Development and validation of the first consensus gene-expression signature of operational tolerance in kidney transplantation, incorporating adjustment for immunosuppressive drug therapy
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
MR/J006742/1
Medical Research Council - United Kingdom
PubMed
32707447
PubMed Central
PMC7374249
DOI
10.1016/j.ebiom.2020.102899
PII: S2352-3964(20)30274-7
Knihovny.cz E-zdroje
- Klíčová slova
- Biomarkers, Immunosuppressive Drugs, Kidney, Operational Tolerance, RT-qPCR, Transplantation,
- MeSH
- dospělí MeSH
- genové regulační sítě * účinky léků MeSH
- imunosupresiva farmakologie terapeutické užití MeSH
- konsensus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé středního věku MeSH
- lidé MeSH
- logistické modely MeSH
- rejekce štěpu genetika prevence a kontrola MeSH
- senioři MeSH
- stanovení celkové genové exprese metody MeSH
- studie případů a kontrol MeSH
- transplantace ledvin škodlivé účinky MeSH
- transplantační tolerance * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- imunosupresiva MeSH
BACKGROUND: Kidney transplant recipients (KTRs) with "operational tolerance" (OT) maintain a functioning graft without immunosuppressive (IS) drugs, thus avoiding treatment complications. Nevertheless, IS drugs can influence gene-expression signatures aiming to identify OT among treated KTRs. METHODS: We compared five published signatures of OT in peripheral blood samples from 18 tolerant, 183 stable, and 34 chronic rejector KTRs, using gene-expression levels with and without adjustment for IS drugs and regularised logistic regression. FINDINGS: IS drugs explained up to 50% of the variability in gene-expression and 20-30% of the variability in the probability of OT predicted by signatures without drug adjustment. We present a parsimonious consensus gene-set to identify OT, derived from joint analysis of IS-drug-adjusted expression of five published signature gene-sets. This signature, including CD40, CTLA4, HSD11B1, IGKV4-1, MZB1, NR3C2, and RAB40C genes, showed an area under the curve 0⋅92 (95% confidence interval 0⋅88-0⋅94) in cross-validation and 0⋅97 (0⋅93-1⋅00) in six months follow-up samples. INTERPRETATION: We advocate including adjustment for IS drug therapy in the development stage of gene-expression signatures of OT to reduce the risk of capturing features of treatment, which could be lost following IS drug minimisation or withdrawal. Our signature, however, would require further validation in an independent dataset and a biomarker-led trial. FUNDING: FP7-HEALTH-2012-INNOVATION-1 [305147:BIO-DrIM] (SC,IR-M,PM,DSt); MRC [G0801537/ID:88245] (MPH-F); MRC [MR/J006742/1] (IR-M); Guy's&StThomas' Charity [R080530]&[R090782]; CONICYT-Bicentennial-Becas-Chile (EN-L); EU:FP7/2007-2013 [HEALTH-F5-2010-260687: The ONE Study] (MPH-F); Czech Ministry of Health [NV19-06-00031] (OV); NIHR-BRC Guy's&StThomas' NHS Foundation Trust and KCL (SC); UK Clinical Research Networks [portfolio:7521].
