Advances in Nanostructures for Antimicrobial Therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-17-0373
Slovak Research and Development Agency
1/0116/22
VEGA
PubMed
35407720
PubMed Central
PMC8999898
DOI
10.3390/ma15072388
PII: ma15072388
Knihovny.cz E-zdroje
- Klíčová slova
- antibiotics, metalloids, metals, nanoformulations, nanomaterials, nanoparticles, polymers,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Microbial infections caused by a variety of drug-resistant microorganisms are more common, but there are fewer and fewer approved new antimicrobial chemotherapeutics for systemic administration capable of acting against these resistant infectious pathogens. Formulation innovations of existing drugs are gaining prominence, while the application of nanotechnologies is a useful alternative for improving/increasing the effect of existing antimicrobial drugs. Nanomaterials represent one of the possible strategies to address this unfortunate situation. This review aims to summarize the most current results of nanoformulations of antibiotics and antibacterial active nanomaterials. Nanoformulations of antimicrobial peptides, synergistic combinations of antimicrobial-active agents with nitric oxide donors or combinations of small organic molecules or polymers with metals, metal oxides or metalloids are discussed as well. The mechanisms of actions of selected nanoformulations, including systems with magnetic, photothermal or photodynamic effects, are briefly described.
Zobrazit více v PubMed
WHO Antimicrobial Resistance. 2021. [(accessed on 3 February 2022)]. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.
WHO World Health Statistics. 2021. [(accessed on 3 February 2022)]. Available online: https://apps.who.int/iris/bitstream/handle/10665/342703/9789240027053-eng.pdf.
European Centre for Disease Prevention and Control. 2021. [(accessed on 3 February 2022)]. Available online: https://www.ecdc.europa.eu/en.
Clancy C.J., Schwartz I.S., Kula B., Nguyen M.H. Bacterial superinfections among persons with coronavirus disease 2019: A comprehensive review of data from postmortem studies. Open Forum Infect. Dis. 2021;8:ofab065. PubMed PMC
WHO . Critically Important Antimicrobials for Human Medicine. 6th ed. WHO; Geneva, Switzerland: 2019. [(accessed on 12 March 2022)]. Available online: https://www.who.int/publications/i/item/9789241515528.
Aslam B., Wang W., Arshad M.I., Khurshid M., Muzammil S., Rasool M.H., Nisar M.A., Alvi R.F., Aslam M.A., Qamar M.U., et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018;11:1645–1658. PubMed PMC
Serwecinska L. Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water. 2020;12:3313.
Peixoto P., Guedes J., Rombi E., Fonseca A.M., Aguiar C.A., Neves I.C. Metal ion-zeolite materials against resistant bacteria, MRSA. Ind. Eng. Chem. Res. 2021;60:12883–12892.
WHO Global Tuberculosis Report 2021. [(accessed on 3 February 2022)]. Available online: https://www.who.int/publications/digital/global-tuberculosis-report-2021.
Li B., Webster T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopaedic infections. J. Orthop. Res. 2018;36:22–32. PubMed PMC
Dhingra S., Rahman N.A.A., Peile E., Rahman M., Sartelli M., Hassali M.A., Islam T., Islam S., Haque M. Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front. Public Health. 2020;8:535668. PubMed PMC
Sweileh W.M. Global research publications on irrational use of antimicrobials: Call for more research to contain antimicrobial resistance. Glob. Health. 2021;17:94. PubMed PMC
Ma F., Xu S., Tang Z., Li Z., Zhang L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf. Health. 2021;3:32–38.
Larsson D.G.J., Flach C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2021 doi: 10.1038/s41579-021-00649-x. PubMed DOI PMC
Kenyon C. Positive association between the use of quinolones in food animals and the prevalence of fluoroquinolone resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A global ecological analysis. Antibiotics. 2021;10:1193. PubMed PMC
Ahmed M.O., Baptiste K.E. Vancomycin-resistant enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb. Drug Resist. 2018;24:590–606. PubMed
Yang B., Fang D., Lv Q., Wang Z., Liu Y. Targeted therapeutic strategies in the battle against pathogenic bacteria. Front. Pharmacol. 2021;12:673239. PubMed PMC
Fouque F., Reeder J.C. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: A look at the evidence. Infect. Dis. Poverty. 2019;8:51. PubMed PMC
Coates S.J., Norton S.A. The effects of climate change on infectious diseases with cutaneous manifestations. Int. J. Womens Dermatol. 2021;7:8–16. PubMed PMC
The Global Risks Report 2020. [(accessed on 15 February 2022)]. Available online: https://www.weforum.org/reports/the-global-risks-report-2021.
Nijman V. Illegal and legal wildlife trade spreads zoonotic diseases. Trends Parasitol. 2021;37:359–360. PubMed
Rodriguez-Verdugo A., Lozano-Huntelman N., Cruz-Loya M., Savage V., Yeh P. Compounding effects of climate warming and antibiotic resistance. iScience. 2020;23:101024. PubMed PMC
McGough S.F., MacFadden D.R., Hattab M.W., Molbak K., Santillana M. Rates of increase of antibiotic resistance and ambient temperature in Europe: A cross-national analysis of 28 countries between 2000 and 2016. Eurosurveillance. 2020;25:1900414. PubMed PMC
Jampilek J. Design and discovery of new antibacterial agents: Advances, perspectives, challenges. Curr. Med. Chem. 2018;25:4972–5006. PubMed
Morphy J.R. The challenges of multi-target lead optimization. In: Morphy J.R., Harris C.J., editors. Designing Multi-Target Drugs. Royal Society of Chemistry; London, UK: 2012. pp. 141–154.
Yang T., Sui X., Yu B., Shen Y., Cong H. Recent advances in the rational drug design based on multi-target ligands. Curr. Med. Chem. 2020;27:4720–4740. PubMed
Talevi A. Multi-target pharmacology: Possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 2015;6:205. PubMed PMC
Ramsay R.R., Popovic-Nikolic M.R., Nikolic K., Uliassi E., Bolognesi M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018;7:3. PubMed PMC
Jampilek J. Recent advances in design of potential quinoxaline anti-infectives. Curr. Med. Chem. 2014;21:4347–4373. PubMed
Jampilek J. Design of antimalarial agents based on natural products. Curr. Org. Chem. 2017;21:1824–1846.
Dolab J.G., Lima B., Spaczynska E., Kos J., Cano N.H., Feresin G., Tapia A., Garibotto F., Petenatti E., Olivella M., et al. Antimicrobial activity of Annona emarginata (Schltdl.) H. Rainer and most active isolated compound against clinically important bacteria. Molecules. 2018;23:1187. PubMed PMC
Pospisilova S., Kos J., Michnova H., Kapustikova I., Strharsky T., Oravec M., Moricz A.M., Bakonyi J., Kauerova T., Kollar P., et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018;19:2318. PubMed PMC
Jampilek J. Potential of agricultural fungicides for antifungal drug discovery. Expert Opin. Drug Discov. 2016;11:1–9. PubMed
Ferreira M., Gameiro P. Fluoroquinolone-transition metal complexes: A strategy to overcome bacterial resistance. Microorganisms. 2021;9:1506. PubMed PMC
Huan Y., Kong Q., Mou H., Yi H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 2020;11:582779. PubMed PMC
Qiu H., Si Z., Luo Y., Feng P., Wu X., Hou W., Zhu Y., Chan-Park M.B., Xu L., Huang D. The Mechanisms and the applications of antibacterial polymers in surface modification on medical devices. Front. Bioeng. Biotechnol. 2020;8:910. PubMed PMC
CDC—Antibiotic Resistance Threats in the United States. [(accessed on 15 February 2022)];2019 Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf.
Pushpakom S., Iorio F., Eyers P.A., Escott K.J., Hopper S., Wells A., Doig A., Guilliams T., Latimer J., McNamee C., et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019;18:41–58. PubMed
Foletto V.S., da Rosa T.F., Serafin M.B., Bottega A., Horner R. Repositioning of non-antibiotic drugs as an alternative to microbial resistance: A systematic review. Int. J. Antimicrob. Agents. 2021;58:106380. PubMed
Singh P., Garg A., Pandit S., Mokkapati V.R.S.S., Mijakovic I. Antimicrobial effects of biogenic nanoparticles. Nanomaterials. 2018;8:1009. PubMed PMC
Placha D., Jampilek J. Graphenic materials for biomedical applications. Nanomaterials. 2019;9:1758. PubMed PMC
Eleraky N.E., Allam A., Hassan S.B., Omar M.M. Nanomedicine fight against antibacterial resistance: An overview of the recent pharmaceutical innovations. Pharmaceutics. 2020;12:142. PubMed PMC
Gomez-Nunez M.F., Castillo-Lopez M., Sevilla-Castillo F., Roque-Reyes O.J., Romero-Lechuga F., Medina-Santos D.I., Martinez-Daniel R., Peon A.N. Nanoparticle-based devices in the control of antibiotic resistant bacteria. Front. Microbiol. 2020;11:2987. PubMed PMC
Amaro F., Moron A., Diaz S., Martin-Gonzalez A., Gutierrez J.C. Metallic nanoparticles—Friends or foes in the battle against antibiotic-resistant bacteria? Microorganisms. 2021;9:364. PubMed PMC
Jampilek J., Kralova K. Advances in drug delivery nanosystems using graphene-based materials and carbon nanotubes. Materials. 2021;14:1059. PubMed PMC
Khan S., Sharaf M., Ahmed I., Khan T.U., Shabana S., Arif M., Kazmi S.S.U., Liu C.G. Potential utility of nano-based treatment approaches to address the risk of Helicobacter pylori. Expert Rev. Anti-Infect. Ther. 2021;20:407–424. PubMed
Singh S., Numan A., Somaily H.H., Gorain B., Ranjan S., Rilla K., Siddique H.R., Kesharwani P. Nano-enabled strategies to combat methicillin-resistant Staphylococcus aureus. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;129:112384. PubMed
Yadav J., Kumari R.M., Verma V., Nimesh S. Recent development in therapeutic strategies targeting Pseudomonas aeruginosa biofilms—A review. Mater. Today-Proc. 2021;46:2359–2373.
Thapa R.K., Diep D.B., Tonnesen H.H. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: Recent advances and future prospects. J. Pharm. Investig. 2021;51:377–398.
van Gent M.E., Ali M., Nibbering P.H., Klodzinska S.N. Current advances in lipid and polymeric antimicrobial peptide delivery systems and coatings for the prevention and treatment of bacterial infections. Pharmaceutics. 2021;13:1840. PubMed PMC
Carmona-Ribeiro A.M., Araujo P.M. Antimicrobial polymer−based assemblies: A review. Int. J. Mol. Sci. 2021;22:5424. PubMed PMC
Jafari S.M., McClements D.J. Nanoemulsions: Formulation, Applications, and Characterization. Academic Press; London, UK: Elsevier; London, UK: 2018.
Mozafari M.R. Nanoliposomes: Preparation and analysis. Methods Mol. Biol. 2010;605:29–50. PubMed
Laouini A., Jaafar-Maalej C., Limayem-Blouza I., Sfar S., Charcosset C., Fessi H. Preparation, characterization and applications of liposomes: State of the art. J. Colloid Sci. Biotechnol. 2012;1:147–168.
Aguilar-Perez K.M., Aviles-Castrillo J.I., Medina D.I., Parra-Saldivar R., Iqbal H.M.N. Insight into nanoliposomes as smart nanocarriers for greening the twenty-first century biomedical settings. Front. Bioeng. Biotechnol. 2020;8:579536. PubMed PMC
Pippa N., Demetzos C. Nanomaterials for Clinical Applications. Elsevier; Amsterdam, The Netherlands: 2020.
