10.1021/acsanm.0c02713. DOI
Kadian S., Sethi S.K., Manik G. Recent advancements in synthesis and property control of graphene quantum dots for biomedical and optoelectronic applications. Mater. Chem. Front. 2021;5:627–658. doi: 10.1039/D0QM00550A. DOI
Cui Y.X., Duan W., Jin Y., Wo F.J., Xi F.N., Wu J.M. Graphene quantum dot-decorated luminescent porous silicon dressing for theranostics of diabetic wounds. Acta Biomater. 2021;131:544–554. doi: 10.1016/j.actbio.2021.07.018. PubMed DOI
Wang Z.J., Yang H.Y., Bai Y.X., Cheng L.M., Zhu R.R. rBMSC osteogenic differentiation enhanced by graphene quantum dots loaded with immunomodulatory layered double hydroxide nanoparticles. Biomed. Mater. 2022;17:024101. doi: 10.1088/1748-605X/ac4324. PubMed DOI
Javadian S., Najafi K., Sadrpoor S.M., Ektefa F., Dalir N., Nikkhah M. Graphene quantum dots based magnetic nanoparticles as a promising delivery system for controlled doxorubicin release. J. Mol. Liq. 2021;331:115746. doi: 10.1016/j.molliq.2021.115746. DOI
Vahedi N., Tabandeh F., Mahmoudifard M. Hyaluronic acid-graphene quantum dot nanocomposite: Potential target drug delivery and cancer cell imaging. Biotechnol. Appl. Biochem. 2021:1–12. doi: 10.1002/bab.2178. PubMed DOI
Ko N.R., Van S.Y., Hong S.H., Kim S.-Y., Kim M., Lee J.S., Lee S.J., Lee Y.-k., Kwon I.K., Oh S.J. Dual pH- and GSH-responsive degradable PEGylated graphene quantum dot-based nanoparticles for enhanced HER2-positive breast cancer therapy. Nanomaterials. 2020;10:91. doi: 10.3390/nano10010091. PubMed DOI PMC
Ghanbari N., Salehi Z., Khodadadi A.A., Shokrgozar M.A., Saboury A.A. Glucosamine-conjugated graphene quantum dots as versatile and pH-sensitive nanocarriers for enhanced delivery of curcumin targeting to breast cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;121:111809. doi: 10.1016/j.msec.2020.111809. PubMed DOI
Ghanbari N., Salehi Z., Khodadadi A.A., Shokrgozar M.A., Saboury A.A., Farzaneh F. Tryptophan-functionalized graphene quantum dots with enhanced curcumin loading capacity and pH-sensitive release. J. Drug Deliv. Sci. Technol. 2021;61:102137. doi: 10.1016/j.jddst.2020.102137. DOI
Rakhshaei R., Namazi H., Hamishehkar H., Rahimi M. Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties. Int. J. Biol. Macromol. 2020;150:1121–1129. doi: 10.1016/j.ijbiomac.2019.10.118. PubMed DOI
Mushtaq S., Yasin T., Saleem M., Dai T.H., Yameen M.A. Potentiation of antimicrobial photodynamic therapy by curcumin-loaded graphene quantum dots. Photochem. Photobiol. 2022;98:202–210. doi: 10.1111/php.13503. PubMed DOI
Mangalath S., Babu P.S.S., Nair R.R., Manu P.M., Krishna S., Nair S.A., Joseph J. Graphene quantum dots decorated with boron dipyrromethene dye derivatives for photodynamic therapy. ACS Appl. Nano Mater. 2021;4:4162–4171. doi: 10.1021/acsanm.1c00486. DOI
Hafezi M., Rostami M., Hosseini A., Rahimi-Nasrabadi M., Fasihi-Ramandi M., Badiei A., Ahmadi F. Cur-loaded ZnFe2O4@mZnO@N-GQDs biocompatible nano-carriers for smart and controlled targeted drug delivery with pH-triggered and ultrasound irradiation. J. Mol. Liq. 2021;322:114875. doi: 10.1016/j.molliq.2020.114875. DOI
Ji Y., Zhu R.Y., Shen Y., Tan Q., Chen J.L. Comparison of loading and unloading of different small drugs on graphene and its oxide. J. Mol. Liq. 2021;341:117454. doi: 10.1016/j.molliq.2021.117454. DOI
Jafarinejad-Farsangi S., Hashemi M.S., Rouholamini S.E.Y., Gharbi S., Ansari-Asl Z., Jafari E., Dezfuli A.S., Shahrokhi-Farjah M. Curcumin loaded on graphene nanosheets induced cell death in mammospheres from MCF-7 and primary breast tumor cells. Biomed. Mater. 2021;16:045040. doi: 10.1088/1748-605X/ac0400. PubMed DOI
Danafar H., Salehiabar M., Barsbay M., Rahimi H., Ghaffarlou M., Zaboli K.A., Faghfoori M.H., Kaboli S., Nosrati H., Faghfoori Z. Curcumin delivery by modified biosourced carbon-based nanoparticles. Nanomedicine. 2022;17:95–105. doi: 10.2217/nnm-2021-0225. PubMed DOI
Abdelhamid H.N., Hussein K.H. Graphene oxide as a carrier for drug delivery of methotrexate. Biointerface Res. Appl. Chem. 2021;11:14726–14735.