Cardiff and Vale University Health Board Cardiff CF14 4XW UK
Guy's and St Thomas' NHS Foundation Trust Great Maze Pond London SE1 9RT UK
Hospital Universitario Vall d'Hebrón Passeig de la Vall d'Hebron 119 129 08035 Barcelona Spain
Hull University Teaching Hospitals NHS Trust Anlaby Rd Hull HU3 2JZ UK
King's College Hospital NHS Foundation Trust Denmark Hill London SE5 9RS UK
Leicester General Hospital Gwendolen Rd Leicester LE5 4PW UK
Manchester Royal Infirmary Oxford Rd Manchester M13 9WL UK
MRC Centre for Transplantation King's College London Great Maze Pond London SE1 9RT UK
Northern General Hospital Herries Rd Sheffield S5 7AU UK
Queen Alexandra Hospital Southwick Hill Rd Cosham Portsmouth PO6 3LY UK
Salford Royal NHS Foundation Trust Stott Ln Salford M6 8HD UK
Zobrazit více v PubMed
Massart A., Pallier A., Pascual J., Viklicky O., Budde K., Spasovski G. The DESCARTES-Nantes survey of kidney transplant recipients displaying clinical operational tolerance identifies 35 new tolerant patients and 34 almost tolerant patients. Nephrol Dial Transplant. 2016;31(6):1002–1013. PubMed
Whitehouse G.P., Sanchez-Fueyo A. Immunosuppression withdrawal following liver transplantation. Clin Res Hepatol Gastroenterol. 2014;38(6):676–680. PubMed
Massart A., Ghisdal L., Abramowicz M., Abramowicz D. Operational tolerance in kidney transplantation and associated biomarkers. Clin Exp Immunol. 2017;189(2):138–157. PubMed PMC
Newell K.A., Turka L.A. Tolerance signatures in transplant recipients. Curr Opin Organ Transplant. 2015;20(4):400–405. PubMed PMC
Christakoudi S., Hernandez-Fuentes M.P. Lack of adjustment for confounding could lead to misleading conclusions. Am J Transplant. 2017;17(10):2505–2506. PubMed
Rebollo-Mesa I., Nova-Lamperti E., Mobillo P., Runglall M., Christakoudi S., Norris S. Biomarkers of tolerance in kidney transplantation: are we predicting tolerance or response to immunosuppressive treatment? Am J Transplant. 2016;16(12):3443–3457. PubMed PMC
Asare A., Kanaparthi S., Lim N., Newell K.A., Turka L.A. Reply to Christakoudi and Hernandez-Fuentes: we agree-let's move on. Am J Transplant. 2018;18(1):273. PubMed
Bottomley M.J., Chen M., Fuggle S., Harden P.N., Wood K.J. Application of operational tolerance signatures are limited by variability and type of immunosuppression in renal transplant recipients: a cross-sectional study. Transplant Direct. 2016;3(1):e125. PubMed PMC
Christakoudi S., Runglall M., Mobillo P., Rebollo-Mesa I., Tsui T.L., Nova-Lamperti E. Steroid regulation: an overlooked aspect of tolerance and chronic rejection in kidney transplantation. Mol Cell Endocrinol. 2018;473:205–216. PubMed
Danger R., Chesneau M., Paul C., Guerif P., Durand M., Newell K.A. A composite score associated with spontaneous operational tolerance in kidney transplant recipients. Kidney Int. 2017;91(6):1473–1481. PubMed PMC
Newell K.A., Asare A., Kirk A.D., Gisler T.D., Bourcier K., Suthanthiran M. Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest. 2010;120(6):1836–1847. PubMed PMC
Roedder S., Li L., Alonso M.N., Hsieh S.C., Vu M.T., Dai H. A Three-Gene Assay for monitoring immune quiescence in kidney transplantation. J Am Soc Nephrol. 2015;26(8):2042–2053. PubMed PMC
Smith T.F., Espy M.J., Mandrekar J., Jones M.F., Cockerill F.R., Patel R. Quantitative real-time polymerase chain reaction for evaluating DNAemia due to cytomegalovirus, Epstein-Barr virus, and BK virus in solid-organ transplant recipients. Clin Infect Dis. 2007;45(8):1056–1061. PubMed
Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108. PubMed
Friedman J., Hastie T., Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22. PubMed PMC
Robin X., Turck N., Hainard A., Tiberti N., Lisacek F., Sanchez J.C. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011;12:77. PubMed PMC
Moreso F., Torres I.B., Martinez-Gallo M., Benlloch S., Cantarell C., Perello M. Gene expression signature of tolerance and lymphocyte subsets in stable renal transplants: results of a cross-sectional study. Transpl Immunol. 2014;31(1):11–16. PubMed
Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37–46.
Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001;17(6):520–525. PubMed
RCoreTeam . R Foundation for Statistical Computing; Vienna, Austria: 2015. R: a language and environment for statistical computing.https://wwwR-projectorg/ URL.