Scioli S.M., Muraca G., Ruiz M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci. 2020;7:587997. PubMed PMC
Grumezescu A. Lipid Nanocarriers for Drug Targeting. Elsevier; Amsterdam, The Netherlands: 2018.
Syed Azhar S.N.A., Ashari S.E., Zainuddin N., Hassan M. Nanostructured lipid carriers-hydrogels system for drug delivery: Nanohybrid technology perspective. Molecules. 2022;27:289. PubMed PMC
Musielak E., Feliczak-Guzik A., Nowak I. Synthesis and potential applications of lipid nanoparticles in medicine. Materials. 2022;15:682. PubMed PMC
Bukowczan A., Hebda E., Pielichowski K. The influence of nanoparticles on phase formation and stability of liquid crystals and liquid crystalline polymers. J. Mol. Liq. 2021;321:114849.
Patel P., Thareja P. Hydrogels differentiated by length scales: A review of biopolymer-based hydrogel preparation methods, characterization techniques, and targeted applications. Eur. Polym. J. 2022;163:110935.
Deng S., Gigliobianco M.R., Censi R., Di Martino P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: Current status, challenges and opportunities. Nanomaterials. 2020;10:847. PubMed PMC
Gadade D.D., Pekamwar S.S. Cyclodextrin based nanoparticles for drug delivery and theranostics. Adv. Pharm. Bull. 2020;10:166–183. PubMed PMC
Real D.A., Bolanos K., Priotti J., Yutronic N., Kogan M.J., Sierpe R., Donoso-Gonzalez O. Cyclodextrin-modified nanomaterials for drug delivery: Classification and advances in controlled release and bioavailability. Pharmaceutics. 2021;13:2131. PubMed PMC
Cid-Samamed A., Rakmai J., Mejuto J.C., Simal-Gandara J., Astray G. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem. 2022;384:132467. PubMed
Narayanan G., Shen J., Matai I., Sachdev A., Boy R., Tonelli A.E. Cyclodextrin-based nanostructures. Prog. Mater. Sci. 2022;124:100869.
Niculescu A.G., Grumezescu A.M. Polymer-based nanosystems—A versatile delivery approach. Materials. 2021;14:6812. PubMed PMC
Zielinska A., Carreiro F., Oliveira A.M., Neves A., Pires B., Venkatesh D.N., Durazzo A., Lucarini M., Eder P., Silva A.M., et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules. 2020;25:3731. PubMed PMC
Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021;20:101–124. PubMed PMC
Van Gheluwe L., Chourpa I., Gaigne C., Munnier E. Polymer-based smart drug delivery systems for skin application and demonstration of stimuli-responsiveness. Polymers. 2021;13:1285. PubMed PMC
Santos A., Veiga F., Figueiras A. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications. Materials. 2020;13:65. PubMed PMC
Chis A.A., Dobrea C., Morgovan C., Arseniu A.M., Rus L.L., Butuca A., Juncan A.M., Totan M., Vonica-Tincu A.L., Cormos G., et al. Applications and limitations of dendrimers in biomedicine. Molecules. 2020;25:3982. PubMed PMC
Wang T.J., Rong F., Tang Y.Z., Li M.Y., Feng T., Zhou Q., Li P., Huang W. Targeted polymer-based antibiotic delivery system: A promising option for treating bacterial infections via macromolecular approaches. Prog. Polym. Sci. 2021;116:101389.
Stan D., Enciu A.M., Mateescu A.L., Ion A.C., Brezeanu A.C., Stan D., Tanase C. Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation. Front. Pharmacol. 2021;12:723233. PubMed PMC
Thorn C.R., Thomas N., Boyd B.J., Prestidge C.A. Nano-fats for bugs: The benefits of lipid nanoparticles for antimicrobial therapy. Drug Deliv. Transl. Res. 2021;11:1598–1624. PubMed
Vassallo A., Silletti M.F., Faraone I., Milella L. Nanoparticulate antibiotic systems as antibacterial agents and antibiotic delivery platforms to fight infections. J. Nanomater. 2020;2020:6905631.
Ramos M.A.D., de Toledo L.G., Sposito L., Marena G.D., de Lima L.C., Fortunato G.C., Araujo V.H.S., Bauab T.M., Chorilli M. Nanotechnology-based lipid systems applied to resistant bacterial control: A review of their use in the past two decades. Int. J. Pharm. 2021;603:120706. PubMed
Khorsandi K., Hosseinzadeh R., Esfahani H.S., Keyvani-Ghamsari S., Rahman S.U. Nanomaterials as drug delivery systems with antibacterial properties: Current trends and future priorities. Expert Rev. Anti-Infect. Ther. 2021;19:1299–1323. PubMed
Gafur A., Sukamdani G.Y., Kristi N., Maruf A., Xu J., Chen X., Wang G.X., Ye Z.Y. From bulk to nano-delivery of essential phytochemicals: Recent progress and strategies for antibacterial resistance. J. Mater. Chem. B. 2020;8:9825–9835. PubMed
Osman N., Devnarain N., Omolo C.A., Fasiku V., Jaglal Y., Govender T. Surface modification of nano-drug delivery systems for enhancing antibiotic delivery and activity. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021;14:e1758. PubMed
Yang X.F., Ye W.X., Qi Y.J., Ying Y., Xia Z.N. Overcoming multidrug resistance in bacteria through antibiotics delivery in surface-engineered nano-cargos: Recent developments for future nano-antibiotics. Front. Bioeng. Biotechnol. 2021;9:696514. PubMed PMC
Kaur S., Kumari A., Negi A.K., Galav V., Thakur S., Agrawal M., Sharma V. Nanotechnology based approaches in phage therapy: Overcoming the pharmacological barriers. Front. Pharmacol. 2021;12:699054. PubMed PMC
Cinquerrui S., Mancuso F., Vladisavljevic G.T., Bakker S.E., Malik D.J. Nanoencapsulation of bacteriophages in liposomes prepared using microfluidic hydrodynamic flow focusing. Front. Microbiol. 2018;9:2172. PubMed PMC
Loh B., Gondil V.S., Manohar P., Khan F.M., Yang H., Leptihn S. Encapsulation and delivery of therapeutic phages. Appl. Environ. Microbiol. 2020;87:e01979-20. PubMed PMC
Rosner D., Clark J. Formulations for bacteriophage therapy and the potential uses of immobilization. Pharmaceuticals. 2021;14:359. PubMed PMC
Dashtbani-Roozbehani A., Brown M.H. Efflux pump mediated antimicrobial resistance by Staphylococci in health-related environments: Challenges and the quest for inhibition. Antibiotics. 2021;10:1502. PubMed PMC
Nishino K., Yamasaki S., Nakashima R., Zwama M., Hayashi-Nishino M. Function and inhibitory mechanisms of multidrug efflux pumps. Front. Microbiol. 2021;12:737288. PubMed PMC
Lei Z.Q., Karim A. The challenges and applications of nanotechnology against bacterial resistance. J. Vet. Pharmacol. Ther. 2021;44:281–297. PubMed
Rogowska A., Railean-Plugaru V., Pomastowski P., Walczak-Skierska J., Krol-Gorniak A., Golebiowski A., Buszewski B. The study on molecular profile changes of pathogens via zinc nanocomposites immobilization approach. Int. J. Mol. Sci. 2021;22:5395. PubMed PMC
Zhang W.L., Hu E.S., Wang Y.J., Miao S., Liu Y.Y., Iii Y.H., Liu J., Xu B.H., Chen D.Q., Shen Y. Emerging antibacterial strategies with application of targeting drug delivery system and combined treatment. Int. J. Nanomed. 2021;16:6141–6156. PubMed PMC
Hoshyar N., Gray S., Han H., Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673–692. PubMed PMC
Devnarain N., Osman N., Fasiku V.O., Makhathini S., Salih M., Ibrahim U.H., Govender T. Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents-An in-depth review of the last two decades. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021;13:e1664. PubMed
Quek J.Y., Uroro E., Goswami N., Vasilev K. Design principles for bacteria-responsive antimicrobial nanomaterials. Mater. Today Chem. 2022;23:100606.
Colino C.I., Lanao J.M., Gutierrez-Millan C. Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections. Mater. Sci. Eng. C Mater. Biol. 2021;121:111843. PubMed
Kalhapure R.S., Jadhav M., Rambharose S., Mocktar C., Singh S., Renukuntla J., Govender T. pH-Responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin. Colloids Surf. B Biointerfaces. 2017;158:650–657. PubMed
Pi J., Shen L., Shen H., Yang E., Wang W., Wang R., Huang D., Lee B.S., Hu C., Chen C., et al. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M. tuberculosis killing efficiency. Mater. Sci. Eng. C. 2019;103:109777. PubMed
Peng H., Xie B., Yang X., Dai J., Wei G., He Y. Pillar[5]arene-based, dual pH and enzyme responsive supramolecular vesicles for targeted antibiotic delivery against intracellular MRSA. Chem. Commun. 2020;56:8115–8118. PubMed
Liao C.C., Yu H.P., Yang S.C., Alalaiwe A., Dai Y.S., Liu F.C., Fang J.Y. Multifunctional lipid-based nanocarriers with antibacterial and anti-inflammatory activities for treating MRSA bacteremia in mice. J. Nanobiotechnol. 2021;19:48. PubMed PMC
Alshamsan A., Aleanizy F.S., Badran M., Alqahtani F.Y., Alfassam H., Almalik A., Alosaimy S. Exploring anti-MRSA activity of chitosan-coated liposomal dicloxacillin. J. Microbiol. Methods. 2019;156:23–28. PubMed
Hsu C.Y., Sung C.T., Aljuffali I.A., Chen C.H., Hu K.Y., Fang J.Y. Intravenous anti-MRSA phosphatiosomes mediate enhanced affinity to pulmonary surfactants for effective treatment of infectious pneumonia. Nanomedicine. 2018;14:215–225. PubMed
Hussain S., Joo J., Kang J., Kim B., Braun G.B., She Z.G., Kim D., Mann A.P., Molder T., Teesalu T., et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat. Biomed. Eng. 2018;2:95–103. PubMed PMC
Garin C., Alejo T., Perez-Laguna V., Prieto M., Mendoza G., Arruebo M., Sebastian V., Rezusta A. Chalcogenide nanoparticles and organic photosensitizers for synergetic antimicrobial photodynamic therapy. J. Mater. Chem. B. 2021;9:6246–6259. PubMed
Lv H.H., Zhang Y.T., Chen P., Xue J.P., Jia X., Chen J.J. Enhanced synergistic antibacterial activity through a smart platform based on UiO-66 combined with photodynamic therapy and chemotherapy. Langmuir. 2020;36:4025–4032. PubMed
Huang Y., Gao Q., Li X., Gao Y.F., Han H.J., Jin Q., Yao K., Ji J. Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Res. 2020;13:2340–2350.