Mohanta Y.K., Biswas K., Rauta P.R., Mishra A.K., De D., Hashem A., Al-Arjani A.F., Alqarawi A.A., Abd-Allah E.F., Mahanta S. Development of graphene oxide nanosheets as potential biomaterials in cancer therapeutics: An in-vitro study against breast cancer cell line. J. Inorg. Organomet. Polym. Mater. 2021;31:4236–4249. doi: 10.1007/s10904-021-02046-6. DOI
Pelin M., Fusco L., Martin C., Sosa S., Frontinan-Rubio J., Gonzalez-Dominguez J.M., Duran-Prado M., Vazquez E., Prato M., Tubaro A. Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: The role of xanthine oxidase and NADH dehydrogenase. Nanoscale. 2018;10:11820–11830. doi: 10.1039/C8NR02933D. PubMed DOI
Timganova V., Zamorina S., Bochkova M., Nechaev A., Khramtsov P., Shardina K., Uzhviyuk S., Rayev M. The effect of pristine and pegylated graphene oxide nanosheets on the functions of human neutrophils. KnE Life Sci. 2022;7:48–57. doi: 10.18502/kls.v7i1.10105. DOI
Lee Y.-M., Yoon Y., Yoon H., Song S., Park H.-M., Lee Y.Y., Shin H., Hwang S.W., Yeum K.J. Enhanced antioxidant activity of bioactives in colored grains by nano-carriers in human lens epithelial cells. Molecules. 2018;23:1327. doi: 10.3390/molecules23061327. PubMed DOI PMC
Qiu Y., Wang Z., Owens A.C., Kulaots I., Chen Y., Kane A.B., Hurt R.H. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale. 2014;6:11744–11755. doi: 10.1039/C4NR03275F. PubMed DOI PMC
Kuropka P., Dobrzynski M., Bazanow B., Stygar D., Gebarowski T., Leskow A., Tarnowska M., Szyszka K., Malecka M., Nowak N. A study of the impact of graphene oxide on viral infection related to A549 and TC28a2 human cell lines. Materials. 2021;14:7788. doi: 10.3390/ma14247788. PubMed DOI PMC
Pulingam T., Thong K.L., Appaturi J.N., Lai C.W., Leo B.F. Mechanistic actions and contributing factors affecting the antibacterial property and cytotoxicity of graphene oxide. Chemosphere. 2021;281:130739. doi: 10.1016/j.chemosphere.2021.130739. PubMed DOI
Li X., Zhao H.Q., Wang S.D., Zou W.W., Yang P.Y., Xing X.D., Gu B.S. A synergistic antimicrobial mechanism of GO: Why oxidative stress can inactivate E. coli. Nano. 2020;15:2050054. doi: 10.1142/S179329202050054X. DOI
Cao W.J., He L., Cao W.D., Huang X.B., Jia K., Dai J.Y. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomater. 2020;112:14–28. doi: 10.1016/j.actbio.2020.06.009. PubMed DOI
Patarroyo J.L., Fonseca E., Cifuentes J., Salcedo F., Cruz J.C., Reyes L.H. Gelatin-graphene oxide nanocomposite hydrogels for Kluyveromyces lactis encapsulation: Potential applications in probiotics and bioreactor packings. Biomolecules. 2021;11:922. doi: 10.3390/biom11070922. PubMed DOI PMC
Jackman J.A., Yoon B.K., Mokrzecka N., Kohli G.S., Valle-Gonzalez E.R., Zhu X., Pumera M., Rice S.A., Cho N.J. Graphene oxide mimics biological signaling cue to rescue starving bacteria. Adv. Funct. Mater. 2021;31:2102328. doi: 10.1002/adfm.202102328. DOI
Basiuk E.V., Monroy-Torres B., Carrero J.C., Basiuk V.A. Effects of solvent-free amine functionalization of graphene oxide and nanodiamond on bacterial growth. Fuller. Nanotub. Carbon Nanostruct. 2021;29:58–66. doi: 10.1080/1536383X.2020.1811235. DOI
Vaishampayan A., Ahmed R., Wagner O., de Jong A., Haag R., Kok J., Grohmann E. Transcriptomic analysis of stress response to novel antimicrobial coatings in a clinical MRSA strain. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;119:111578. doi: 10.1016/j.msec.2020.111578. PubMed DOI
Tudose M., Anghel E.M., Hristea E.N., Voicescu M., Somacescu S., Culita D.C., Musuc A.M., Dumitrascu F., Hanganu A., Kuncser A. Benzofurazan derivatives modified graphene oxide nanocomposite: Physico-chemical characterization and interaction with bacterial and tumoral cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;123:112028. doi: 10.1016/j.msec.2021.112028. PubMed DOI
Cibecchini G., Veronesi M., Catelani T., Bandiera T., Guarnieri D., Pompa P.P. Antiangiogenic effect of graphene oxide in primary human endothelial cells. ACS Appl. Bio Mater. 2020;12:22507–22518. doi: 10.1021/acsami.0c03404. PubMed DOI
Elsabagh M.F., Fayez H., Motaleb M.A., Zaghary W.A., Sakr T.M. Synthesis, modification, characterization, radiolabeling and in vivo behavior of carboxylated nanographene oxide sheets as a tumor imaging agent. Egypt. J. Chem. 2022;65:249–258. doi: 10.21608/ejchem.2021.85086.4150. DOI
Jovito B.L., Paterno L.G., Sales M.J.A., Gross M.A., Silva L.P., de Souza P., Bao S.N. Graphene oide/zinc oxide nanocomposite displaying selective toxicity to glioblastoma cell lines. ACS Appl. Bio Mater. 2021;4:829–843. doi: 10.1021/acsabm.0c01369. DOI
Kesavan S., Meena K.S., Sharmili S.A., Govindarajan M., Alharbi N.S., Kadaikunnan S., Khaled J.M., Alobaidi A.S., Alanzi K.F., Vaseeharan B. Ulvan loaded graphene oxide nanoparticle fabricated with chitosan and d-mannose for targeted anticancer drug delivery. J. Drug Deliv. Sci. Technol. 2021;65:102760. doi: 10.1016/j.jddst.2021.102760. DOI
Zhao P.H., Wei Z., Wang L.H., Pang C., Zhang H.R., Wang J., Wang Y.L. Delivery of temozolomide using PEGylated graphene oxide as a nanocarrier. Mater. Express. 2021;11:189–195.
