In vitro biosafety of pro-ecological chitosan-based hydrogels modified with natural substances

. 2019 Nov ; 107 (11) : 2501-2511. [epub] 20190730

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31298778

Grantová podpora
LIDER/033/697/L-5/13/NCBR/2014 National Centre for Research and Development - International
LO1305 Ministry of Education of the Czech Republic - International
APVV-17-0373 Slovak Research and Development Agency - International
APVV-17-0318 Slovak Research and Development Agency - International

Hydrogels belong to the group of materials with growing interest on the market of polymers. In this article, hydrogels based on Beetosan were obtained using ultraviolet (UV) radiation. Main component of hydrogel matrix-Beetosan-is chitosan obtained from naturally died honeybees. Such hydrogels were modified with active substances, that is, caffeine, bee pollen, Salvia officinalis (sage), and Aloe vera juice. Next, the analysis of cytotoxicity of hydrogels in relation to murine fibroblasts by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and neutral red uptake assays were conducted. Furthermore, surface morphology, tensile strength, geometry, and roughness of hydrogels were characterized. Hydrogels did not show cytotoxicity to recommended L929 murine fibroblasts. These polymers did not affect adversely the growth and viability of these cells. Moreover, Beetosan hydrogels were characterized by flexibility as well as by diversified surface morphology that could indicate their high absorbency. Therefore these materials may be considered as useful for biomedical purposes with special emphasis on application as modern wound dressings that not only absorb wound exudate but also contain natural substances with therapeutic properties that is beneficial from the point of view of wound healing process.

Zobrazit více v PubMed

Ares, A. M., Valverde, S., Bernal, J. L., Nozal, M. J., & Bernal, J. (2018). Extraction and determination of bioactive compounds from bee pollen. Journal of Pharmaceutical and Biomedical Analysis, 147, 110-124.

Chao, S., Li, Y., Zhao, R., Zhang, L., Li, Y., Wang, C., & Li, X. (2018). Synthesis and characterization of tigecycline-loaded sericin/poly(vinyl alcohol) composite fibers via electrospinning as antibacterial wound dressings. Journal of Drug Delivery Science and Technology, 44, 440-447.

Chithra, P., Sajithlal, G. B., & Chandrakasan, G. (1998). Influence of Aloe vera on the glycosaminoglycans in the matrix of healing dermal wounds in rats. Journal of Ethnopharmacology, 59, 179-186.

Davis, R. H., DiDonato, J. J., Johnson, R. W., & Stewart, C. B. (1994). Aloe vera, hydrocortisone, and sterol influence on wound tensile strength and anti-inflammation. Journal of the American Podiatric Medical Association, 84, 614-621.

Davis, R. H., & Stewart, G. J. (1992). Aloe vera and the inflamed synovial pouch model. Journal of the American Podiatric Medical Association, 82, 140-148.

Flampouri, E., Sotiropoulou, N.-S. D., Mavrikou, S., Mouzaki-Paxinou, A.-C., Tarantilis, A., & Kintzios, S. (2017). Conductive polymer-based bioelectrochemical assembly for in vitro cytotoxicity evaluation: Renoprotective assessment of Salvia officinalis against carbon tetrachloride induced nephrotoxicit. Biochimica et Biophysica Acta-dsGeneral Subjects, 1861, 2304-2314.

Ganesan, P. (2017). Natural and bio polymer curative films for wound dressing material medical applications. Wound Medicine, 18, 33-40.

Generalić, I., Skroza, D., Šurjak, J., Možina, S. S., Ljubenkov, I., Katalinić, A., … Katalinić, V. (2012). Seasonal variations of phenolic compounds and biological properties in sage (Salvia officinalis L.). Chemistry & Biodiversity, 9, 441-457.

Ghorbani, A., & Esmaeilizadeh, M. (2017). Pharmacological properties of Salvia officinalis and its components. Journal of Traditional and Complementary Medicine, 7(4), 433-440.

Guo, B., Qu, J., Zhao, Z., & Zhang, M. (2019). Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration. Acta Biomaterialia, 84, 180-193.

Kamoun, E. A., Kenawy, E.-R. S., & Chen, X. (2017). A review on polymeric membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of Advanced Research, 8(3), 217-233.

Kheradvar, S. A., Nourmohammadi, J., Tabesh, H., & Bagheri, B. (2018). Starch nanoparticle as a vitamin E-TPGS carrier loaded in silk fibroin-poly(vinyl alcohol)-Aloe vera Nanofibrous dressing. Colloids and Surfaces B: Biointerfaces, 166, 9-16.