Sankari S.S., Dahms H.U., Tsai M.F., Lo Y.L., Wang L.F. Comparative study of an antimicrobial peptide and a neuropeptide conjugated with gold nanorods for the targeted photothermal killing of bacteria. Colloids Surf. B Biointerfaces. 2021;208:112117. PubMed
Subramaniam S., Joyce P., Thomas N., Prestidge C.A. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv. Drug Deliv. Rev. 2021;177:113948. PubMed
Donlan R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002;8:881–890. PubMed PMC
Schulze A., Mitterer F., Pombo J.P., Schild S. Biofilms by bacterial human pathogens: Clinical relevance—Development, composition and regulation—Therapeutical strategies. Microbial. Cell. 2021;8:28–56. PubMed PMC
Vyas T., Rapalli V.K., Chellappan D.K., Dua K., Dubey S.K., Singhvi G. Bacterial biofilms associated skin disorders: Pathogenesis, advanced pharmacotherapy and nanotechnology-based drug delivery systems as a treatment approach. Life Sci. 2021;287:120148. PubMed
Lin Y.K., Yang S.C., Hsu C.Y., Sung J.T., Fang J.Y. The antibiofilm nanosystems for improved infection inhibition of microbes in skin. Molecules. 2021;26:6392. PubMed PMC
Nowak M., Baranska-Rybak W. Nanomaterials as a successor of antibiotics in antibiotic-resistant, biofilm infected wounds? Antibiotics. 2021;10:941. PubMed PMC
Fasiku V.O., Omolo C.A., Devnarain N., Ibrahim U.H., Rambharose S., Faya M., Mocktar C., Singh S.D., Govender T. Chitosan-based hydrogel for the dual delivery of antimicrobial agents against bacterial methicillin-resistant Staphylococcus aureus biofilm-infected wounds. ACS Omega. 2021;6:21994–22010. PubMed PMC
Malaekeh-Nikouei B., Bazzaz B.S.F., Mirhadi E., Tajani A.S., Khameneh B. The role of nanotechnology in combating biofilm-based antibiotic resistance. J. Drug Deliv. Sci. Technol. 2020;60:101880.
Bianchera A., Buttini F., Bettini R. Micro/nanosystems and biomaterials for controlled delivery of antimicrobial and anti-biofilm agents. Expert Opin. Ther. Pat. 2020;30:983–1000. PubMed
Li X.Y., Chen D.M., Xie S.Y. Current progress and prospects of organic nanoparticles against bacterial biofilm. Adv. Colloid Interface Sci. 2021;294:102475. PubMed
Tiwari R., Tiwari G., Lahiri A., Vadivelan R., Rai A.K. Localized delivery of drugs through medical textiles for treatment of burns: A perspective approach. Adv. Pharm. Bull. 2021;11:248–260. PubMed PMC
Azimi B., Maleki H., Zavagna L., De la Ossa J.G., Linari S., Lazzeri A., Danti S. Bio-based electrospun fibers for wound healing. J. Funct. Biomater. 2020;11:67. PubMed PMC
Gul A., Gallus I., Tegginamath A., Maryska J., Yalcinkaya F. Electrospun antibacterial nanomaterials for wound dressings applications. Membranes. 2021;11:908. PubMed PMC
Li Y., Wang J., Wang Y., Cui W. Advanced electrospun hydrogel fibers for wound healing. Compos. B Eng. 2021;223:109101.
Rezic I., Majdak M., Bilic V.L., Pokrovac I., Martinaga L., Skoc M.S., Kosalec I. Development of antibacterial protective coatings active against MSSA and MRSA on biodegradable polymers. Polymers. 2021;13:659. PubMed PMC
Yahya E.B., Jummaat F., Amirul A.A., Adnan A.S., Olaiya N.G., Abdullah C.K., Rizal S., Haafiz M.K.M., Khalil H.P.S.A. A review on revolutionary natural biopolymer-based aerogels for antibacterial delivery. Antibiotics. 2020;9:648. PubMed PMC
Calle-Moriel A., Gonzalez-Rodriguez M.L. Advances in antiseptic formulations. Ars Pharm. 2021;62:451–470.
Lim J., Lee Y.Y., Choy Y.B., Park W., Park C.G. Sepsis diagnosis and treatment using nanomaterials. Biomed. Eng. Lett. 2021;11:197–210. PubMed PMC
Jampilek J., Kralova K. Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol. Chem. Eng. S. 2015;22:321–361.
Jampilek J., Kralova K. Application of nanobioformulations for controlled release and targeted biodistribution of drugs. In: Sharma A.K., Keservani R.K., Kesharwani R.K., editors. Nanobiomaterials: Applications in Drug Delivery. CRC Press; Warentown, NJ, USA: 2018. pp. 131–208.
Jampilek J., Kos J., Kralova K. Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes. Nanomaterials. 2019;9:296. PubMed PMC
Jampilek J., Kralova K. Nanotechnology based formulations for drug targeting to central nervous system. In: Keservani R.K., Sharma A.K., editors. Nanoparticulate Drug Delivery Systems. Apple Academic Press; Warentown, NJ, USA: CRC Press; Warentown, NJ, USA: 2019. pp. 151–220.
Jampilek J., Kralova K., Campos E.V.R., Fraceto L.F. Bio-based nanoemulsion formulations applicable in agriculture, medicine and food industry. In: Prasad R., Kumar V., Kumar M., Choudhary D.K., editors. Nanobiotechnology in Bioformulations. Springer; Cham, Switzerland: 2019. pp. 33–84.
Jampilek J., Kralova K. Natural biopolymeric nanoformulations for brain drug delivery. In: Keservani R.K., Sharma A.K., Kesharwani R.K., editors. Nanocarriers for Brain Targetting: Principles and Applications. Apple Academic Press; Warentown, NJ, USA: CRC Press; Warentown, NJ, USA: 2020. pp. 131–203.
Jampilek J., Kralova K. Potential of nanonutraceuticals in increasing immunity. Nanomaterials. 2020;10:2224. PubMed PMC
Placha D., Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics. 2021;13:642019. PubMed PMC
Jampilek J., Placha D. Advances in use of nanomaterials for musculoskeletal regeneration. Pharmaceutics. 2021;13:1994. PubMed PMC
Azmana M., Mahmood S., Hilles A.R., Rahman A., Arifin M.A.B., Ahmed S. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. Int. J. Biol. Macromol. 2021;185:832–848. PubMed
Sami El-Banna F., Mahfouz M.E., Leporatti S., El-Kemary M., Hanafy N.A.N. Chitosan as a natural copolymer with unique properties for the development of hydrogels. Appl. Sci. 2019;9:2193.
Choukaife H., Doolaanea A.A., Alfatama M. Alginate nanoformulation: Influence of process and selected variables. Pharmaceuticals. 2020;13:335. PubMed PMC
Momin M., Mishra V., Gharat S., Omri A. Recent advancements in cellulose-based biomaterials for management of infected wounds. Expert Opin. Drug Deliv. 2021;18:1741–1760. PubMed
Azimi B., Milazzo M., Danti S. Cellulose-based fibrous materials from bacteria to repair tympanic membrane perforations. Front. Bioeng. Biotechnol. 2021;9:669863. PubMed PMC
Azimi B., Maleki H., Gigante V., Bagherzadeh R., Mezzetta A., Milazzo M., Guazzelli L., Cinelli P., Lazzeri A., Danti S. Cellulose-based fiber spinning processes using ionic liquids. Cellulose. 2022 doi: 10.1007/s10570-022-04473-1. DOI
Torres F.G., De-la-Torre G.E. Synthesis, characteristics, and applications of modified starch nanoparticles: A review. Int. J. Biol. Macromol. 2022;194:289–305. PubMed
Chavan P., Sinhmar A., Nehra M., Thory R., Pathera A.K., Sundarraj A.A., Nain V. Impact on various properties of native starch after synthesis of starch nanoparticles: A review. Food Chem. 2021;364:130416. PubMed
Raza F., Siyu L., Zafar H., Kamal Z., Zheng B., Su J., Qiu M. Recent advances in gelatin-based nanomedicine for targeted delivery of anti-cancer drugs. Curr. Pharm. Des. 2022;28:380–394. PubMed
Jampilek J., Kralova K. Recent Advances in lipid nanocarriers applicable in the fight against cancer. In: Grumezescu A.M., editor. Nanoarchitectonics in Biomedicine. Elsevier; Amsterdam, The Netherlands: 2019. pp. 219–294.
Jampilek J., Kralova K. Nanoformulations—Valuable tool in therapy of viral diseases attacking humans and animals. In: Rai M., Jamil B., editors. Nanotheranostic—Applications and Limitations. Springer Nature; Cham, Switzerland: 2019. pp. 137–178.
Jampilek J., Kralova K. Beneficial effects of metal- and metalloid-based nanoparticles on crop production. In: Panpatte D.G., Jhala Y.K., editors. Nanotechnology for Agriculture—Advances for Sustainable Agriculture. Springer Nature; Singapore: 2019. pp. 161–219.
Kralova K., Jampilek J. Metal- and metalloid-based nanofertilizers and nanopesticides for advanced agriculture. In: Fraceto L.F., de Carvalho H.W.P., Ghoshal S., Santaella C., de Lima R., editors. Inorganic Nanopesticides and Nanofertilizers: A View from the Mechanisms of Action to Field Applications. Springer; Cham, Switzerland: 2022. [(accessed on 15 February 2022)]. Chapter 10, in press. Available online: https://link.springer.com/book/9783030941543.
Thakur K., Sharma G., Singh B., Katare O.P. Topical drug delivery of anti-infectives employing lipid-based nanocarriers: Dermatokinetics as an important tool. Curr. Pharm. Des. 2018;24:5108–5128. PubMed
Shettigar P., Koland M., Sindhoor S.M., Prabhu A. Formulation and evaluation of clarithromycin loaded nanostructured lipid carriers for the treatment of acne. J. Pharm. Res. Int. 2021;33:26–38.
Pereira M.N., Tolentino S., Pires F.Q., Anjos J.L.V., Alonso A., Gratieri T., Cunha-Filho M., Gelfuso G.M. Nanostructured lipid carriers for hair follicle-targeted delivery of clindamycin and rifampicin to hidradenitis suppurativa treatment. Colloids Surf. B Biointerfaces. 2021;197:111448. PubMed
Wen M.M., Abdelwahab I.A., Aly R.G., El-Zahaby S.A. Nanophyto-gel against multi-drug resistant Pseudomonas aeruginosa burn wound infection. Drug Deliv. 2021;28:463–477. PubMed PMC
Rocha E.D., Ferreira M.R.S., Neto E.D., Barbosa E.J., Lobenberg R., Lourenco F.R., Bou-Chacra N. Enhanced in vitro antimicrobial activity of Polymyxin B-coated nanostructured lipid carrier containing dexamethasone acetate. J. Pharm. Innov. 2021;16:125–135.
Jaglal Y., Osman N., Omolo C.A., Mocktar C., Devnarain N., Govender T. Formulation of pH-responsive lipid-polymer hybrid nanoparticles for co-delivery and enhancement of the antibacterial activity of vancomycin and 18β-glycyrrhetinic acid. J. Drug Deliv. Sci. 2021;64:102607.
Tan C.H., Jiang L., Li W.R., Chan S.H., Baek J.S., Ng N.K.J., Sailov T., Kharel S., Chong K.K.L., Loo S.C.J. Lipid-polymer hybrid nanoparticles enhance the potency of ampicillin against Enterococcus faecalis in a protozoa infection model. ACS Infect. Dis. 2021;7:1607–1618. PubMed PMC
Abadi A.R.H., Farhadian N., Karimi M., Porozan S. Ceftriaxone sodium loaded onto polymer-lipid hybrid nanoparticles enhances antibacterial effect on Gram-negative and Gram-positive bacteria: Effects of lipid- polymer ratio on particles size, characteristics, in vitro drug release and antibacterial drug efficacy. J. Drug Deliv. Sci. Technol. 2021;63:102457.
Contera S., de la Serna J.B., Tetley T.D. Biotechnology, nanotechnology and medicine. Emerg. Top. Life Sci. 2020;4:551–554. PubMed PMC
Wang D.Y., van der Mei H.C., Ren Y.J., Busscher H.J., Shi L.Q. Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front. Chem. 2020;7:872. PubMed PMC
Antimisiaris S.G., Marazioti A., Kannavou M., Natsaridis E., Gkartziou F., Kogkos G., Mourtas S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev. 2021;174:53–86. PubMed
Singh S.K., Kumar U., Guleria A., Kumar D. A brief overview about the use of different bioactive liposome-based drug delivery systems in peritoneal dialysis and some other diseases. Nano Express. 2021;2:022006.