Krasteva N., Staneva D., Vasileva B., Miloshev G., Georgieva M. Bioactivity of PEGylated graphene oxide nanoparticles combined with near-infrared laser irradiation studied in colorectal carcinoma cells. Nanomaterials. 2021;11:3061. doi: 10.3390/nano11113061. PubMed DOI PMC
Georgieva M., Gospodinova Z., Keremidarska-Markova M., Kamenska T., Gencheva G., Krasteva N. PEGylated nanographene oxide in combination with near-infrared laser irradiation as a smart nanocarrier in colon cancer targeted therapy. Pharmaceutics. 2021;13:424. doi: 10.3390/pharmaceutics13030424. PubMed DOI PMC
Abu Lila A.S., Abdallah M.H., Wani S.U.D., Gangadharappa H.V., Younes K.M., Khafagy E.S., Shehata T.M., Soliman M.S. Folic acid-conjugated raloxifene-loaded graphene-based nanocarrier: Fabrication, characterization and antitumor screening. Colloids Surf. A Physicochem. Eng. Asp. 2021;625:126971. doi: 10.1016/j.colsurfa.2021.126971. DOI
Wei L.Y., Li G., Lu T.C., Wei Y.M., Nong Z.Z., Wei M., Pan X., Qin Q.X., Meng F.Y., Li X.H. Functionalized graphene oxide as drug delivery systems for platinum anticancer drugs. J. Pharm. Sci. 2021;110:3631–3638. doi: 10.1016/j.xphs.2021.07.009. PubMed DOI
Buskaran K., Hussein M.Z., Moklas M.A.M., Masarudin M.J., Fakurazi S. Graphene oxide loaded with protocatechuic acid and chlorogenic acid dual drug nanodelivery system for human hepatocellular carcinoma therapeutic application. Int. J. Mol. Sci. 2021;22:5786. doi: 10.3390/ijms22115786. PubMed DOI PMC
Asgari S., Pourjavadi A., Setayeshmehr M., Boisen A., Ajalloueian F. Encapsulation of drug-loaded graphene oxide-based nanocarrier into electrospun pullulan nanofibers for potential local chemotherapy of breast cancer. Macromol. Chem. Phys. 2021;222:2100096. doi: 10.1002/macp.202100096. DOI
Wang P.Y., Wang X., Tang Q., Chen H., Zhang Q., Jiang H.Y., Wang Z. Functionalized graphene oxide against U251 glioma cells and its molecular mechanism. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;116:111187. doi: 10.1016/j.msec.2020.111187. PubMed DOI
Bouchareb S., Doufnoune R., Riahi F., Cherif-Silini H., Belbahri L. Non-covalent functionalization of graphene oxide using self-assembly of silver-triphenylphosphine for bactericidal formulations. Mater. Chem. Phys. 2020;243:122598. doi: 10.1016/j.matchemphys.2019.122598. DOI
Bakhsheshi-Rad H.R., Ismail A.F., Aziz M., Akbari M., Hadisi Z., Khoshnava S.M., Pagan E., Chen X.B. Co-incorporation of graphene oxide/silver nanoparticle into poly-l-lactic acid fibrous: A route toward the development of cytocompatible and antibacterial coating layer on magnesium implants. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;111:110812. doi: 10.1016/j.msec.2020.110812. PubMed DOI
Mao M.Y., Zhang W.J., Huang Z.W., Huang J., Wang J., Li W.P., Gu S.S. Graphene oxide-copper nanocomposites suppress cariogenic Streptococcus mutans biofilm formation. Int. J. Nanomed. 2021;16:7727–7739. doi: 10.2147/IJN.S303521. PubMed DOI PMC
Chai M.Z., An M.W., Zhang X.Y., Chu P.K. In vitro and in vivo antibacterial activity of graphene oxide-modified porous TiO2 coatings under 808-nm light irradiation. Rare Met. 2022;41:540–545. doi: 10.1007/s12598-021-01754-9. DOI
Chata G., Nichols F., Mercado R., Assafa T., Millhauser G.L., Saltikov C., Chen S.W. Photodynamic activity of graphene oxide/polyaniline/manganese oxide ternary composites toward both Gram-positive and Gram-negative bacteria. ACS Appl. Bio Mater. 2021;4:7025–7033. doi: 10.1021/acsabm.1c00677. PubMed DOI PMC
Hung H.S., Kung M.L., Chen F.C., Ke Y.C., Shen C.C., Yang Y.C., Tang C.M., Yeh C.A., Hsieh H.H., Hsu S.H. Nanogold-carried graphene oxide: Anti-inflammation and increased differentiation capacity of mesenchymal stem cells. Nanomaterials. 2021;11:2046. doi: 10.3390/nano11082046. PubMed DOI PMC
Chen H., Xing L.Q., Guo H.R., Luo C.X., Zhang X.D. Dual-targeting SERS-encoded graphene oxide nanocarrier for intracellular co-delivery of doxorubicin and 9-aminoacridine with enhanced combination therapy. Analyst. 2021;146:6893–6901. doi: 10.1039/D1AN01237A. PubMed DOI
Matiyani M., Rana A., Pal M., Rana S., Melkani A.B., Sahoo N.G. Polymer grafted magnetic graphene oxide as a potential nanocarrier for pH-responsive delivery of sparingly soluble quercetin against breast cancer cells. RSC Adv. 2022;12:2574–2588. doi: 10.1039/D1RA05382E. PubMed DOI PMC
Wen C.C., Cheng R.N., Gong T., Huang Y., Li D., Zhao X.H., Yu B.F., Su D., Song Z.L., Liang W.T. β-Cyclodextrin-cholic acid-hyaluronic acid polymer coated Fe3O4-graphene oxide nanohybrids as local chemo-photothermal synergistic agents for enhanced liver tumor therapy. Colloids Surf. B Biointerfaces. 2021;199:111510. doi: 10.1016/j.colsurfb.2020.111510. PubMed DOI
Kiamohammadi L., Asadi L., Shirvalilou S., Khoei S., Khoee S., Soleymani M., Minaei S.E. Physical and biological properties of 5-fluorouracil polymer-coated magnetite nanographene oxide as a new thermosensitizer for alternative magnetic hyperthermia and a magnetic resonance imaging contrast agent: In vitro and in vivo study. ACS Omega. 2021;6:20192–20204. doi: 10.1021/acsomega.1c01763. PubMed DOI PMC
Zhu H.Q., Zhang B., Zhu N.L., Li M.C., Yu Q.L. Mitochondrion targeting peptide-modified magnetic graphene oxide delivering mitoxantrone for impairment of tumor mitochondrial functions. Chin. Chem. Lett. 2021;32:1220–1223. doi: 10.1016/j.cclet.2020.09.003. DOI