Khorasani, M. T., Joorabloo, A., Moghaddam, A., Shamsi, H., & Moghaddam, Z. M. (2018). Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. International Journal of Biological Macromolecules, 114, 1203-1215.

Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27, 2907-2915.

Liang, Y., Zhao, X., Ma, P. X., Guo, B., Du, Y., & Han, X. (2019). pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. Journal of Colloid and Interface Science, 536, 224-234.

Lokhande, G., Carrow, J. K., Thakur, T., Xavier, J. R., Parani, M., Bayless, K. J., & Gaharwar, A. K. (2018). Nanoengineered injectable hydrogels for wound healing application. Acta Biomaterialia, 70, 35-47.

Maan, A. A., Nazir, A., Khan, M. K. I., Ahmad, T., Zia, R., Murid, M., & Abrar, M. (2018). The therapeutic properties and applications of Aloe vera: A review. Journal of Herbal Medicine, 12, 1-10.

Mahinroosta, M., Farsangi, Z. J., Allahverdi, A., & Shakoori, Z. (2018). Hydrogels as inteligent materials: A brief review of synthesis, properties and applications. Materials Today Chemistry, 8, 42-55.

Mutlu, G., Calamak, S., Ulubayram, K., & Guven, E. (2018). Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. Journal of Drug Delivery Science and Technology, 43, 185-193.

Naseri-Nosar, M., & Ziora, Z. M. (2018). Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydrate Polymers, 189, 379-398.

Qian, W., Hu, X., He, W., Zhan, R., Liu, M., Zhou, D., … Luo, G. (2018). Polydimethylsiloxane incorporated with reduced Graphene oxide (rGO) sheets for wound dressing application: Preparation and characterization. Colloids and Surfaces B: Biointerfaces, 166, 61-71.

Qu, J., Zhao, X., Liang, Y., Zhang, T., Ma, P. X., & Guo, B. (2018). Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joint skin wound healing. Biomaterials, 183, 185-199.

Qu, J., Zhao, X., Ma, P. X., & Guo, B. (2017). pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomaterialia, 58, 168-180.

Ragno, A., Cavallaro, E., Marsili, D., Apa, M., D'Erasmo, L., & Martin, L. S. (2016). Honey, bee pollen and vegetable oil unsaponifiables wound healing. Journal of Tissue Viability, 25(3), 189.

Rahman, S., Carter, P., & Bhattarai, N. (2017). Aloe vera for tissue engineering applications. Journal of Functional Biomaterials, 8(1), 6.

Simoes, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonca, A. G., & Correia, I. J. (2018). Recent advances on antimicrobial wound dressing: A review. European Journal of Pharmaceutics and Biopharmaceutics, 127, 130-141.

Tyliszczak, B., Drabczyk, A., Kudłacik, S., Bialik-Wąs, K., & Sobczak-Kupiec, A. (2016). Beetosan/Chitosan from bees-Preparation and properties. International Journal of Advances in Science Engineering and Technology, 4(2), 118-120.

Tyliszczak, B., & Pielichowski, K. (2007). Charakterystyka matryc hydrożelowych-zastosowania biomedyczne superabsorbentów polimerowych. Czasopismo Techniczne, 104(1), 159-167.

Veerasubramanian, P. K., Thangavei, P., Kannan, R., Chakraborty, S., Ramachandran, B., Suguna, L., & Muthuvjayan, V. (2018). An investigation of konjac glucomannan-keratin hydrogel scaffold loaded with Avena sativa extracts for diabetic wound healing. Colloids and Surfaces B: Biointerfaces, 165, 92-102.

Xu, R., Luo, G., Xia, H., He, W., Zhao, J., Liu, B., … Wu, J. (2015). Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials, 40, 1-11.

Zeinab, B., & Roselyn, B. R. (2015). Caffeine and its potential role in attenuating impaired wound healing in diabetes. Journal of Caffeine Research, 5(4), 141-148.

Zhao, X., Li, P., Guo, B., & Ma, P. X. (2015). Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomaterialia, 26, 236-248.

Zhao, X., Wu, H., Guo, B., Dong, R., Qiu, Y., & Ma, P. X. (2017). Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 122, 34-47.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Advances in Nanostructures for Antimicrobial Therapy

. 2022 Mar 24 ; 15 (7) : . [epub] 20220324

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...