Rani N.N.I.M., Hussein Z.M., Mustapa F., Azhari H., Sekar M., Yi C.X., Amin M.C.I.M. Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA) Eur. J. Pharm. Biopharm. 2021;165:84–105. PubMed
Nwabuife J.C., Pant A.M., Govender T. Liposomal delivery systems and their applications against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Adv. Drug Deliv. Rev. 2021;178:113861. PubMed
Zhang C.X., Zhao W.Y., Bian C., Hou X.C., Deng B.B., McComb D.W., Chen X.F., Dong Y.Z. Antibiotic-derived lipid nanoparticles to treat intracellular Staphylococcus aureus. ACS Appl. Biomater. 2019;2:1270–1277. PubMed PMC
Faraag A.H.I., Shafaa M.W., Elkholy N.S., Abdel-Hafez L.J.M. Stress impact of liposomes loaded with ciprofloxacin on the expression level of MepA and NorB efflux pumps of methicillin-resistant Staphylococcus aureus. Int. Microbiol. 2021 doi: 10.1007/s10123-021-00219-4. PubMed DOI
Chalmers J.D., van Ingen J., van der Laan R., Herrmann J.L. Liposomal drug delivery to manage nontuberculous mycobacterial pulmonary disease and other chronic lung infections. Eur. Respir. Rev. 2021;30:210010. PubMed PMC
Bassetti M., Vena A., Russo A., Peghin M. Inhaled liposomal antimicrobial delivery in lung infections. Drugs. 2020;80:1309–1318. PubMed PMC
Zhang Y., Hill A.T. Amikacin liposome inhalation suspension as a treatment for patients with refractory Mycobacterium avium complex lung infection. Expert Rev. Respir. Med. 2021;15:737–744. PubMed
Catania R., Mastrotto F., Moore C.J., Bosquillon C., Falcone F.H., Huett A., Mantovani G., Stolnik S. Study on significance of receptor targeting in killing of intracellular bacteria with membrane-impermeable antibiotics. Adv. Ther. 2021;4:2100168.
Vanamala K., Bhise K., Sanchez H., Kebriaei R., Luong D., Sau S., Abdelhady H., Rybak M.J., Andes D., Iyer A.K. Folate functionalized lipid nanoparticles for targeted therapy of methicillin-resistant Staphylococcus aureus. Pharmaceutics. 2021;13:1791. PubMed PMC
Gottesmann M., Goycoolea F.M., Steinbacher T., Menogni T., Hensel A. Smart drug delivery against Helicobacter pylori: Pectin-coated, mucoadhesive liposomes with antiadhesive activity and antibiotic cargo. Appl. Microbiol. Biotechnol. 2020;104:5943–5957. PubMed
Mendoza-Munoz N., Urban-Morlan Z., Leyva-Gomez G., Zambrano-Zaragoza M.D., Pinon-Segundo E., Quintanar-Guerrero D. Solid lipid nanoparticles: An approach to improve oral drug delivery. J. Pharm. Pharm. Sci. 2021;24:509–532. PubMed
Arana L., Gallego L., Alkorta I. Incorporation of antibiotics into solid lipid nanoparticles: A promising approach to reduce antibiotic resistance emergence. Nanomaterials. 2021;11:1251. PubMed PMC
Ibrahim U.H., Devnarain N., Omolo C.A., Mocktar C., Govender T. Biomimetic pH/lipase dual responsive vitamin-based solid lipid nanoparticles for on-demand delivery of vancomycin. Int. J. Pharm. 2021;607:120960. PubMed
Thorn C.R., Raju D., Lacdao I., Gilbert S., Sivarajah P., Howell P.L., Prestidge C.A., Thomas N. Protective liquid crystal nanoparticles for targeted delivery of PsIG: A biofilm dispersing enzyme. ACS Infect. Dis. 2021;7:2102–2115. PubMed
Dyett B.P., Yu H.T., Sarkar S., Strachan J.B., Drummond C.J., Conn C.E. Uptake dynamics of cubosome nanocarriers at bacterial surfaces and the routes for cargo internalization. ACS Appl. Mater. Interfaces. 2021;13:53530–53540. PubMed
Hong L.D., Gontsarik M., Amenitsch H., Salentinig S. Human antimicrobial peptide triggered colloidal transformations in bacteria membrane lipopolysaccharides. Small. 2021;18:2104211. PubMed
Meikle T.G., Dharmadana D., Hoffmann S.V., Jones N.C., Drummond C.J., Conn C.E. Analysis of the structure, loading and activity of six antimicrobial peptides encapsulated in cubic phase lipid nanoparticles. J. Colloid Interface Sci. 2021;587:90–100. PubMed
Feng Y., Chen S.D., Li Z.F., Gu Z.B., Xu S.D., Ban X.F., Hong Y., Cheng L., Li C.M. A review of controlled release from cyclodextrins: Release methods, release systems and application. Crit. Rev. Food Sci. Nutr. 2021 doi: 10.1080/10408398.2021.2007352. PubMed DOI
Salih M., Omolo C.A., Agrawal N., Walvekar P., Waddad A.Y., Mocktar C., Ramdhin C., Govender T. Supramolecular amphiphiles of beta-cyclodextrin and oleylamine for enhancement of vancomycin delivery. Int. J. Pharm. 2020;574:118881. PubMed
Lin L., Mao X.F., Sun Y.H., Cui H.Y. Antibacterial mechanism of artemisinin/beta-cyclodextrins against methicillin-resistant Staphylococcus aureus (MRSA) Microb. Pathog. 2018;118:66–73. PubMed
Choi S.R., Talmon G.A., Britigan B.E., Narayanasamy P. Nanoparticulate β-cyclodextrin with gallium tetraphenylporphyrin demonstrates in vitro and in vivo antimicrobial efficacy against Mycobacteroides abscessus and Mycobacterium avium. ACS Infect. Dis. 2021;7:2299–2309. PubMed
Ho D.K., Costa A., De Rossi C., Carvalho-Wodarz C.D., Loretz B., Lehr C.M. Polysaccharide submicrocarrier for improved pulmonary delivery of poorly soluble anti-infective ciprofloxacin: Preparation, characterization, and influence of size on cellular uptake. Mol. Pharm. 2018;15:1081–1096. PubMed
De Gaetano F., Marino A., Marchetta A., Bongiorno C., Zagami R., Cristiano M.C., Paolino D., Pistara V., Ventura C.A. Development of chitosan/cyclodextrin nanospheres for levofloxacin ocular delivery. Pharmaceutics. 2021;13:1293. PubMed PMC
Chen M.H., Qiu B., Zhang Z.L., Xie S., Liu Y., Xia T., Li X.H. Light-triggerable and pH/lipase-responsive release of antibiotics and β-lactamase inhibitors from host-guest self-assembled micelles to combat biofilms and resistant bacteria. Chem. Eng. J. 2021;424:130330.
Reddy M.S.B., Ponnamma D., Choudhary R., Sadasivuni K.K. A Comparative review of natural and synthetic biopolymer composite scaffolds. Polymers. 2021;13:1105. PubMed PMC
Tyliszczak B., Drabczyk A., Kudlacik-Kramarczyk S., Rudnicka K., Gatkowska J., Sobczak-Kupiec A., Jampilek J. In vitro biosafety of pro-ecological chitosan based hydrogels modified with natural substances. J. Biomed. Mater. Res. A. 2019;107:2501–2511. PubMed
Glab M., Drabczyk A., Kudlacik-Kramarczyk S., Duarte-Guigou M., Makara A., Gajda P., Jampilek J., Tyliszczak B. Starch solutions prepared under different conditions as modifiers of chitosan/poly(aspartic acid)-based hydrogels. Materials. 2021;14:4443. PubMed PMC
Takahashi H., Caputo G.A., Kuroda K. Amphiphilic polymer therapeutics: An alternative platform in the fight against antibiotic resistant bacteria. Biomater. Sci. 2021;9:2758–2767. PubMed
Su L.Z., Liu Y., Li Y.F., An Y.L., Shi L.Q. Responsive polymeric nanoparticles for biofilm-infection control. Chin. J. Polym. Sci. 2021;39:1376–1391.
Hamdan N., Yamin A., Hamid S.A., Khodir W.K.W.A., Guarino V. Functionalized antimicrobial nanofibers: Design criteria and recent advances. J. Funct. Biomater. 2021;12:59. PubMed PMC
Azimi B., Sorayani-Bafqi M.S., Fusco A., Ricci C., Gallone G., Bagherzadeh R., Donnarumma G., Uddin M.J., Latifi M., Lazzeri A., et al. Electrospun ZnO/poly(vinylidene fluoride-trifluoroethylene) scaffolds for lung tissue engineering. Tissue Eng. A. 2020;26:1312–1331. PubMed
Kalaoglu-Altan O.I., Baskan H., Meireman T., Basnett P., Azimi B., Fusco A., Funel N., Donnarumma G., Lazzeri A., Roy I., et al. Silver nanoparticle-coated polyhydroxyalkanoate based electrospun fibers for wound dressing applications. Materials. 2021;14:4907. PubMed PMC
Azimi B., Thomas L., Fusco A., Kalaoglu-Altan O.I., Basnett P., Cinelli P., De Clerck K., Roy I., Donnarumma G., Coltelli M.-B., et al. Electrosprayed chitin nanofibril/electrospun polyhydroxyalkanoate fiber mesh as functional nonwoven for skin application. J. Funct. Biomater. 2020;11:62. PubMed PMC
Ghorbani M., Ramezani S., Rashidi M.R. Fabrication of honey-loaded ethylcellulose/gum tragacanth nanofibers as an effective antibacterial wound dressing. Colloids Surf. A Physicochem. Eng. Asp. 2021;621:126615.
Sharma A., Gaur A., Kumar V., Sharma N., Patil S.A., Verma R.K., Singh A.K. Antimicrobial activity of synthetic antimicrobial peptides loaded in poly-ε-caprolactone nanoparticles against mycobacteria and their functional synergy with rifampicin. Int. J. Pharm. 2021;608:121097. PubMed
Kaczmarek M.B., Struszczyk-Swita K., Li X., Szczęsna-Antczak M., Daroch M. Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front. Bioeng. Biotechnol. 2019;7:243. PubMed PMC
Nag M., Lahiri D., Mukherjee D., Banerjee R., Garai S., Sarkar T., Ghosh S., Dey A., Ghosh S., Pattnaik S. Functionalized chitosan nanomaterials: A jammer for quorum sensing. Polymers. 2021;13:2533. PubMed PMC
Confederat L.G., Tuchilus C.G., Dragan M., Sha’at M., Dragostin O.M. Preparation and antimicrobial activity of chitosan and its derivatives: A concise review. Molecules. 2021;26:3694. PubMed PMC
Wei S.B., Liu X., Zhou J.H., Zhang J.H., Dong A.J., Huang P.S., Wang W.W., Deng L.D. Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications. Int. J. Biol. Macromol. 2020;155:153–162. PubMed
Choi M., Hasan N., Cao J., Lee J., Hlaing S.P., Yoo J.W. Chitosan-based nitric oxide-releasing dressing for anti-biofilm and in vivo healing activities in MRSA biofilm-infected wounds. Int. J. Biol. Macromol. 2020;142:680–692. PubMed
Fahimirad S., Abtahi H., Satei P., Ghaznavi-Rad E., Moslehi M., Ganji A. Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr. Polym. 2021;259:117640. PubMed
Fahimirad S., Ghaznavi-Rad E., Abtahi H., Sarlak N. Antimicrobial activity, stability and wound healing performances of chitosan nanoparticles loaded recombinant LL37 antimicrobial peptide. Int. J. Pept. Res. Ther. 2021;27:2505–2515.