Karimi S., Namazi H. Fe3O4@PEG-coated dendrimer modified graphene oxide nanocomposite as a pH-sensitive drug carrier for targeted delivery of doxorubicin. J. Alloys Compd. 2021;879:160426. doi: 10.1016/j.jallcom.2021.160426. DOI
Qiang S.R., Wang M.Y., Liang J.J., Zhao X.L., Fan Q.H., Geng R.Y., Luo D.X., Li Z.B., Zhang L. Effects of morphology regulated by Pb2+ on graphene oxide cytotoxicity: Spectroscopic and in vitro investigations. Mater. Chem. Phys. 2020;239:122016. doi: 10.1016/j.matchemphys.2019.122016. DOI
Taylor K., Tabish T.A., Narayan R.J. Drug release kinetics of DOX-loaded graphene-based nanocarriers for ovarian and breast cancer therapeutics. Appl. Sci. 2021;11:11151. doi: 10.3390/app112311151. DOI
Biagiotti G., Salvatore A., Toniolo G., Caselli L., Di Vito M., Cacaci M., Contiero L., Gori T., Maggini M., Sanguinetti M. Metal-free antibacterial additives based on graphene materials and salicylic acid: From the bench to fabric applications. ACS Appl. Mater. Interfaces. 2021;13:26288–26298. doi: 10.1021/acsami.1c02330. PubMed DOI PMC
Cojocaru E., Ghitman J., Pircalabioru G.G., Stavarache C., Serafim A., Vasile E., Iovu H. Containing rGO-TEPA with potential application in wound dressings. Polymers. 2022;14:294. doi: 10.3390/polym14020294. PubMed DOI PMC
Khan M.U.A., Haider S., Raza M.A., Shah S.A., Abd Razak S.I., Kadir M.R.A., Subhan F., Haider A. Smart and pH-sensitive rGO/Arabinoxylan/chitosan composite for wound dressing: In-vitro drug delivery, antibacterial activity, and biological activities. Int. J. Biol. Macromol. 2021;192:820–831. doi: 10.1016/j.ijbiomac.2021.10.033. PubMed DOI
Zhang Z.Q., Wang X.G., Li P.S., Bai M.H., Qi W.B. Transdermal delivery of buprenorphine from reduced graphene oxide laden hydrogel to treat osteoarthritis. J. Biomater. Sci. Polym. Ed. 2021;32:874–885. doi: 10.1080/09205063.2021.1877065. PubMed DOI
Li W.F., Zhang G.Q., Wei X.X. Lidocaine-loaded reduced graphene oxide hydrogel for prolongation of effects of local anesthesia: In vitro and in vivo analyses. J. Biomater. Appl. 2021;35:1034–1042. doi: 10.1177/0885328220988462. PubMed DOI
Lee S., Kim S.Y. Gold nanorod/reduced graphene oxide composite nanocarriers for near-infrared-induced cancer therapy and photoacoustic imaging. ACS Appl. Nano Mater. 2021;4:11849–11860. doi: 10.1021/acsanm.1c02419. DOI
Caires C.S.A., Farias L.A.S., Gomes L.E., Pinto B.P., Goncalves D.A., Zagonel L.F., Nascimento V.A., Alves D.C.B., Colbeck I., Whitby C., et al. Effective killing of bacteria under blue-light irradiation promoted by green synthesized silver nanoparticles loaded on reduced graphene oxide sheets. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;113:110984. doi: 10.1016/j.msec.2020.110984. PubMed DOI
Maleki-Ghaleh H., Siadati M.H., Fallah A., Koc B., Kavanlouei M., Khademi-Azandehi P., Moradpur-Tari E., Omidi Y., Barar J., Beygi-Khosrowshahi Y. Antibacterial and cellular behaviors of novel zinc-doped hydroxyapatite/graphene nanocomposite for bone tissue engineering. Int. J. Mol. Sci. 2021;22:9564. doi: 10.3390/ijms22179564. PubMed DOI PMC
Prakashkumar N., Asik R.M., Kavitha T., Archunan G., Suganthy N. Unveiling the anticancer and antibiofilm potential of catechin overlaid reduced graphene oxide/zinc oxide nanocomposites. J. Clust. Sci. 2021:1–18. doi: 10.1007/s10876-021-02194-2. DOI
Dash B.S., Jose G., Lu Y.-J., Chen J.-P. Functionalized reduced graphene oxide as a versatile tool for cancer therapy. Int. J. Mol. Sci. 2021;22:2989. doi: 10.3390/ijms22062989. PubMed DOI PMC
Wang X.P., Zhang T.T., Xie H.C., Wang Z.Y., Jing D.P., He K.L., Gao X.D. Phenotypic responses and potential genetic mechanism of lepidopteran insects under exposure to graphene oxide. Ecotoxicol. Environ. Saf. 2021;228:113008. doi: 10.1016/j.ecoenv.2021.113008. PubMed DOI
Flasz B., Dziewiecka M., Kedziorski A., Tarnawska M., Augustyniak M. Multigenerational graphene oxide intoxication results in reproduction disorders at the molecular level of vitellogenin protein expression in Acheta domesticus. Chemosphere. 2021;280:130772. doi: 10.1016/j.chemosphere.2021.130772. PubMed DOI
Dziewiecka M., Flasz B., Rost-Roszkowska M., Kedziorski A., Kochanowicz A., Augustyniak M. Graphene oxide as a new anthropogenic stress factor—multigenerational study at the molecular, cellular, individual and population level of Acheta domesticus. J. Hazard. Mater. 2020;396:122775. doi: 10.1016/j.jhazmat.2020.122775. PubMed DOI
Alian R.S., Dziewiecka M., Kedziorski A., Majchrzycki L., Augustyniak M. Do nanoparticles cause hormesis? Early physiological compensatory response in house crickets to a dietary admixture of GO, Ag, and GOAg composite. Sci. Total Environ. 2021;788:147801. doi: 10.1016/j.scitotenv.2021.147801. PubMed DOI
Fang Y.L., Lu Z.T., Li M.X., Qu J.W., Ye W.T., Li F.C., Wei J., Sun H.N., Li B. An assessment of the reproductive toxicity of GONPs exposure to Bombyx mori. Ecotoxicol. Environ. Saf. 2021;210:111888. doi: 10.1016/j.ecoenv.2020.111888. PubMed DOI
Martins C.H.Z., de Sousa M., Fonseca L.C., Martinez D.S.T., Alves O.L. Biological effects of oxidized carbon nanomaterials (1D versus 2D) on Spodoptera frugiperda: Material dimensionality influences on the insect development, performance and nutritional physiology. Chemosphere. 2019;215:766–774. doi: 10.1016/j.chemosphere.2018.09.178. PubMed DOI
Batool M., Hussain D., Akrem A., Najam-ul-Haq M., Saeed S., Zaka S.M., Nawaz M.S., Buck F., Saeed Q. Graphene quantum dots as cysteine protease nanocarriers against stored grain insect pests. Sci. Rep. 2020;10:3444. doi: 10.1038/s41598-020-60432-5. PubMed DOI PMC
