Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems

. 2022 Dec 01 ; 14 (12) : . [epub] 20221201

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36559176

Grantová podpora
APVV-17-0318 Slovak Research and Development Agency
1/0116/22 VEGA

Odkazy

PubMed 36559176
PubMed Central PMC9781429
DOI 10.3390/pharmaceutics14122681
PII: pharmaceutics14122681
Knihovny.cz E-zdroje

The use of natural compounds is becoming increasingly popular among patients, and there is a renewed interest among scientists in nature-based bioactive agents. Traditionally, herbal drugs can be taken directly in the form of teas/decoctions/infusions or as standardized extracts. However, the disadvantages of natural compounds, especially essential oils, are their instability, limited bioavailability, volatility, and often irritant/allergenic potential. However, these active substances can be stabilized by encapsulation and administered in the form of nanoparticles. This brief overview summarizes the latest results of the application of nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers used as drug delivery systems of herbal essential oils or used directly for their individual secondary metabolites applicable in cancer therapy. Although the discussed bioactive agents are not typical compounds used as anticancer agents, after inclusion into the aforesaid formulations improving their stability and bioavailability and/or therapeutic profile, they indicated anti-tumor activity and became interesting agents with cancer treatment potential. In addition, co-encapsulation of essential oils with synthetic anticancer drugs into nanoformulations with the aim to achieve synergistic effect in chemotherapy is discussed.

Zobrazit více v PubMed

Wermuth C., Aldous D., Raboisson P., Rognan D. The Practice of Medicinal Chemistry. 4th ed. Academic Press; Cambridge, MA, USA: Elsevier; Amsterdam, The Netherlands: 2015.

Blass B. Basic Principles of Drug Discovery and Development. 2nd ed. Academic Press; Cambridge, MA, USA: Elsevier; Amsterdam, Netherlands: 2021.

Jampilek J., Dolezal M., Opletalova V., Hartl J. 5-Lipoxygenase, leukotrienes biosynthesis and potential antileukotrienic agents. Curr. Med. Chem. 2006;13:117–129. doi: 10.2174/092986706775197935. PubMed DOI

Jampilek J. Design and discovery of new antibacterial agents: Advances, perspectives, challenges. Curr. Med. Chem. 2018;25:4972–5006. doi: 10.2174/0929867324666170918122633. PubMed DOI

Hughes J.P., Rees S., Kalindjian S.B., Philpott K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011;162:1239–1249. doi: 10.1111/j.1476-5381.2010.01127.x. PubMed DOI PMC

Zhou S.F., Zhong W.Z. Drug design and discovery: Principles and applications. Molecules. 2017;22:279. doi: 10.3390/molecules22020279. PubMed DOI PMC

Jampilek J. Drug repurposing to overcome microbial resistance. Drug Discov. Today. 2022;27:2028–2041. doi: 10.1016/j.drudis.2022.05.006. PubMed DOI

Plackett B. Why big pharma has abandoned antibiotics. Nature. 2020;586:50–52. doi: 10.1038/d41586-020-02884-3. DOI

Kerns E.H., Di L. Drug-Like Properties: Concepts, Structure Design and Methods: From ADME to Toxicity Optimization. Academic Press; San Diego, CA, USA: 2008.

Culen M., Rezacova A., Jampilek J., Dohnal J. Designing a dynamic dissolution method: A review of instrumental options and corresponding physiology of stomach and small intestine. J. Pharm. Sci. 2013;102:2995–3017. doi: 10.1002/jps.23494. PubMed DOI

Thomford N.E., Senthebane D.A., Rowe A., Munro D., Seele P., Maroyi A., Dzobo K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018;19:1578. doi: 10.3390/ijms19061578. PubMed DOI PMC

Newman D.J., Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020;83:770–803. doi: 10.1021/acs.jnatprod.9b01285. PubMed DOI

Atanasov A.G., Zotchev S.B., Dirsch V.M., The International Natural Product Sciences Taskforce. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC

Jampilek J. Recent advances in design of potential quinoxaline anti-infectives. Curr. Med. Chem. 2014;21:4347–4373. doi: 10.2174/0929867321666141011194825. PubMed DOI

Jampilek J. Design of antimalarial agents based on natural products. Curr. Org. Chem. 2017;21:1824–1846. doi: 10.2174/1385272821666161214121512. DOI

Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI

Pospisilova S., Kos J., Michnova H., Kapustikova I., Strharsky T., Oravec M., Moricz A.M., Bakonyi J., Kauerova T., Kollar P., et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018;19:2318. doi: 10.3390/ijms19082318. PubMed DOI PMC

Kralova K., Jampilek J. Responses of medicinal and aromatic plants to engineered nanoparticles. Appl. Sci. 2021;11:1813. doi: 10.3390/app11041813. DOI

Lu F., Wang D., Li R.L., He L.Y., Ai L., Wu C.J. Current strategies and technologies for finding drug targets of active components from traditional Chinese medicine. Front. Biosci. 2021;26:572–589. PubMed

Khan A.W., Farooq M., Haseeb M., Choi S. Role of plant-derived active constituents in cancer treatment and their mechanisms of action. Cells. 2022;11:1326. doi: 10.3390/cells11081326. PubMed DOI PMC

Cernikova A., Jampilek J. Structure modification of drugs influencing their bioavailability and therapeutic effect. Chem. Listy. 2014;108:7–16.

Fahr A. Voigt’s Pharmaceutical Technology. 12th ed. John Wiley & Sons; New York, NY, USA: 2018.

Williams R.O., Taft D.R., McConville J.T. Advanced Drug Formulation Design to Optimize Therapeutic Outcomes. Informa Healtcare; New York, NY, USA: 2008.

Vargason A.M., Anselmo A.C., Mitragotri S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021;5:951–967. doi: 10.1038/s41551-021-00698-w. PubMed DOI

Varban D., Zahan M., Pop C.R., Socaci S., Stefan R., Crisan I., Bota L.E., Miclea I., Musca A.S., Deac A.M., et al. Physicochemical characterization and prospecting biological activity of some authentic transylvanian essential oils: Lavender, sage and basil. Metabolites. 2022;12:962. doi: 10.3390/metabo12100962. PubMed DOI PMC

Semeniuc C.A., Socaciu M.-I., Socaci S.A., Mureșan V., Fogarasi M., Rotar A.M. Chemometric comparison and classification of some essential oils extracted from plants belonging to Apiaceae and Lamiaceae families based on their chemical composition and biological activities. Molecules. 2018;23:2261. doi: 10.3390/molecules23092261. PubMed DOI PMC

Murarikova A., Tazky A., Neugebauerova J., Plankova A., Jampilek J., Mucaji P., Mikus P. Characterization of essential oil composition in different basil species and pot cultures by a GC-MS method. Molecules. 2017;22:1221. doi: 10.3390/molecules22071221. PubMed DOI PMC

Bhavaniramya S., Vishnupriya S., Al-Aboody M.S., Vijayakumar R., Baskaran D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019;2:49–55. doi: 10.1016/j.gaost.2019.03.001. DOI

Maurya A., Prasad J., Das S., Dwivedy A.K. Essential Oils and their application in food safety. Front. Sustain. Food Syst. 2021;5:653420. doi: 10.3389/fsufs.2021.653420. DOI

Demetzos C. Pharmaceutical Nanotechnology, Fundamentals and Practical Applications. Springer; Singapore: 2016. PubMed

Placha D., Jampilek J. Graphenic materials for biomedical applications. Nanomaterials. 2019;9:1758. doi: 10.3390/nano9121758. PubMed DOI PMC

Jampilek J., Kralova K. Advances in drug delivery nanosystems using graphene-based materials and carbon nanotubes. Materials. 2021;14:1059. doi: 10.3390/ma14051059. PubMed DOI PMC