Fonseca D.R., Moura A., Leiro V., Silva-Carvalho R., Estevinho B.N., Seabra C.L., Henriques P.C., Lucena M., Teixeira C., Gomes P., et al. Grafting MSI-78A onto chitosan microspheres enhances its antimicrobial activity. Acta Biomater. 2022;137:186–198. PubMed
Jin T., Liu T., Jiang S.B., Kurdyla D., Klein B.A., Michaelis V.K., Lam E., Li J.Y., Moores A. Chitosan nanocrystals synthesis via aging and application towards alginate hydrogels for sustainable drug release. Green Chem. 2021;23:6527–6537.
Teaima M.H., Elasaly M.K., Omar S.A., El-Nabarawi M.A., Shoueir K.R. Eco-friendly synthesis of functionalized chitosan-based nanoantibiotic system for potential delivery of linezolid as antimicrobial agents. Saudi Pharm. J. 2020;28:859–868. PubMed PMC
Scolari I.R., Paez P.L., Musri M.M., Petiti J.P., Torres A., Granero G.E. Rifampicin loaded in alginate/chitosan nanoparticles as a promising pulmonary carrier against Staphylococcus aureus. Drug Deliv. Transl. Res. 2020;10:1403–1417. PubMed
Tiburcio E., Garcia-Junceda E., Garrido L., Fernandez-Mayoralas A., Revuelta J., Bastida A. Preparation and characterization of aminoglycoside-loaded chitosan/tripolyphosphate/ alginate microspheres against E. coli. Polymers. 2021;13:3326. PubMed PMC
Pandian M., Selvaprithviraj V., Pradeep A., Rangasamy J. In-situ silver nanoparticles incorporated N,O-carboxymethyl chitosan based adhesive, self-healing, conductive, antibacterial and anti-biofilm hydrogel. Int. J. Biol. Macromol. 2021;188:501–511. PubMed
Hassanen E.I., Ragab E. In vivo and in vitro assessments of the antibacterial potential of chitosan-silver nanocomposite against methicillin-resistant Staphylococcus aureus-induced infection in rats. Biol. Trace Elem. Res. 2021;199:244–257. PubMed
Vijayakumar S., Malaikozhundan B., Parthasarathy A., Saravanakumar K., Wang M.H., Vaseeharan B. Nano biomedical potential of biopolymer chitosan-capped silver nanoparticles with special reference to antibacterial, antibiofilm, anticoagulant and wound dressing material. J. Clust. Sci. 2020;31:355–366.
Zhou M., Gan H.Q., Chen G.R., James T.D., Zhang B., Hu Q., Xu F.G., Hu X.L., He X.P., Mai Y.Y. Near-infrared light-triggered bacterial eradication using a nanowire nanocomposite of graphene nanoribbons and chitosan-coated silver nanoparticles. Front. Chem. 2021;9:767847. PubMed PMC
Al-Ghamdi M., Aly M.M., Sheshtawi R.M. Antimicrobial activities of different novel chitosan-collagen nanocomposite films against some bacterial pathogens. Int. J. Pharm. Phytopharm. Res. 2020;10:114–121.
Rezazadeh N., Kianvash A. Preparation, characterization, and antibacterial activity of chitosan/silicone rubber filled zeolite, silver, and copper nanocomposites against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. J. Appl. Polym. Sci. 2021;138:e50552.
Karthikeyan C., Varaprasad K., Akbari-Fakhrabadi A., Hameed A.S.H., Sadiku R. Biomolecule chitosan, curcumin and ZnO-based antibacterial nanomaterial, via a one-pot process. Carbohydr. Polym. 2020;249:116825. PubMed
Karthikeyan C., Tharmalingam N., Varaprasad K., Mylonakis E., Yallapu M.M. Biocidal and biocompatible hybrid nanomaterials from biomolecule chitosan, alginate and ZnO. Carbohydr. Polym. 2021;274:118646. PubMed
Zafar N., Uzair B., Niazi M.B.K., Menaa F., Samin G., Khan B.A., Iqbal H., Menaa B. Activity against MRSA-induced mastitis. J. Pharm. Sci. 2021;110:3471–3483. PubMed
Kalantari K., Mostafavi E., Saleh B., Soltantabar P., Webster T.J. Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications. Eur. Polym. J. 2020;134:109853.
Lu H., Butler J., Britten N.S., Venkatraman P.D., Rahatekar S.S. Natural antimicrobial nano composite fibres manufactured from a combination of alginate and oregano essential oil. Nanomaterials. 2021;11:2062. PubMed PMC
Kaur J., Kour A., Panda J.J., Harjai K., Chhibber S. Exploring endolysin-loaded alginate-chitosan nanoparticles as future remedy for staphylococcal infections. AAPS PharmSciTech. 2020;21:233. PubMed
O-chongpian P., Takuathung M.N., Chittasupho C., Ruksiriwanich W., Chaiwarit T., Baipaywad P., Jantrawut P. Composite nanocellulose fibers-based hydrogels loading clindamycin HCl with Ca2+ and citric acid as crosslinking agents for pharmaceutical applications. Polymers. 2021;13:4423. PubMed PMC
Niaz T., Shabbir S., Noor T., Abbasi R., Imran M. Alginate-caseinate based pH-responsive nano-coacervates to combat resistant bacterial biofilms in oral cavity. Int. J. Biol. Macromol. 2020;156:1366–1380. PubMed
Sun C.K., Ke C.J., Lin Y.W., Lin F.H., Tsai T.H., Sun J.S. Transglutaminase cross-linked gelatin-alginate-antibacterial hydrogel as the drug delivery-coatings for implant-related infections. Polymers. 2021;13:414. PubMed PMC
Bourgat Y., Mikolai C., Stiesch M., Klahn P., Menzel H. Enzyme-responsive nanoparticles and coatings made from alginate/peptide ciprofloxacin conjugates as drug release system. Antibiotics. 2021;10:653. PubMed PMC
Gowri M., Latha N., Suganya K., Murugan M., Rajan M. Calcium alginate nanoparticle crosslinked phosphorylated polyallylamine to the controlled release of clindamycin for osteomyelitis treatment. Drug Dev. Ind. Pharm. 2021;47:280–291. PubMed
Qasemi H., Fereidouni Z., Karimi J., Abdollahi A., Zarenezhad E., Rasti F., Osanloo M. Promising antibacterial effect of impregnated nanofiber mats with a green nanogel against clinical and standard strains of Pseudomonas aeruginosa and Staphylococcus aureus. J. Drug Deliv. Sci. Technol. 2021;66:102844.
Hasan N., Lee J., Kwak D., Kim H., Saparbayeva A., Ahn H.J., Yoon I.S., Kim M.S., Jung Y.J., Yoo J.W. Diethylenetriamine/NONOate-doped alginate hydrogel with sustained nitric oxide release and minimal toxicity to accelerate healing of MRSA-infected wounds. Carbohydr. Polym. 2021;270:118387. PubMed
Hu C., Zhang F., Long L., Kong Q., Luo R., Wang Y. Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. J. Control. Release. 2020;324:204–217. PubMed
Motealleh A., Kart D., Czieborowski M., Kehr N.S. Functional nanomaterials and 3D-printable nanocomposite hydrogels for enhanced cell proliferation and for the reduction of bacterial biofilm formation. ACS Appl. Mater. Interfaces. 2021;13:43755–43768. PubMed
Fatahi Y., Sanjabi M., Rakhshani A., Motasadizadeh H., Darbasizadeh B., Bahadorikhalili S., Farhadnejad H. Levofloxacin-halloysite nanohybrid-loaded fibers based on poly (ethylene oxide) and sodium alginate: Fabrication, characterization, and antibacterial property. J. Drug Deliv. Sci. Technol. 2021;64:102598.
Mohamadinia P., Anarjan N., Jafarizadeh-Malmiri H. Preparation and characterization of sodium alginate/acrylic acid composite hydrogels conjugated to silver nanoparticles as an antibiotic delivery system. Green Process. Synth. 2021;10:860–873.
Zakia M., Koo J.M., Kim D., Ji K., Huh P., Yoon J., Yoo S.I. Development of silver nanoparticle-based hydrogel composites for antimicrobial activity. Green Chem. Lett. Rev. 2020;13:34–40.
Deng Z.W., Li M.H., Hu Y., He Y., Tao B.L., Yuan Z., Wang R., Chen M.W., Luo Z., Cai K.Y. Injectable biomimetic hydrogels encapsulating Gold/metal-organic frameworks nanocomposites for enhanced antibacterial and wound healing activity under visible light actuation. Chem. Eng. J. 2021;420:129668.
Cui C.L., Ji N., Wang Y.F., Xiong L., Sun Q.J. Bioactive and intelligent starch-based films: A review. Trends Food Sci. Technol. 2021;116:854–869.
Nallasamy P., Ramalingam T., Nooruddin T., Shanmuganathan R., Arivalagan P., Natarajan S. Polyherbal drug loaded starch nanoparticles as promising drug delivery system: Antimicrobial, antibiofilm and neuroprotective studies. Process Biochem. 2020;92:355–364.
Kryuk T.V., Tyurina T.G., Kudryavtseva T.A. Sodium cefotaxime-potato starch conjugate as a potential system for antibacterial drug delivery. Pharm. Chem. J. 2021;55:803–807.
Yasar H., Ho D.K., Rossi C., Herrmann J., Gordon S., Loretz B., Lehr C.M. Starch-chitosan polyplexes: A versatile carrier system for anti-infectives and gene delivery. Polymers. 2018;10:252. PubMed PMC
Saravanakumar K., Sriram B., Sathiyaseelan A., Mariadoss A.V.A., Hu X.W., Han K.S., Vishnupriya V., MubarakAli D., Wang M.H. Synthesis, characterization, and cytotoxicity of starch-encapsulated biogenic silver nanoparticle and its improved anti-bacterial activity. Int. J. Biol. Macromol. 2021;182:1409–1418. PubMed
Sabio L., Gonzalez A., Ramirez-Rodriguez G.B., Gutierrez-Fernandez J., Banuelo O., Olivares M., Galvez N., Delgado-Lopez J.M., Dominguez-Vera J.M. Probiotic cellulose: Antibiotic-free biomaterials with enhanced antibacterial activity. Acta Biomater. 2021;124:244–253. PubMed
Norrrahim M.N.F., Nurazzi N.M., Jenol M.A., Farid M.A.A., Janudin N., Ujang F.A., Yasim-Anuar T.A.T., Najmuddin S.U.F.S., Ilyas R.A. Emerging development of nanocellulose as an antimicrobial material: An overview. Mater. Adv. 2021;2:3538–3551.
Luo H.Z., Lan H., Cha R.T., Yu X.N., Gao P.Y., Zhang P., Zhang C.L., Han L., Jiang X.Y. Dialdehyde nanocrystalline cellulose as antibiotic substitutes against multidrug-resistant bacteria. ACS Appl. Mater. Interfaces. 2021;13:33802–33811. PubMed
Zmejkoski D.Z., Zdravkovic N.M., Trisic D.D., Budimir M.D., Markovic Z.M., Kozyrovska N.O., Markovic B.M.T. Chronic wound dressings-Pathogenic bacteria anti-biofilm treatment with bacterial cellulose-chitosan polymer or bacterial cellulose-chitosan dots composite hydrogels. Int. J. Biol. Macromol. 2021;191:315–323. PubMed
Yan D., Zhang S.Y., Yu F., Gong D.N., Lin J.Y., Yao Q.K., Fu Y. Insight into levofloxacin loaded biocompatible electrospun scaffolds for their potential as conjunctival substitutes. Carbohydr. Polym. 2021;269:118341. PubMed
Tamahkar E. Bacterial cellulose/poly vinyl alcohol based wound dressings with sustained antibiotic delivery. Chem. Pap. 2021;75:3979–3987.