Kaur K., Sharma S., Gupta R., Munikrishnappa V.K.T., Chandel M., Ahamed M., Singhal N.K., Bakthavatsalam N., Gorantla M., Muthusamy E., et al. Nanomaze lure: Pheromone sandwich in graphene oxide interlayers for sustainable targeted pest control. ACS Appl. Mater. Interfaces. 2021;13:48349–48357. doi: 10.1021/acsami.1c09118. PubMed DOI
Song S., Wan M.H., Feng W.L., Zhang J., Mo H., Jiang X.F., Shen H., Shen J. Graphene oide as the ptential vector of hydrophobic pesticides: Ultrahigh pesticide loading capacity and improved antipest activity. ACS Agric. Sci. Technol. 2021;1:182–191. doi: 10.1021/acsagscitech.1c00002. DOI
Muda M.S., Kamari A., Bakar S.A., Yusoff S.N.M., Fatimah I., Phillip E., Din S.M. Chitosan–graphene oxide nanocomposites as water–solubilising agents for rotenone pesticide. J. Mol. Liq. 2020;318:114066. doi: 10.1016/j.molliq.2020.114066. DOI
Zhou H., Liu S.S., Wan F.L., Jian Y.F., Guo F.Y., Chen J.N., Ning Y.S., Ding W. Graphene oxide-acaricide nanocomposites advance acaricidal activity of acaricides against Tetranychus cinnabarinus by directly inhibiting the transcription of a cuticle protein gene. Environ. Sci. Nano. 2021;8:3122–3137. doi: 10.1039/D1EN00521A. DOI
Wang X.P., Xie H.C., Wang Z.Y., He K.L. Graphene oxide as a pesticide delivery vector for enhancing acaricidal activity against spider mites. Colloids Surf. B Biointerfaces. 2019;173:632–638. doi: 10.1016/j.colsurfb.2018.10.010. PubMed DOI
Gao X.D., Shi F.Y., Peng F., Shi X.J., Cheng C.H., Hou W.L., Xie H.C., Lin X.H., Wang X.P. Formulation of nanopesticide with graphene oxide as the nanocarrier of pyrethroid pesticide and its application in spider mite control. RSC Adv. 2021;11:36089–36097. doi: 10.1039/D1RA06505J. PubMed DOI PMC
Wang X.P., Xie H.C., Wang Z.Y., He K.L., Jing D.P. Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environ. Sci. Nano. 2019;6:75–84. doi: 10.1039/C8EN00902C. DOI
Gupta D., Samal R.R., Gautam S., Hooda S., Kumar S. Multifunctional activity of graphene oxide-based nanoformulation against the disease vector, Aedes aegypti. J. Appl. Nat. Sci. 2021;13:1265–1273. doi: 10.31018/jans.v13i4.3018. DOI
Chen J.N., Li S.L., Luo J.X., Zhang Y.Q., Ding W. Graphene oxide induces toxicity and alters energy metabolism and gene expression in Ralstonia solanacearum. J. Nanosci. Nanotechnol. 2017;17:186–195. doi: 10.1166/jnn.2017.12575. PubMed DOI
Chong Y., Ge C.C., Fang G., Wu R.F., Zhang H., Chai Z.F. Light–enhanced antibacterial activity of graphene oxide, mainly via accelerated electron transfer. Environ. Sci. Technol. 2017;51:10154–10161. doi: 10.1021/acs.est.7b00663. PubMed DOI
Chen J.N., Wang X.P., Han H.Y. A new function of graphene oxide emerges: Inactivating phytopathogenic bacterium Xanthomonas oryzae pv. oryzae. J. Nanopart. Res. 2013;15:1658. doi: 10.1007/s11051-013-1658-6. DOI
Wang X.P., Liu X.Q., Han H.Y. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf. B Biointerfaces. 2013;103:136–142. doi: 10.1016/j.colsurfb.2012.09.044. PubMed DOI
Chen J., Peng H., Wang X., Shao F., Yuan Z., Han H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 2014;6:1879–1889. doi: 10.1039/C3NR04941H. PubMed DOI
Nguyen H.N., Chaves-Lopez C., Oliveira R.C., Paparella A., Rodrigues D.E. Cellular and metabolic approaches to investigate the effects of graphene and graphene oxide in the fungi Aspergillus flavus and Aspergillus niger. Carbon. 2019;143:419–429. doi: 10.1016/j.carbon.2018.10.099. DOI
Asghar M.A., Asghar M.A., Rehman A.A., Khan K., Zehravi M., Ali S., Ahmed A. Synthesis and characterization of graphene oxide nanoparticles and their antimicrobial and adsorption activity against Aspergillus and aflatoxins. Lat. Am. J. Pharm. 2019;38:1036–1044.
Liu Y.F., Yuan C.F., Cheng Y., Yao G.X., Xie L.L., Xu B.B. Graphene oxide affects growth and resistance to Sclerotinia sclerotiorum in Brassica napus L. J. Nanosci. Nanotechnol. 2018;18:8345–8351. doi: 10.1166/jnn.2018.16398. PubMed DOI
Wang X.P., Liu C.X., Li H.Q., Zhang H.T., Ma R.J., Zhang Q.W., Yang F., Liao Y.C., Yuan W.Y., Chen F.F. Metabonomics-assisted label-free quantitative proteomic and transcriptomic analysis reveals novel insights into the antifungal effect of graphene oxide for controlling Fusarium graminearum. Environ. Sci. Nano. 2019;6:3401–3421. doi: 10.1039/C9EN00981G. DOI
Wang X.P., Liu X.Q., Chen J.N., Han H.Y., Yuan Z.D. Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon. 2014;68:798–806. doi: 10.1016/j.carbon.2013.11.072. DOI
Sawangphruk M., Srimuk P., Chiochan P., Sangsri T., Siwayaprahm P. Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon. 2012;50:5156–5161. doi: 10.1016/j.carbon.2012.06.056. DOI
Hao Y., Cao X.Q., Ma C.X., Zhang Z.T., Zhao N., Ali A., Hou T.Q., Xiang Z.Q., Zhuang J., Wu S.J., et al. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front. Plant Sci. 2017;8:1332. doi: 10.3389/fpls.2017.01332. PubMed DOI PMC
Guroo J.A., Khan M., Ahmad A., Azam A., Sidduqui Z.A. Management of Meloidogyne incognita and Macrophomina phaseolina by graphene oxide on Lens culinaris. Acta Phytopathol. Entomol. Hung. 2016;51:43–56. doi: 10.1556/038.51.2016.1.4. DOI
Liang Y., Yang D.S., Cui J.H. A graphene oxide/silver nanoparticle composite as a novel agricultural antibacterial agent against Xanthomonas oryzae pv. oryzae for crop disease management. New J. Chem. 2017;41:13692–13699.