Lee Y.H., Seo J.W., Kim Y.G., Moon J.Y., Kim J.S., Jeong K.H. Validation study of an operational tolerance signature in Korean kidney transplant recipients. Immune Netw. 2018;18(5):e36. PubMed PMC
Sagoo P., Perucha E., Sawitzki B., Tomiuk S., Stephens D.A., Miqueu P. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J Clin Invest. 2010;120(6):1848–1861. PubMed PMC
Asare A., Kanaparthi S., Lim N., Phippard D., Vincenti F., Friedewald J. B cell receptor genes associated with tolerance identify a cohort of immunosuppressed patients with improved renal allograft graft function. Am J Transplant. 2017;17(10):2627–2639. PubMed PMC
Dugast E., Soulillou J.P., Foucher Y., Papuchon E., Guerif P., Paul C. Failure of calcineurin inhibitor (tacrolimus) weaning randomized trial in long-term stable kidney transplant recipients. Am J Transplant. 2016;16(11):3255–3261. PubMed
Hricik D.E., Formica R.N., Nickerson P., Rush D., Fairchild R.L., Poggio E.D. Adverse outcomes of tacrolimus withdrawal in immune-quiescent kidney transplant recipients. J Am Soc Nephrol. 2015;26(12):3114–3122. PubMed PMC
Benitez C., Londono M.C., Miquel R., Manzia T.M., Abraldes J.G., Lozano J.J. Prospective multicenter clinical trial of immunosuppressive drug withdrawal in stable adult liver transplant recipients. Hepatology. 2013;58(5):1824–1835. PubMed
Newell K.A., Adams A.B., Turka L.A. Biomarkers of operational tolerance following kidney transplantation - The immune tolerance network studies of spontaneously tolerant kidney transplant recipients. Hum Immunol. 2018;79(5):380–387. PubMed PMC
Baron D., Ramstein G., Chesneau M., Echasseriau Y., Pallier A., Paul C. A common gene signature across multiple studies relate biomarkers and functional regulation in tolerance to renal allograft. Kidney Int. 2015;87(5):984–995. PubMed PMC
Shabir S., Girdlestone J., Briggs D., Kaul B., Smith H., Daga S. Transitional B lymphocytes are associated with protection from kidney allograft rejection: a prospective study. Am J Transplant. 2015;15(5):1384–1391. PubMed
Svachova V., Sekerkova A., Hruba P., Tycova I., Rodova M., Cecrdlova E. Dynamic changes of B-cell compartments in kidney transplantation: lack of transitional B cells is associated with allograft rejection. Transpl Int. 2016;29(5):540–548. PubMed
Nova-Lamperti E., Chana P., Mobillo P., Runglall M., Kamra Y., McGregor R. Increased CD40 ligation and reduced BCR signalling leads to higher IL-10 production in B cells from tolerant kidney transplant patients. Transplantation. 2017;101(3):541–547. PubMed PMC
Silva H.M., Takenaka M.C., Moraes-Vieira P.M., Monteiro S.M., Hernandez M.O., Chaara W. Preserving the B-cell compartment favors operational tolerance in human renal transplantation. Mol Med. 2012;18:733–743. PubMed PMC
Oura T., Hotta K., Rosales I., Dehnadi A., Kawai K., Lee H. Addition of anti-CD40 monoclonal antibody to nonmyeloablative conditioning with belatacept abrogated allograft tolerance despite induction of mixed chimerism. Transplantation. 2019;103(1):168–176. PubMed PMC
Strehlau J., Pavlakis M., Lipman M., Maslinski W., Shapiro M., Strom T.B. The intragraft gene activation of markers reflecting T-cell-activation and -cytotoxicity analyzed by quantitative RT-PCR in renal transplantation. Clin Nephrol. 1996;46(1):30–33. PubMed
Paterson A.M., Lovitch S.B., Sage P.T., Juneja V.R., Lee Y., Trombley J.D. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J Exp Med. 2015;212(10):1603–1621. PubMed PMC
Kanda M., Tanaka C., Kobayashi D., Tanaka H., Shimizu D., Shibata M. Epigenetic suppression of the immunoregulator MZB1 is associated with the malignant phenotype of gastric cancer. Int J Cancer. 2016;139(10):2290–2298. PubMed
Matsumura S., Imoto I., Kozaki K., Matsui T., Muramatsu T., Furuta M. Integrative array-based approach identifies MZB1 as a frequently methylated putative tumor suppressor in hepatocellular carcinoma. Clin Cancer Res. 2012;18(13):3541–3551. PubMed
Miyagawa-Hayashino A., Yoshifuji H., Kitagori K., Ito S., Oku T., Hirayama Y. Increase of MZB1 in B cells in systemic lupus erythematosus: proteomic analysis of biopsied lymph nodes. Arthritis Res Ther. 2018;20(1):13. PubMed PMC
Day J.P., Whiteley E., Freeley M., Long A., Malacrida B., Kiely P. RAB40C regulates RACK1 stability via the ubiquitin-proteasome system. Future Sci OA. 2018;4(7):Fso317. PubMed PMC
Khakpour G., Noruzinia M., Izadi P., Karami F., Ahmadvand M., Heshmat R. Methylomics of breast cancer: seeking epimarkers in peripheral blood of young subjects. Tumour Biol. 2017;39(3) doi: 10.1177/1010428317695040. PubMed DOI