Zhong Y.J., Seidi F., Li C.C., Wan Z.M., Jin Y.C., Song J.L., Xiao H.N. Antimicrobial/biocompatible hydrogels dual-reinforced by cellulose as ultrastretchable and rapid self-healing wound dressing. Biomacromolecules. 2021;22:1654–1663. PubMed
Sabio L., Sosa A., Delgado-Lopez J.M., Dominguez-Vera J.M. Two-sided antibacterial cellulose combining probiotics and silver nanoparticles. Molecules. 2021;26:2848. PubMed PMC
Glushchenko N.N., Bogoslovskaya O.A., Shagdarova B.T., Il’ina A.V., Olkhovskaya I.P., Varlamov V.P. Searching for synergistic effects of low-molecular weight chitosan derivatives, chitosan and copper nanoparticles for wound healing ointment. Adv. Nat. Sci. Nanosci. Nanotechnol. 2021;12:035016.
Javanbakht S., Nabi M., Shadi M., Amini M.M., Shaabani A. Carboxymethyl cellulose/tetracycline@UiO-66 nanocomposite hydrogel films as a potential antibacterial wound dressing. Int. J. Biol. Macromol. 2021;188:811–819. PubMed
Mao L., Wang L., Zhang M.Y., Ullah M.W., Liu L., Zhao W.W., Li Y., Ahmed A.A.Q., Cheng H.Y., Shi Z.J., et al. In situ synthesized selenium nanoparticles-decorated bacterial cellulose/gelatin hydrogel with enhanced antibacterial, antioxidant, and anti-inflammatory capabilities for facilitating skin wound healing. Adv. Healthc. Mater. 2021;10:2100402. PubMed
Walvekar P., Gannimani R., Salih M., Makhathini S., Mocktar C., Govender T. Self-assembled oleylamine grafted hyaluronic acid polymersomes for delivery of vancomycin against methicillin resistant Staphylococcus aureus (MRSA) Colloids Surf. B Biointerfaces. 2019;182:110388. PubMed
Dubashynskaya N.V., Raik S.V., Dubrovskii Y.A., Shcherbakova E.S., Demyanova E.V., Shasherina A.Y., Anufrikov Y.A., Poshina D.N., Dobrodumov A.V., Skorik Y.A. Hyaluronan/colistin polyelectrolyte complexes: Promising antiinfective drug delivery systems. Int. J. Biol. Macromol. 2021;187:157–165. PubMed
Liu M.L., Liu T.F., Zhang X.R., Jian Z.W., Xia H.S., Yang J.C., Hu X.H., Xing M., Luo G.X., Wu J. Fabrication of KR-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization. Int. J. Nanomed. 2019;14:3345–3360. PubMed PMC
Wang Z.J., Hu W.K., You W.J., Huang G., Tian W.Q., Huselstein C., Wu C.L., Xiao Y., Chen Y., Wang X.H. Antibacterial and angiogenic wound dressings for chronic persistent skin injury. Chem. Eng. J. 2021;404:126525.
Yuan Q., Zhao Y.T., Zhang Z.Q., Tang Y.L. On-Demand antimicrobial agent release from functionalized conjugated oligomer-hyaluronic acid nanoparticles for tackling antimicrobial resistance. ACS Appl. Mater. Interfaces. 2021;13:257–265. PubMed
Liu Y.Y., Li Z.H., Zou S.Y., Lu C.B., Xiao Y., Bai H., Zhang X.L., Mu H.B., Zhang X.Y., Duan J.Y. Hyaluronic acid-coated ZIF-8 for the treatment of pneumonia caused by methicillin-resistant Staphylococcus aureus. Int. J. Biol. Macromol. 2020;155:103–109. PubMed
Liu Y.N., Huo D.L., Zhu X.F., Chen X., Lin A.G., Jia Z., Liu J. A ruthenium nanoframe/enzyme composite system as a self-activating cascade agent for the treatment of bacterial infections. Nanoscale. 2021;13:14900–14914. PubMed
Alven S., Aderibigbe B.A. Hyaluronic acid-based scaffolds as potential bioactive wound dressings. Polymers. 2021;13:2102. PubMed PMC
Jampilek J., Kralova K. Nanopesticides: Preparation, targeting and controlled release. In: Grumezescu A.M., editor. Nanotechnology in the Agri-Food Industry: New Pesticides and Soil Sensors. Elsevier; London, UK: 2017. pp. 81–127.
Jampilek J., Kralova K. Benefits and potential risks of nanotechnology applications in crop protection. In: Abd-Elsalam K., Prasad R., editors. Nanobiotechnology Applications in Plant Protection. Springer; Cham, Switzerland: 2018. pp. 189–246.
Jampilek J., Kralova K. Nano-biopesticides in agriculture: State of art and future opportunities. In: Koul O., editor. Nano-Biopesticides Today and Future Perspectives. Academic Press; Amsterdam, The Netherlands: Elsevier; Amsterdam, The Netherlands: 2019. pp. 397–447.
Rastogi A., Tripathi D.K., Yadav S., Chauhan D.K., Zivcak M., Ghorbanpour M., El-Sheery N.I., Brestic M. Application of silicon nanoparticles in agriculture. 3 Biotech. 2019;9:90. PubMed PMC
Paramo L.A., Feregrino-Perez A.A., Guevara R., Mendoza S., Esquivel K. Nanoparticles in agroindustry: Applications, toxicity, challenges, and trends. Nanomaterials. 2020;10:1654. PubMed PMC
Cruz-Luna A.R., Cruz-Martínez H., Vásquez-Lopez A., Medina D.I. Metal nanoparticles as novel antifungal agents for sustainable agriculture: Current advances and future directions. J. Fungi. 2021;7:1033. PubMed PMC
Futurex Industries. [(accessed on 15 February 2022)]. Available online: https://futurexindustries.com/biopesticide-nano.html.
Agriprojunction Ventures Pvt. Ltd [(accessed on 15 February 2022)]. Available online: https://agrijunctions.com.
Israel Fertilizer Technology Transfer Co., Ltd [(accessed on 15 February 2022)]. Available online: https://phanbonisrael.com.
Wang H.B., Wang M.J., Xu X.H., Gao P., Xu Z.L., Zhang Q., Li H.Y., Yan A.X., Kao R.Y.T., Sun H.Z. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat. Commun. 2021;12:3331. PubMed PMC
Ansari M.A., Kalam A., Al-Sehemi A.G., Alomary M.N., AlYahya S., Aziz M.K., Srivastava S., Alghamdi S., Akhtar S., Almalki H.D., et al. Counteraction of biofilm formation and antimicrobial potential of Terminalia catappa functionalized silver nanoparticles against Candida albicans and multidrug-resistant Gram-negative and Gram-positive bacteria. Antibiotics. 2021;10:725. PubMed PMC
Feizi S., Cooksley C.M., Bouras G.S., Prestidge C.A., Coenye T., Psaltis A.J., Wormald P.J., Vreugde S. Colloidal silver combating pathogenic Pseudomonas aeruginosa and MRSA in chronic rhinosinusitis. Colloids Surf. B Biointerfaces. 2021;202:111675. PubMed
Rafiq A., Zahid K., Qadir A., Khan M.N., Khalid Z.M., Ali N. Inhibition of microbial growth by silver nanoparticles synthesized from Fraxinus xanthoxyloides leaf extract. J. Appl. Microbiol. 2021;131:124–134. PubMed
Murei A., Pillay K., Govender P., Thovhogi N., Gitari W.M., Samie A. Synthesis, characterization and in vitro antibacterial evaluation of Pyrenacantha grandiflora conjugated silver nanoparticles. Nanomaterials. 2021;11:1568. PubMed PMC
Aljohny B.O., Almaliki A.A.A., Anwar Y., Ul-Islam M., Kamal T. Antibacterial and catalytic performance of green synthesized silver nanoparticles embedded in crosslinked PVA sheet. J. Polym. Environ. 2021;29:3252–3262.
Awad M., Yosri M., Abdel-Aziz M.M., Younis A.M., Sidkey N.M. Assessment of the antibacterial potential of biosynthesized silver nanoparticles combined with vancomycin against methicillin-resistant Staphylococcus aureus-induced infection in rats. Biol. Trace Elem. Res. 2021;199:4225–4236. PubMed
Younis N.S., Mohamed M.E., El Semary N.A. Silver nanoparticles green synthesis via cyanobacterium Phormidium sp.: Characterization, wound healing, antioxidant, antibacterial, and anti-inflammatory activities. Eur. Rev. Med. Pharmacol. Sci. 2021;25:3083–3096. PubMed
Bishoyi A.K., Sahoo C.R., Sahoo A.P., Padhy R.N. Bio-synthesis of silver nanoparticles with the brackish water blue-green alga Oscillatoria princeps and antibacterial assessment. Appl. Nanosci. 2021;11:389–398.
Saadh M.J. Effect of silver nanoparticles on the antibacterial activity of Levofloxacin against methicillin-resistant Staphylococcus aureus. Eur. Rev. Med. Pharmacol. Sci. 2021;25:5507–5510. PubMed
Ilahi N., Haleem A., Iqbal S., Fatima N., Sajjad W., Sideeq A., Ahmed S. Biosynthesis of silver nanoparticles using endophytic Fusarium oxysporum strain NFW16 and their in vitro antibacterial potential. Microsc. Res. Tech. 2021 doi: 10.1002/jemt.24018. PubMed DOI
El-Gendy A.O., Samir A., Ahmed E., Enwemeka C.S., Mohamed T. The antimicrobial effect of 400 nm femtosecond laser and silver nanoparticles on Gram-positive and Gram-negative bacteria. J. Photochem. Photobiol. B Biol. 2021;223:112300. PubMed
Cao M., Wang S., Hu J.H., Lu B.H., Wang Q.Y., Zang S.Q. Silver cluster-porphyrin-assembled materials as advanced bioprotective materials for combating superbacteria. Adv. Sci. 2021;9:2103721. PubMed PMC
Alias R., Rizwan M., Mahmoodian R., Vellasamy K.M., Hamdi M. Physico-chemical and antimicrobial properties of Ag/Ta2O5 nanocomposite coatings. Ceram. Int. 2021;47:24139–24148.
Wang P.Y., Jiang S.H., Li Y., Luo Q., Lin J.Y., Hu L.D., Liu X.L., Xue F.Q. Virus-like mesoporous silica-coated plasmonic Ag nanocube with strong bacteria adhesion for diabetic wound ulcer healing. Nanomedicine. 2021;34:102381. PubMed
Zhong X.H., Tong C.Y., Liu T.S., Li L., Liu X., Yang Y.J., Liu R.S., Liu B. Silver nanoparticles coated by green graphene quantum dots for accelerating the healing of MRSA-infected wounds. Biomater. Sci. 2020;8:6670–6682. PubMed
Cao C.Y., Yang N., Zhao Y., Yang D.P., Hu Y.L., Yang D.L., Song X.J., Wang W.J., Dong X.C. Biodegradable hydrogel with thermo-response and hemostatic effect for photothermal enhanced anti-infective therapy. Nano Today. 2021;39:101165.
Karthik C.S., Chethana M.H., Manukumar H.M., Ananda A.P., Sandeep S., Nagashree S., Mallesha L., Mallu P., Jayanth H.S., Dayananda B.P. Synthesis and characterization of chitosan silver nanoparticle decorated with benzodioxane coupled piperazine as an effective anti-biofilm agent against MRSA: A validation of molecular docking and dynamics. Int. J. Biol. Macromol. 2021;181:540–551. PubMed
Dhanam S., Arumugam T., Elgorban A.M., Rameshkumar N., Krishnan M., Govarthanan M., Kayalvizhi N. Enhanced anti-methicillin-resistant Staphylococcus aureus activity of bacteriocin by encapsulation on silver nanoparticles. Appl. Nanosci. 2021 doi: 10.1007/s13204-021-02023-y. DOI
Murei A., Pillay K., Samie A. Syntheses, characterization, and antibacterial evaluation of P. grandiflora extracts conjugated with gold nanoparticles. J. Nanotechnol. 2021;2021:8687627.