Jampilek J., Kralova K. Advances in biologically applicable graphene-based 2D nanomaterials. Int. J. Mol. Sci. 2022;23:6253. doi: 10.3390/ijms23116253. PubMed DOI PMC

El-Sayed A., Kamel M. Advances in nanomedical applications: Diagnostic, therapeutic, immunization, and vaccine production. Environ. Sci. Pollut. Res. 2020;27:19200–19213. doi: 10.1007/s11356-019-06459-2. PubMed DOI

Kher C., Kumar S. The application of nanotechnology and nanomaterials in cancer diagnosis and treatment: A review. Cureus. 2022;14:29059. doi: 10.7759/cureus.29059. PubMed DOI PMC

National Nanotechnology Initiative. [(accessed on 18 October 2022)]; Available online: www.nano.gov.

European Commission Definition of a Nanomaterial. [(accessed on 18 October 2022)]. Available online: http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm.

Rizvi S.A.A., Saleh A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm, J. 2018;26:64–70. doi: 10.1016/j.jsps.2017.10.012. PubMed DOI PMC

Verma V., Ryan K.M., Padrela L. Production and isolation of pharmaceutical drug nanoparticles. Int. J. Pharm. 2021;603:120708. doi: 10.1016/j.ijpharm.2021.120708. PubMed DOI

Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC

Mazdaei M., Asare-Addo K. A mini-review of nanocarriers in drug delivery systems. Br. J. Pharm. 2022;7:780. doi: 10.5920/bjpharm.780. DOI

Nanotechnology—New Name—Old Science. Lubrizol Life Science: Cleveland, OH, USA. 2020. [(accessed on 18 October 2022)]. Available online: https://lubrizolcdmo.com/technical-briefs/nanotechnology-new-name-old-science.

Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. PubMed DOI PMC

Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI

Bayda S., Adeel M., Tuccinardi T., Cordani M., Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules. 2020;25:112. doi: 10.3390/molecules25010112. PubMed DOI PMC

Torchilin V. Handbook of Materials for Nanomedicine: Metal-Based and Other Nanomaterials. Jenny Stanford Publishing; Singapore: Taylor and Francis; Singapore: 2020.

Torchilin V. Handbook of Materials for Nanomedicine: Polymeric Nanoparticles. Jenny Stanford Publishing; Singapore: Taylor and Francis; Singapore: 2020.

Vaculikova E., Grunwaldova V., Kral V., Dohnal J., Jampilek J. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules. 2012;17:13221–13234. doi: 10.3390/molecules171113221. PubMed DOI PMC

Jampilek J., Kos J., Kralova K. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials. 2019;9:296. doi: 10.3390/nano9020296. PubMed DOI PMC

Jampilek J., Kralova K. Potential of nanonutraceuticals in increasing immunity. Nanomaterials. 2020;10:2224. doi: 10.3390/nano10112224. PubMed DOI PMC

Placha D., Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics. 2021;13:642019. doi: 10.3390/pharmaceutics13010064. PubMed DOI PMC

Jampilek J., Placha D. Advances in use of nanomaterials for musculoskeletal regeneration. Pharmaceutics. 2021;13:1994. doi: 10.3390/pharmaceutics13121994. PubMed DOI PMC

Jampilek J., Kralova K. Advances in nanostructures for antimicrobial therapy. Materials. 2022;15:2388. doi: 10.3390/ma15072388. PubMed DOI PMC

Jampilek J., Kralova K., Campos E.V.R., Fraceto L.F. Bio-based nanoemulsion formulations applicable in agriculture, medicine and food industry. In: Prasad R., Kumar V., Kumar M., Choudhary D.K., editors. Nanobiotechnology in Bioformulations. Springer; Cham, Germany: 2019. pp. 33–84.

Jampilek J., Kralova K. Application of nanobioformulations for controlled release and targeted biodistribution of drugs. In: Sharma A.K., Keservani R.K., Kesharwani R.K., editors. Nanobiomaterials: Applications in Drug Delivery. CRC Press; Warentown, NJ, USA: 2018. pp. 131–208.