Ocsoy I., Paret M.L., Ocsoy M.A., Kunwar S., Chen T., You M.X., Tan W.H. Nanotechnology in plant fisease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano. 2013;7:8972–8980. doi: 10.1021/nn4034794. PubMed DOI PMC
Strayer A., Ocsoy I., Tan W., Jones J.B., Paret M.L. Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse. Plant Dis. 2016;100:1460–1465. doi: 10.1094/PDIS-05-15-0580-RE. PubMed DOI
Li Y.D., Yang D.S., Cui J.H. Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against Pseudomonas syringae pv. tomato. RSC Adv. 2017;7:38853–38860. doi: 10.1039/C7RA05520J. DOI
Chen J.N., Sun L., Cheng Y., Lu Z.C., Shao K., Li T., Hu C., Han H.Y. Graphene oxide-silver nanocomposite: Novel agricultural antifungal agent against Fusarium graminearum for crop disease prevention. ACS Appl. Mater. Interfaces. 2016;8:24057–24070. doi: 10.1021/acsami.6b05730. PubMed DOI
Wang X.P., Cai A.J., Wen X.L., Jing D.P., Qi H.H., Yuan H. Graphene oxide-Fe3O4 nanocomposites as high-performance antifungal agents against Plasmopara viticola. Sci. China Mater. 2017;60:258–268. doi: 10.1007/s40843-016-9005-9. DOI
El-Abeid S.E., Ahmed Y., Daros J.A., Mohamed M.A. Reduced graphene oxide nanosheet-decorated copper oxide nanoparticles: A potent antifungal nanocomposite against Fusarium root rot and wilt diseases of tomato and pepper plants. Nanomaterials. 2020;10:1001. doi: 10.3390/nano10051001. PubMed DOI PMC
Sharma S., Singh B., Bindra P., Panneerselvam P., Dwivedi N., Senapati A., Adholeya A., Shanmugam V. Triple-smart eco-friendly chili anthracnose control agro-nanocarrier. ACS Appl. Mater. Interfaces. 2021;13:9143–9155. doi: 10.1021/acsami.0c18797. PubMed DOI
Wang J., Li J.P., Zhuang X.W., Pan X., Yu H.X., Sun F.L., Song J.G., Jin C.D., Jiang Y.T. Improved mould resistance and antibacterial activity of bamboo coated with ZnO/graphene. R. Soc. Open Sci. 2018;5:180173. doi: 10.1098/rsos.180173. PubMed DOI PMC
Wang X.P., Peng F., Cheng C.H., Chen L.N., Shi X.J., Gao X.D., Li J. Synergistic antifungal activity of graphene oxide and fungicides against Fusarium head blight in vitro and in vivo. Nanomaterials. 2021;11:2393. doi: 10.3390/nano11092393. PubMed DOI PMC
Hu P.T., Zhu L., Zheng F., Lai J.Y., Xu H.H., Jia J.L. Graphene oxide as a pesticide carrier for enhancing fungicide activity against Magnaporthe oryzae. New J. Chem. 2021;45:2649–2658. doi: 10.1039/D0NJ04721J. DOI
Tong Y.J., Shao L.H., Li X.L., Lu J.Q., Sun H.L., Xiang S., Zhang Z.H., Wu Y., Wu X.M. Adhesive and stimulus-responsive polydopamine-coated graphene oxide system for pesticide-loss control. J. Agric. Food Chem. 2018;66:2616–2622. doi: 10.1021/acs.jafc.7b05500. PubMed DOI
Li X.K., Sun S., Guo S.Q., Hu X.G. Identifying the phytotoxicity and defense mechanisms associated with graphene-based nanomaterials by integrating multiomics and regular analysis. Environ. Sci. Technol. 2021;55:9938–9948. doi: 10.1021/acs.est.0c08493. PubMed DOI
Cao X.S., Ma C.X., Chen F.R., Luo X., Musante C., White J.C., Zhao X.L., Wang Z.Y., Xing B.S. New insight into the mechanism of graphene oxide-enhanced phytotoxicity of arsenic species. J. Hazard. Mater. 2021;410:124959. doi: 10.1016/j.jhazmat.2020.124959. PubMed DOI
Ganjavi A.S., Oraei M., Gohari G., Akbari A., Faramarzi A. Glycine betaine functionalized graphene oxide as a new engineering nanoparticle lessens salt stress impacts in sweet basil (Ocimum basilicum L.) Plant Physiol. Biochem. 2021;162:14–26. doi: 10.1016/j.plaphy.2021.02.028. PubMed DOI
Zhang P., Wu X.Y., Guo Z.L., Yang X.N., Hu X.G., Lynch I. Stress response and nutrient homeostasis in lettuce (Lactuca sativa) exposed to graphene quantum dots are modulated by particle surface functionalization. Adv. Biol. 2021;5:2000778. doi: 10.1002/adbi.202000778. PubMed DOI
Weng Y.N., You Y., Lu Q., Zhong A., Liu S.Y., Liu H.J., Du S.T. Graphene oxide exposure suppresses nitrate uptake by roots of wheat seedlings. Environ. Pollut. 2020;262:114224. doi: 10.1016/j.envpol.2020.114224. PubMed DOI
Zhang P., Guo Z.L., Luo W.H., Monikh F.A., Xie C.J., Valsami-Jones E., Lynch I., Zhang Z.Y. Graphene oxide-induced pH alteration, iron overload, and subsequent oxidative damage in rice (Oryza sativa L.): A new mechanism of nanomaterial phytotoxicity. Environ. Sci. Technol. 2020;54:3181–3190. doi: 10.1021/acs.est.9b05794. PubMed DOI
Kim M.J., Kim W., Chung H. Effects of silver-graphene oxide on seed germination and early growth of crop species. PeerJ. 2020;8:e8387. doi: 10.7717/peerj.8387. PubMed DOI PMC
You Y., Liu L.J., Wang Y., Li J.X., Ying Z.N., Hou Z.L., Liu H.J., Du S.T. Graphene oxide decreases Cd concentration in rice seedlings but intensifies growth restriction. J. Hazard. Mater. 2021;417:125958. doi: 10.1016/j.jhazmat.2021.125958. PubMed DOI
Fatehi S.F., Oraei M., Gohari G., Akbari A., Faramarzi A. Proline-functionalized graphene oxide nanoparticles (GO-Pro NPs) mitigate salt-induced adverse effects on morpho-physiological traits and essential oils constituents in Moldavian balm (Dracocephalum moldavica L.) J. Plant Growth Regul. 2021:1–15. doi: 10.1007/s00344-021-10477-1. DOI
Gao M.L., Xu Y.L., Chang X.P., Dong Y.M., Song Z.G. Effects of foliar application of graphene oxide on cadmium uptake by lettuce. J. Hazard. Mater. 2020;398:122859. doi: 10.1016/j.jhazmat.2020.122859. PubMed DOI
Gao M.L., Chang X.P., Yang Y.J., Song Z.G. Foliar graphene oxide treatment increases photosynthetic capacity and reduces oxidative stress in cadmium-stressed lettuce. Plant Physiol. Biochem. 2020;154:287–294. doi: 10.1016/j.plaphy.2020.06.021. PubMed DOI