Mandhata C.P., Sahoo C.R., Mahanta C.S., Padhy R.N. Isolation, biosynthesis and antimicrobial activity of gold nanoparticles produced with extracts of Anabaena spiroides. Bioprocess Biosyst. Eng. 2021;44:1617–1626. PubMed
Inbaraj B.S., Chen B.Y., Liao C.W., Chen B.H. Green synthesis, characterization and evaluation of catalytic and antibacterial activities of chitosan, glycol chitosan and poly(γ-glutamic acid) capped gold nanoparticles. Int. J. Biol. Macromol. 2020;161:1484–1495. PubMed
Meng J., Hu Z.J., He M.Q., Wang J.H., Chen X.W. Gold nanocluster surface ligand exchange: An oxidative stress amplifier for combating multidrug resistance bacterial infection. J. Colloid Interface Sci. 2021;602:846–858. PubMed
Beha M.J., Ryu J.S., Kim Y.S., Chung H.J. Delivery of antisense oligonucleotides using multi-layer coated gold nanoparticles to methicillin-resistant S. aureus for combinatorial treatment. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;126:112167. PubMed
Prasad P., Singh R., Kamaraju S., Sritharan V., Gupta S. ε-Polylysine nanoconjugates: Value-added antimicrobials for drug-resistant bacteria. ACS Appl. Bio Mater. 2020;3:6688–6696. PubMed
Gharehpapagh A.C., Farahpour M.R., Jafarirad S. The biological synthesis of gold/perlite nanocomposite using Urtica dioica extract and its chitosan-capped derivative for healing wounds infected with methicillin-resistant Staphylococcus aureus. Int. J. Biol. Macromol. 2021;183:447–456. PubMed
Aljaafari A., Ahmed F., Husain F.M. Bio-inspired facile synthesis of graphene-based nanocomposites: Elucidation of antimicrobial and biofilm inhibitory potential against foodborne pathogenic bacteria. Coatings. 2020;10:1171.
Qiao Z.Z., Yao Y., Song S.M., Yin M.H., Yang M., Yan D.P., Yang L.J. Gold nanorods with surface charge-switchable activities for enhanced photothermal killing of bacteria and eradication of biofilm. J. Mater. Chem. B. 2020;8:3138–3149. PubMed
Yin M.H., Qiao Z.Z., Yan D.P., Yang M., Yang L.J., Wan X.H., Chen H.L., Luo J.B., Xiao H.N. Ciprofloxacin conjugated gold nanorods with pH induced surface charge transformable activities to combat drug resistant bacteria and their biofilms. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;128:112292. PubMed
Chen J., Dai T.T., Yu J.W., Dai X.H., Chen R.C., Wu J.J., Li N., Fan L.X., Mao Z.W., Sheng G.P., et al. Integration of antimicrobial peptides and gold nanorods for bimodal antibacterial applications. Biomater. Sci. 2020;8:4447–4457. PubMed
Thorat N.D., Dworniczek E., Brennan G., Chodaczek G., Mouras R., Perez V.G., Silien C., Tofail S.A.M., Bauer J. Photo-responsive functional gold nanocapsules for inactivation of community-acquired, highly virulent, multidrug-resistant MRSA. J. Mater. Chem. B. 2021;9:846–856. PubMed
Tang Y.Z., Wang T.J., Feng J.H., Rong F., Wang K., Li P., Huang W. Photoactivatable nitric oxide-releasing gold nanocages for enhanced hyperthermia treatment of biofilm-associated infections. ACS Appl. Mater. 2021;13:50668–50681. PubMed
Yan L., Mu J., Ma P.X., Li Q., Yin P.X., Liu X., Cai Y.Y., Yu H.P., Liu J.C., Wang G.Q., et al. Gold nanoplates with superb photothermal efficiency and peroxidase-like activity for rapid and synergistic antibacterial therapy. Chem. Commun. 2021;57:1133–1136. PubMed
Cherian T., Ali K., Saquib Q., Faisal M., Wahab R., Musarrat J. Cymbopogon citratus functionalized green synthesis of CuO-nanoparticles: Novel prospects as antibacterial and antibiofilm agents. Biomolecules. 2020;10:169. PubMed PMC
Lotha R., Shamprasad B.R., Sundaramoorthy N.S., Nagarajan S., Sivasubramanian A. Biogenic phytochemicals (cassinopin and isoquercetin) capped copper nanoparticles (ISQ/CAS@CuNPs) inhibits MRSA biofilms. Microb. Pathog. 2019;132:178–187. PubMed
Kannan S., Solomon A., Krishnamoorthy G., Marudhamuthu M. Liposome encapsulated surfactant abetted copper nanoparticles alleviates biofilm mediated virulence in pathogenic Pseudomonas aeruginosa and MRSA. Sci. Rep. 2021;11:1102. PubMed PMC
Zhang X.C., Zhang Z.C., Shu Q.M., Xu C., Zheng Q.Q., Guo Z., Wang C., Hao Z.X., Liu X., Wang G.Q., et al. Copper clusters: An effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo. Adv. Funct. Mater. 2021;31:2008720.
Zhen X.M., Chudal L., Pandey N.K., Phan J., Ran X., Amador E., Huang X.J., Johnson O., Ran Y.P., Chen W., et al. A powerful combination of copper-cysteamine nanoparticles with potassium iodide for bacterial destruction. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;110:110659. PubMed PMC
Balcucho J., Narvaez D.M., Castro-Mayorga J.L. Antimicrobial and biocompatible polycaprolactone and copper oxide nanoparticle wound dressings against methicillin-resistant Staphylococcus aureus. Nanomaterials. 2020;10:1692. PubMed PMC
Gill A.A.S., Singh S., Nate Z., Chauhan R., Thapliyal N.B., Karpoormath R., Maru S.M., Reddy T.M. A novel copper-based 3D porous nanocomposite for electrochemical detection and inactivation of pathogenic bacteria. Sens. Actuators B Chem. 2020;321:128449.
Wang W.S., Li B.L., Yang H.L., Lin Z.F., Chen L.L., Li Z., Ge J.Y., Zhang T., Xia H., Li L.H., et al. Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. Nano Res. 2020;13:2156–2164.
Bakina O., Glazkova E., Pervikov A., Lozhkomoev A., Rodkevich N., Svarovskaya N., Lerner M., Naumova L., Varnakova E., Chjou V. Design and preparation of silver-copper nanoalloys for antibacterial applications. J. Clust. Sci. 2021;32:779–786.
Ikram M., Abbasi S., Haider A., Naz S., Ul-Hamid A., Imran M., Haider J., Ghaffar A. Bimetallic Ag/Cu incorporated into chemically exfoliated MoS2 nanosheets to enhance its antibacterial potential: In silico molecular docking studies. Nanotechnology. 2020;31:275704. PubMed
Qiao Y., He J., Chen W.Y., Yu Y.H., Li W.L., Du Z., Xie T.T., Ye Y., Hua S.Y., Zhong D.N., et al. Light-activatable synergistic therapy of drug-resistant bacteria-infected cutaneous chronic wounds and nonhealing keratitis by cupriferous hollow nanoshells. ACS Nano. 2020;14:3299–3315. PubMed
van Hengel I.A.J., Tierolf M.W.A.M., Valerio V.P.M., Minneboo M., Fluit A.C., Fratila-Apachitei L.E., Apachitei I., Zadpoor A.A. Self-defending additively manufactured bone implants bearing silver and copper nanoparticles. J. Mater. Chem. B. 2020;8:1589–1602. PubMed
Li D.D., Guo Q.Q., Ding L.M., Zhang W., Cheng L., Wang Y.Q., Xu Z.B., Wang H.H., Gao L.Z. Bimetallic CuCo2S4 nanozymes with enhanced peroxidase activity at neutral pH for combating burn infections. ChemBioChem. 2020;21:2620–2627. PubMed
Nain A., Huang H.H., Chevrier D.M., Tseng Y.T., Sangili A., Lin Y.F., Huang Y.F., Chang L., Chang F.C., Huang C.C., et al. Catalytic and photoresponsive BiZ/CuxS heterojunctions with surface vacancies for the treatment of multidrug-resistant clinical biofilm-associated infections. Nanoscale. 2021;13:18632–18646. PubMed
Abdelraheem W.M., Khairy R.M.M., Zaki A.I., Zaki S.H. Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates. Ann. Clin. Microbiol. 2021;20:54. PubMed PMC
Jasim N.A., Al-Gashaa F.A., Al-Marjani M.F., Al-Rahal A.H., Abid H.A., Al-Kadhmi N.A., Jakaria M., Rheima A.M. ZnO nanoparticles inhibit growth and biofilm formation of vancomycin-resistant S. aureus (VRSA) Biocatal. Agric. Biotechnol. 2020;29:101745.
Irfan M., Munir H., Ismail H. Moringa oleifera gum based silver and zinc oxide nanoparticles: Green synthesis, characterization and their antibacterial potential against MRSA. Biomater. Res. 2021;25:17. PubMed PMC
Abd El-Hamid M.I.Y., El-Naenaeey E.S., Kandeel T.M., Hegazy W.A.H., Mosbah R.A., Nassar M.S., Bakhrebah M.A., Abdulaal W.H., Alhakamy N.A., Bendary M.M. Promising antibiofilm agents: Recent breakthrough against biofilm producing methicillin-resistant Staphylococcus aureus. Antibiotics. 2020;9:667. PubMed PMC
Mahmoud U.T., Darwish M.H.A., Ali F.A.Z., Amen O.A., Mahmoud M.A.M., Ahmed O.B., El-Redag G.A., Osman M.A., Othman A.A., Abushahba M.F.N., et al. Zinc oxide nanoparticles prevent multidrug resistant Staphylococcus-induced footpad dermatitis in broilers. Avian Pathol. 2021;50:214–226. PubMed
Sajjad A., Bhatti S.H., Ali Z., Jaffari G.H., Khan N.A., Rizvi Z.F., Zia M. Photoinduced fabrication of zinc oxide nanoparticles: Transformation of morphological and biological response on light irradiance. ACS Omega. 2021;6:11783–11793. PubMed PMC
Gilavand F., Saki R., Mirzaei S.Z., Lashgarian H.E., Karkhane M., Marzban A. Green synthesis of zinc nanoparticles using aqueous extract of Magnoliae officinalis and assessment of its bioactivity potentials. Biointerface Res. Appl. Chem. 2021;11:7765–7774.
Liu D., Liu L., Yao L., Peng X.Y., Li Y., Jiang T.T., Kuang H.Y. Synthesis of ZnO nanoparticles using radish root extract for effective wound dressing agents for diabetic foot ulcers in nursing care. J. Drug Deliv. Sci. Technol. 2020;55:101364.
Majeed A., Javed F., Akhtar S., Saleem U., Anwar F., Ahmad B., Nadhman A., Shahnaz G., Hussain I., Hussain S.Z., et al. Green synthesized selenium doped zinc oxide nano-antibiotic: Synthesis, characterization and evaluation of antimicrobial, nanotoxicity and teratogenicity potential. J. Mater. Chem. B. 2020;8:8444–8458. PubMed
Swati, Verma R., Chauhan A., Shandilya M., Li X.K., Kumar R., Kulshrestha S. Antimicrobial potential of ag-doped ZnO nanostructure synthesized by the green method using Moringa oleifera extract. J. Environ. Chem. Eng. 2020;8:103730.