Jampilek J., Kralova K. Natural biopolymeric nanoformulations for brain drug delivery. In: Keservani R.K., Sharma A.K., Kesharwani R.K., editors. Nanocarriers for Brain Targetting: Principles and Applications. Apple Academic Press; Warentown, NJ, USA: CRC Press; Warentown, NJ, USA: 2019. pp. 131–203.

Besseling R., Arribas-Bueno R., Damen M., Wijgergangs J., Hermes M., Gerich A. Lipid-Based Nanoparticles: Manufacturing and Inline Size Characterization. AzoNano. 2021. [(accessed on 6 November 2022)]. Available online: https://www.azonano.com/article.aspx?ArticleID=5646.

Ganesan P., Narayanasamy D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm. 2017;6:37–56. doi: 10.1016/j.scp.2017.07.002. DOI

Musielak E., Feliczak-Guzik A., Nowak I. Synthesis and potential applications of lipid nanoparticles in medicine. Materials. 2022;15:682. doi: 10.3390/ma15020682. PubMed DOI PMC

Chauhan G., Shaik A.A., Kulkarni N.S., Gupta V. The preparation of lipid-based drug delivery system using melt extrusion. Drug Discov. Today. 2020;25:1930–1943. doi: 10.1016/j.drudis.2020.07.025. PubMed DOI

Duong V.A., Nguyen T.T.L., Maeng H.J. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules. 2020;25:4781. doi: 10.3390/molecules25204781. PubMed DOI PMC

Tenchov R., Bird R., Curtze A.E., Zhou Q. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15:16982–17015. doi: 10.1021/acsnano.1c04996. PubMed DOI

Xu L., Wang X., Liu Y., Yang G., Falconer R.J., Zhao C.X. Lipid nanoparticles for drug delivery. Adv. Biomed. Res. 2022;2:2100109. doi: 10.1002/anbr.202100109. DOI

Carvalho B.G., Ceccato B.T., Michelon M., Han S.W., de la Torre L.G. Advanced microfluidic technologies for lipid nano-microsystems from synthesis to biological application. Pharmaceutics. 2022;14:141. doi: 10.3390/pharmaceutics14010141. PubMed DOI PMC

Matsuura-Sawada Y., Maeki M., Nishioka T., Niwa A., Yamauchi J., Mizoguchi M., Wada K., Tokeshi M. Microfluidic device-enabled mass production of lipid-based nanoparticles for applications in nanomedicine and cosmetics. ACS Appl. Nano Mater. 2022;5:7867–7876. doi: 10.1021/acsanm.2c00886. DOI

Junnuthula V., Kolimi P., Nyavanandi D., Sampathi S., Vora L.K., Dyawanapelly S. Polymeric Micelles for Breast Cancer Therapy: Recent Updates, Clinical Translation and Regulatory Considerations. Pharmaceutics. 2022;14:1860. doi: 10.3390/pharmaceutics14091860. PubMed DOI PMC

Leong E.W.X., Ge R. Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics. Biomedicines. 2022;10:2179. doi: 10.3390/biomedicines10092179. PubMed DOI PMC

Matei A.M., Caruntu C., Tampa M., Georgescu S.R., Matei C., Constantin M.M., Constantin T.V., Calina D., Ciubotaru D.A., Badarau I.A., et al. Applications of nanosized-lipid-based drug delivery systems in wound care. Appl. Sci. 2021;11:4915. doi: 10.3390/app11114915. DOI

Boyuklieva R., Pilicheva B. Micro- and nanosized carriers for nose-to-brain drug delivery in neurodegenerative disorders. Biomedicines. 2022;10:1706. doi: 10.3390/biomedicines10071706. PubMed DOI PMC

Su S., Kang P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics. 2020;12:837. doi: 10.3390/pharmaceutics12090837. PubMed DOI PMC