Zakharova O., Kolesnikova E., Muratov D., Gusev A. Stimulating and toxic effects of graphene oxide on Betula pubescens microclones. IOP Conf. Ser. Earth Environ. Sci. 2020;595:012010. doi: 10.1088/1755-1315/595/1/012010. DOI
Gonzalez-Garcia Y., Lopez-Vargas E.R., Cadenas-Pliego G., Benavides-Mendoza A., Gonzalez-Morales S., Robledo-Olivo A., Alpuche-Solis A.G., Juarez-Maldonado A. Impact of carbon nanomaterials on the antioxidant system of tomato seedlings. Int. J. Mol. Sci. 2019;20:5858. doi: 10.3390/ijms20235858. PubMed DOI PMC
Ghorbanpour M., Farahani A.H.K., Hadian J. Potential toxicity of nano-graphene oxide on callus cell of Plantago major L. under polyethylene glycol-induced dehydration. Ecotoxicol. Environ. Saf. 2018;148:910–922. doi: 10.1016/j.ecoenv.2017.11.061. DOI
Golkar P., Bakhtiari M.A., Bazarganipour M. The effects of nanographene oxide on the morpho-biochemical traits and antioxidant activity of Lepidium sativum L. under in vitro salinity stress. Sci. Hortic. 2021;288:110301. doi: 10.1016/j.scienta.2021.110301. DOI
Yang L., Chen Y.K., Shi L.Q., Yu J., Yao J., Sun J.G., Zhao L., Sun J.S. Enhanced Cd accumulation by graphene oxide (GO) under Cd stress in duckweed. Aquat. Toxicol. 2020;229:105579. doi: 10.1016/j.aquatox.2020.105579. PubMed DOI
Deng C.H., Yang Z.M., Cheng C.H., Dai Z.G., Tang Q., Xu Y., Chen X.J., Su J.G. Regulating the Cd tolerance of jute (Corchorus olitorius L.) with graphene oxide nanosheets and the toxicity responses. Environ. Eng. Sci. 2021;38:1158–1167. doi: 10.1089/ees.2021.0016. DOI
Nokandeh S., Ramezani M., Gerami M. The physiological and biochemical responses to engineered green graphene/metal nanocomposites in Stevia rebaudiana. J. Plant Biochem. Biotechnol. 2021;30:579–585. doi: 10.1007/s13562-020-00630-4. DOI
Lopez-Vargas E.R., Gonzalez-Garcia Y., Perez-Alvarez M., Cadenas-Pliego G., Gonzalez-Morales S., Benavides-Mendoza A., Cabrera R.I., Juarez-Maldonado A. Seed priming with carbon nanomaterials to modify the germination, growth, and antioxidant status of tomato seedlings. Agronomy. 2020;10:639. doi: 10.3390/agronomy10050639. DOI
Xu Y., Lu Y.H., Li J.G., Liu R.L., Zhu X. Effect of graphene quantum dot size on plant growth. Nanoscale. 2020;12:15045–15049. doi: 10.1039/D0NR01913E. PubMed DOI
Guo X.H., Zhao J.G., Wang R.M., Zhang H.C., Xing B.Y., Naeem M., Yao T.J., Li R.Q., Xu R.F., Zhang Z.F., et al. Effects of graphene oxide on tomato growth in different stages. Plant Physiol. Biochem. 2021;162:447–455. doi: 10.1016/j.plaphy.2021.03.013. PubMed DOI
Feng P., Geng B.J., Cheng Z., Liao X.Y., Pan D.Y., Huang J.Y. Graphene quantum dots-induced physiological and biochemical responses in mung bean and tomato seedlings. Braz. J. Bot. 2019;42:29–41. doi: 10.1007/s40415-019-00519-0. DOI
Yang Y., Zhao Y.Q., Wang M.S., Meng H.Q., Ye Z.H. Mechanistic analysis of ecological effects of graphene nanomaterials on plant ecosystems. Asia-Pac. J. Chem. Eng. 2020;15:e2467. doi: 10.1002/apj.2467. DOI
Chen Z., Wang Q.Z. Graphene ameliorates saline-alkaline stress-induced damage and improves growth and tolerance in alfalfa (Medicago sativa L.) Plant Physiol. Biochem. 2021;163:128–138. doi: 10.1016/j.plaphy.2021.03.039. PubMed DOI
Chen Z., Niu J.P., Guo Z.P., Sui X., Xu N., Kareem H.A., Hassan M.U., Yan M.K., Zhang Q., Cui J., et al. Graphene enhances photosynthesis and the antioxidative defense system and alleviates salinity and alkalinity stresses in alfalfa (Medicago sativa L.) by regulating gene expression. Environ. Sci. Nano. 2021;8:2731–2748. doi: 10.1039/D1EN00257K. DOI
Chen Z., Niu J.P., Guo Z.P., Sui X., Xu N., Kareem H.A., Ul Hassan M., Zhang Q., Cui J., Wang Q.Z. Integrating transcriptome and physiological analyses to elucidate the essential biological mechanisms of graphene phytotoxicity of alfalfa (Medicago sativa L.) Ecotoxicol. Environ. Saf. 2021;220:112348. doi: 10.1016/j.ecoenv.2021.112348. PubMed DOI
Liu C.Y., Sun L., Sun Y.X., You X.Q., Wan Y., Wu X.Y., Tan M.L., Wu Q., Bai X., Ye X.L., et al. Integrating transcriptome and physiological analyses to elucidate the molecular responses of buckwheat to graphene oxide. J. Hazard. Mater. 2022;424:127443. doi: 10.1016/j.jhazmat.2021.127443. PubMed DOI
Song J.F., Cao K., Duan C.W., Luo N., Cui X.Y. Effects of graphene on Larix olgensis seedlings and soil properties of Haplic Cambisols in Northeast China. Forests. 2020;11:258. doi: 10.3390/f11030258. PubMed DOI
Ouyang S.H., Zhou Q.X., Zeng H., Wang Y., Hu X.G. Natural nanocolloids mediate the phytotoxicity of graphene oxide. Environ. Sci. Technol. 2020;54:4865–4875. doi: 10.1021/acs.est.9b07460. PubMed DOI
Cruces E., Barrios A.C., Cahue Y.P., Januszewski B., Gilbertson L.M., Perreault F. Similar toxicity mechanisms between graphene oxide and oxidized multi-walled carbon nanotubes in Microcystis aeruginosa. Chemosphere. 2021;265:129137. doi: 10.1016/j.chemosphere.2020.129137. PubMed DOI
Xie L.L., Chen F., Du H.W., Zhang X.K., Wang X.G., Yao G.X., Xu B.B. Graphene oxide and indole-3-acetic acid cotreatment regulates the root growth of Brassica napus L. via multiple phytohormone pathways. BMC Plant Biol. 2020;20:101. doi: 10.1186/s12870-020-2308-7. PubMed DOI PMC