Chauhan A., Verma R., Kumari S., Sharma A., Shandilya P., Li X.K., Batoo K.M., Imran A., Kulshrestha S., Kumar R. Photocatalytic dye degradation and antimicrobial activities of pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci. Rep. 2020;10:7881. PubMed PMC
Shakerimoghaddam A., Razavi D., Rahvar F., Khurshid M., Ostadkelayeh S.M., Esmaeili S.A., Khaledi A., Eshraghi M. Evaluate the effect of zinc oxide and silver nanoparticles on biofilm and icaA gene expression in methicillin-resistant Staphylococcus aureus isolated from burn wound infection. J. Burn Care Res. 2020;41:1253–1259. PubMed
Harun N., Mydin R.B.S.M.N., Sreekantan S., Saharudin K.A., Basiron N., Seeni A. The bactericidal potential of LLDPE with TiO2/ZnO nanocomposites against multidrug resistant pathogens associated with hospital acquired infections. J. Biomater. Sci. Polym. 2020;31:1757–1769. PubMed
Banerjee S., Vishakha K., Das S., Dutta M., Mukherjee D., Mondal J., Mondal S., Ganguli A. Antibacterial, anti-biofilm activity and mechanism of action of pancreatin doped zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus. Colloids Surf. B Biointerfaces. 2020;190:110921. PubMed
Lodhi F.L., Saleem M.I., Aqib A.I., Rashid I., Qureshi Z.I., Anwar M.A., Ashraf F., Khan S.R., Jamil H., Fatima R., et al. Bringing resistance modulation to epidemic methicillin resistant S. aureus of dairy through antibiotics coupled metallic oxide nanoparticles. Microb. Pathog. 2021;159:105138. PubMed
Sharif M., Tunio S.A., Bano S. Synergistic effects of Zinc oxide nanoparticles and conventional antibiotics against methicillin resistant Staphylococcus aureus. Adv. Life Sci. 2021;8:167–171.
Schuenck-Rodrigues R.A., de Siqueira L.B.D., Matos A.P.D., da Costa S.P., Cardoso V.D., Vermelho A.B., Colombo A.P.V., Oliveira C.A., Santos-Oliveira R., Ricci E. Development, characterization and photobiological activity of nanoemulsion containing zinc phthalocyanine for oral infections treatment. J. Photochem. Photobiol. B Biol. 2020;211:112010. PubMed
Oves M., Rauf M.A., Ansari M.O., Khan A.A.P., Qari H.A., Alajmi M.E., Sau S., Iyer A.K. Graphene decorated zinc oxide and curcumin to disinfect the methicillin-resistant Staphylococcus aureus. Nanomaterials. 2020;10:1004. PubMed PMC
Abbas H.S., Krishnan A., Kotakonda M. Fabrication of iron oxide/zinc oxide nanocomposite using creeper Blepharis maderaspatensis extract and their antimicrobial activity. Front. Bioeng. Biotechnol. 2020;8:595161. PubMed PMC
Majeed S., Danish M., Ibrahim M.N.M., Sekeri S.H., Ansari M.T., Nanda A., Ahmad G. Bacteria mediated synthesis of iron oxide nanoparticles and their antibacterial, antioxidant, cytocompatibility properties. J. Clust. Sci. 2021;32:1083–1094.
Nickel R., Kazemian M.R., Wroczynskyj Y., Liu S., van Lierop J. Exploiting shape-selected iron oxide nanoparticles for the destruction of robust bacterial biofilms—Active transport of biocides via surface charge and magnetic field control. Nanoscale. 2020;12:4328–4333. PubMed
Manna P.K., Nickel R., Li J., Wroczynskyj Y., Liu S., van Lierop J. EDTA-Na3 functionalized Fe3O4 nanoparticles: Grafting density control for MRSA eradication. Dalton Trans. 2019;48:6588–6595. PubMed
Li J., Nickel R., Wu J.D., Lin F., van Lierop J., Liu S. A new tool to attack biofilms: Driving magnetic iron-oxide nanoparticles to disrupt the matrix. Nanoscale. 2019;11:6905–6915. PubMed
Abd-El-Aziz A.S., El-Ghezlani E.G., Abdelghani A.A. Design of Organoiron Dendrimers Containing Paracetamol for Enhanced Antibacterial Efficacy. Molecules. 2020;25:4514. PubMed PMC
Lage W.C., Sachs D., Ribeiro T.A.N., Tebaldi M.L., de Moura Y.D.S., Domingues S.C., Soares D.C.F. Mesoporous iron oxide nanoparticles loaded with ciprofloxacin as a potential biocompatible antibacterial system. Microporous Mesoporous Mater. 2021;321:111127.
Akbar N., Kawish M., Jabri T., Khan N.A., Shah M.R., Siddiqui R. Enhancing efficacy of existing antibacterials against selected multiple drug resistant bacteria using cinnamic acid-coated magnetic iron oxide and mesoporous silica nanoparticles. Pathog. Glob. Health. 2021 doi: 10.1080/20477724.2021.2014235. PubMed DOI PMC
Liu Z.W., Zhao X.Y., Yu B.R., Zhao N.N., Zhang C., Xu F.J. Rough carbon-iron oxide nanohybrids for Near-Infrared-II light-responsive synergistic antibacterial therapy. ACS Omega. 2021;15:7482–7490. PubMed
Ocsoy M., Yusufbeyoglu S., Ildiz N., Ulgen A., Ocsoy I. DNA aptamer-conjugated magnetic graphene oxide for pathogenic bacteria aggregation: Selective and enhanced photothermal therapy for effective and rapid killing. ACS Omega. 2021;6:20637–20643. PubMed PMC
Jee S.C., Kim M., Shinde S.K., Ghodake G.S., Sung J.S., Kadam A.A. Assembling ZnO and Fe3O4 nanostructures on halloysite nanotubes for antibacterial assessments. Appl. Surf. Sci. 2020;509:145358.
Zubair M., Husain F.M., Qais F.A., Alam P., Ahmad I., Albalawi T., Ahmad N., Alam M., Baig M.H., Dong J.J., et al. Bio-fabrication of titanium oxide nanoparticles from Ochradenus arabicus to obliterate biofilms of drug-resistant Staphylococcus aureus and Pseudomonas aeruginosa isolated from diabetic foot infections. Appl. Sci. 2021;11:375–387.
Alhadrami H.A., Shoudri R.A.M. Titanium oxide (TiO2) nanoparticles for treatment of wound infection. J. Pure Appl. Microbiol. 2021;15:437–451.
Ansari M.A., Albetran H.M., Alheshibri M.H., Timoumi A., Algarou N.A., Akhtar S., Slimani Y., Almessiere M.A., Alahmari F.S., Baykal A., et al. Synthesis of electrospun TiO2 nanofibers and characterization of their antibacterial and antibiofilm potential against Gram-positive and Gram-negative bacteria. Antibiotics. 2020;9:572. PubMed PMC
Ullah K., Khan S.A., Mannan A., Khan R., Murtaza G., Yameen M.A. Enhancing the antibacterial activity of erythromycin with titanium dioxide nanoparticles against MRSA. Curr. Pharm. Biotechnol. 2020;21:948–954. PubMed
Rao T.N., Riyazuddin, Babji P., Ahmad N., Khan R.A., Hassan I., Shahzad S.A., Husain F.M. Green synthesis and structural classification of Acacia nilotica mediated-silver doped titanium oxide (Ag/TiO2) spherical nanoparticles: Assessment of its antimicrobial and anticancer activity. Saudi J. Biol. Sci. 2019;26:1385–1391. PubMed PMC
van Hengel I.A.J., Putra N.E., Tierolf M.W.A.M., Minneboo M., Fluit A.C., Fratila-Apachitei L.E., Apachitei I., Zadpoor A.A. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria. Acta Biomater. 2020;107:325–337. PubMed
Song J.L., Liu H., Lei M., Tan H.Q., Chen Z.Y., Antoshin A., Payne G.F., Qu X., Liu C.S. Redox-channeling polydopamine-ferrocene (PDA-Fc) coating to confer context-dependent and photothermal antimicrobial activities. ACS Appl. Mater. Interfaces. 2020;12:8915–8928. PubMed
Han H.W., Patel K.D., Kwak J.H., Jun S.K., Jang T.S., Lee S.H., Knowles J.C., Kim H.W., Lee H.H., Lee J.H. Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria. Biomolecules. 2021;11:1028. PubMed PMC
Huang T., Holden J.A., Heath D.E., O’Brien-Simpson N.M., O’Connor A.J. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. 2019;11:14937–14951. PubMed
Atran P., O’Brien-Simpson N., Palmer J.A., Bock N., Reynolds E.C., Webster T., Deva A., Morrison W.A., O’Connor A.J. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: In vitro and in vivo assessment. Int. J. Nanomed. 2019;14:4613–4624. PubMed PMC
Jamroz E., Kulawik P., Kopel P., Balkova R., Hynek D., Bytesnikova Z., Gagic M., Milosavljevic V., Adam V. Intelligent and active composite films based on furcellaran: Structural characterization, antioxidant and antimicrobial activities. Food Packag. Shelf Life. 2019;22:100405.
Jamroz E., Kopel P., Juszczak L., Kawecka A., Bytesnikova Z., Milosavljevic V., Makarewicz M. Development of furcellaran-gelatin films with Se-AgNPs as an active packaging system for extension of mini kiwi shelf life. Food Packag. Shelf Life. 2019;21:100339.
Lin A.G., Liu Y.A., Zhu X.F., Chen X., Liu J.W., Zhou Y.H., Qin X.Y., Liu J. Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition. ACS Nano. 2019;13:13965–13984. PubMed
Mosselhy D.A., He W., Hynonen U., Meng Y.P., Mohammadi P., Palva A., Feng Q.L., Hannula S.P., Nordstrom K., Linder M.B. Silica-gentamicin nanohybrids: Combating antibiotic resistance, bacterial biofilms, and in vivo toxicity. Int. J. Nanomed. 2018;13:7939–7957. PubMed PMC
Malekzadeh M., Yeung K.L., Halali M., Chang Q. Preparation and antibacterial behaviour of nanostructured Ag@SiO2-penicillin with silver nanoplates. New J. Chem. 2019;43:16612–16620.
Marcelo G.A., Duarte M.P., Oliveira E. Gold@mesoporous silica nanocarriers for the effective delivery of antibiotics and by-passing of β-lactam resistance. SN Appl. Sci. 2020;2:1354.
Chen Y.H., Kung J.C., Tseng S.P., Chen W.C., Wu S.M., Shih C.J. Effects of AgNPs on the structure and anti-methicillin resistant Staphylococcus aureus (MRSA) properties of SiO2-CaO-P2O5 bioactive glass. J. Non-Cryst. Solids. 2021;553:120492.
Cao C.Y., Ge W., Yin J.J., Yang D.L., Wang W.J., Song X.J., Hu Y.L., Yin J., Dong X.C. Mesoporous silica supported silver-bismuth nanoparticles as photothermal agents for skin infection synergistic antibacterial therapy. Small. 2020;16:2000436. PubMed
Gwon K., Park J.D., Lee S., Han I., Yu J.S., Lee D.N. Highly bioactive and low cytotoxic Si-based NiOOH nanoflowers targeted against various bacteria, including MRSA, and their potential antibacterial mechanism. J. Ind. Eng. Chem. 2021;99:264–270.
Xu Q., Jiang F., Guo G.Y., Wang E.D., Younis M.R., Zhang Z.W.B., Zhang F.Y., Huan Z.G., Fan C., Yang C., et al. Targeted hot ion therapy of infected wound by glycol chitosan and polydopamine grafted Cu-SiO2 nanoparticles. Nano Today. 2021;41:101330.