Nazari F., Jafarirad S., Movafeghi A., Kosari-Nasab M., Kazemi E.M. Toxicity of microwave-synthesized silver-reduced graphene oxide nanocomposites to the microalga Chlorella vulgaris: Comparison with the hydrothermal method synthesized counterparts. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2020;55:639–649. doi: 10.1080/10934529.2020.1726142. PubMed DOI
Zhang X., Cao H.F., Wang H.Y., Zhang R.X., Jia H.K., Huang J.T., Zhao J.G., Yao J.Z. Effects of graphene on morphology, microstructure and transcriptomic profiling of Pinus tabuliformis Carr. roots. PLoS ONE. 2021;16:e0253812. PubMed PMC
Chen Z.W., Zhao J.G., Song J., Han S.H., Du Y.Q., Qiao Y.Y., Liu Z.H., Qiao J., Li W.J., Li J.W., et al. Influence of graphene on the multiple metabolic pathways of Zea mays roots based on transcriptome analysis. PLoS ONE. 2021;16:e0244856. doi: 10.1371/journal.pone.0244856. PubMed DOI PMC
Gonzalez-Garcia Y., Cadenas-Pliego G., Alpuche-Solis A.G., Cabrera R.I., Juarez-Maldonado A. Effect of carbon-based nanomaterials on Fusarium wilt in tomato. Sci. Hortic. 2022;291:110586. doi: 10.1016/j.scienta.2021.110586. DOI
Lu K., Shen D.L., Dong S.P., Chen C.Y., Lin S.J., Lu S., Xing B.S., Mao L. Uptake of graphene enhanced the photophosphorylation performed by chloroplasts in rice plants. Nano Res. 2020;13:3198–3205. doi: 10.1007/s12274-020-2862-1. DOI
Elsheery N.I., Sunoj V.S.J., Wen Y., Zhu J.J., Muralidharan G., Cao K.F. Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiol. Biochem. 2020;149:50–60. doi: 10.1016/j.plaphy.2020.01.035. PubMed DOI
Pandey K., Anas M., Hicks V.K., Green M.J., Khodakovskaya M.V. Improvement of commercially valuable traits of industrial crops by application of carbon-based nanomaterials. Sci. Rep. 2019;9:19358. doi: 10.1038/s41598-019-55903-3. PubMed DOI PMC
Park S., Choi K.S., Kim S., Gwon Y., Kim J. Graphene oxide-assisted promotion of plant growth and stability. Nanomaterials. 2020;10:758. doi: 10.3390/nano10040758. PubMed DOI PMC
He Y., Wei H.M., Liu S.J., Xu Y.C., Zhu Z.Y., Yan H., Li J.X., Tian Z.H. Growth response of Oryza sativa seedlings to graphene oxide and its variability among genotypes. Biol. Plant. 2021;65:39–46. doi: 10.32615/bp.2020.124. DOI
Zhao J., Ning F.Y., Cao X.S., Yao H., Wang Z.Y., Xing B.S. Photo-transformation of graphene oxide in the presence of co-existing metal ions regulated its toxicity to freshwater algae. Water Res. 2020;176:115735. doi: 10.1016/j.watres.2020.115735. PubMed DOI
Mahmoud N.E., Abdelhameed R.M. Superiority of modified graphene oxide for enhancing the growth, yield, and antioxidant potential of pearl millet (Pennisetum glaucum L.) under salt stress. Plant Stress. 2021;2:100025. doi: 10.1016/j.stress.2021.100025. DOI
Lopez-Vargas E.R., Perez-Alvarez M., Cadenas-Pliego G., Hernandez-Fuentes A.D., Juarez-Maldonado A. Seed treatment with carbon nanomaterials impacts growth and nutrient absorption in tomato under saline stress. Rev. Bras. Biocienc. 2021;8:e1090.
Zhao D.Q., Fang Z.W., Tang Y.H., Tao J. Graphene oxide as an effective soil water retention agent can confer drought stress tolerance to Paeonia ostii without toxicity. Environ. Sci. Technol. 2020;54:8269–8279. doi: 10.1021/acs.est.0c02040. PubMed DOI
Lopes T., Cruz C., Cardoso P., Pinto R., Marques P.A.A.P., Figueira E. A multifactorial approach to untangle graphene oxide (GO) nanosheets effects on plants: Plant growth-promoting bacteria inoculation, bacterial survival, and drought. Nanomaterials. 2021;11:771. doi: 10.3390/nano11030771. PubMed DOI PMC
Li J., Wu F., Fang Q., Wu Z., Duan Q.Y., Li X.D., Ye W.L. The mutual effects of graphene oxide nanosheets and cadmium on the growth, cadmium uptake and accumulation in rice. Plant Physiol. Biochem. 2020;147:289–294. doi: 10.1016/j.plaphy.2019.12.034. PubMed DOI
Gallegos-Perez R.W., Reynosa-Martinez A.C., Soto-Ortiz C., Alvarez-Lemus M.A., Barroso-Flores J., Montalvo V.G., Lopez-Honorato E. Effect of UV radiation on the structure of graphene oxide in water and its impact on cytotoxicity and As(III) adsorption. Chemospehre. 2020;249:126160. doi: 10.1016/j.chemosphere.2020.126160. PubMed DOI
Zhang Y., Duan X.W., Bai L.L., Quan X. Effects of nanomaterials on metal toxicity: Case study of graphene family on Cd. Ecotox. Environ. Saf. 2020;194:110448. doi: 10.1016/j.ecoenv.2020.110448. PubMed DOI
Yildiztugay E., Ozfidan-Konakci C., Cavusoglu H., Arikan B., Alp F.N., Elbasan F., Kucukoduk M., Turkan I. Nanomaterial sulfonated graphene oxide advances the tolerance against nitrate and ammonium toxicity by regulating chloroplastic redox balance, photochemistry of photosystems and antioxidant capacity in Triticum aestivum. J. Hazard. Mater. 2022;424:127310. doi: 10.1016/j.jhazmat.2021.127310. PubMed DOI
Zhao L.Q., Guan X., Yu B.W., Ding N., Liu X.M., Ma Q., Yang S.N., Yilihamu A., Yang S.T. Carboxylated graphene oxide-chitosan spheres immobilize Cu2+ in soil and reduce its bioaccumulation in wheat plants. Environ. Int. 2019;133:105208. doi: 10.1016/j.envint.2019.105208. PubMed DOI
Yu H., Wang L., Qu J.H., Wang X., Huang F.X., Jiao Y.Q., Zhang Y. Bi2O3/TiO2@reduced graphene oxide with enzyme-like properties efficiently inactivates Pseudomonas syringae pv. tomato DC3000 and enhances abiotic stress tolerance in tomato. Environ. Sci. Nano. 2022;9:118–132.
Attia M.S., El-Sayyad G.S., Abd Elkodous M., Khalil W.F., Nofel M.M., Abdelaziz A.M., Farghali A.A., El-Batal A.I., El Rouby W.M.A. Chitosan and EDTA conjugated graphene oxide antinematodes in Eggplant: Toward improving plant immune response. Int. J. Biol. Macromol. 2021;179:333–344. doi: 10.1016/j.ijbiomac.2021.03.005. PubMed DOI