Bai X., Smith Z.L., Wang Y., Butterworth S., Tirella A. Sustained drug release from smart nanoparticles in cancer therapy: A Comprehensive review. Micromachines. 2022;13:1623. doi: 10.3390/mi13101623. PubMed DOI PMC

Bobo D., Robinson K.J., Islam J., Thurecht K.J., Corrie S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016;33:2373–2387. doi: 10.1007/s11095-016-1958-5. PubMed DOI

Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019;4:e10143. doi: 10.1002/btm2.10143. PubMed DOI PMC

Halwani A.A. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics. 2022;14:106. doi: 10.3390/pharmaceutics14010106. PubMed DOI PMC

Jampilek J., Kralova K. Green and food-grade nanoemulsion: A novel nutraceutical and phytochemical delivery concept. In: Abd-Elsalam K.A., Murugan K., editors. Bio-based Nano-emulsions for Agri-Food Applications. Elsevier; Amsterdam, Netherlands: 2022. pp. 15–46.

Dewick P.M. Medicinal Natural Products: A Biosynthetic Approach. John Wiley & Sons; Chichester, UK: 2009.

Osbourn A.E., Lanzotti V. Plant-derived Natural Products: Synthesis, Function, and Application. Springer; New York, NY, USA: 2009.

Sarker S., Nahar L. Medicinal Natural Products: A Disease-Focused Approach. Academic Press; Cambridge, MA, USA: Elsevier; Amsterdam, The Netherlands: 2020.

Health Benefits of Essential Oils. [(accessed on 5 November 2022)]. Available online: https://www.webmd.com/diet/health-benefits-essential-oils#1.

Agatonovic-Kustrin S., Kustrin E., Morton D.W. Essential oils and functional herbs for healthy aging. Neural Regen Res. 2019;14:441–445. doi: 10.4103/1673-5374.245467. PubMed DOI PMC

Blowman K., Magalhaes M., Lemos M.F.L., Cabral C., Pires I.M. Anticancer properties of essential oils and other natural products. Evid. Based Complement. Alternat. Med. 2018;2018:3149362. doi: 10.1155/2018/3149362. PubMed DOI PMC

National Institutes of Health. National Cancer Institute Aromatherapy With Essential Oils (PDQ®)–Health Professional Version. [(accessed on 5 November 2022)]; Available online: https://www.cancer.gov/about-cancer/treatment/cam/hp/aromatherapy-pdq.

Elkordy A.A., Haj-Ahmad R.R., Awaad A.S., Zaki R.M. An overview on natural product drug formulations from conventional medicines to nanomedicines: Past, present and future. J. Drug Deliv. Sci. Technol. 2021;63:102459. doi: 10.1016/j.jddst.2021.102459. DOI

Severino P., Andreani T., Chaud M.V., Benites C.I., Pinho S.C., Souto E.B. Essential oils as active ingredients of lipid nanocarriers for chemotherapeutic use. Curr. Pharm. Biotechnol. 2015;16:365–370. doi: 10.2174/1389201016666150206111253. PubMed DOI

Kumar R., Mirza M.A., Naseef P.P., Kuruniyan M.S., Zakir F., Aggarwal G. Exploring the potential of natural product-based nanomedicine for maintaining oral health. Molecules. 2022;27:1725. doi: 10.3390/molecules27051725. PubMed DOI PMC

Silva B.I.M., Nascimento E.A., Silva C.J., Silva T.G., Aguiar J.S. Anticancer activity of monoterpenes: A systematic review. Mol. Biol. Rep. 2021;48:5775–5785. doi: 10.1007/s11033-021-06578-5. PubMed DOI

Baena-Aristizabal C.M., Mora-Huertas C.E. Micro, nano and molecular novel delivery systems as carriers for herbal materials. J. Colloid Sci. Biotechnol. 2013;2:263–297. doi: 10.1166/jcsb.2013.1070. DOI

Verma M., Deep A., Nandal R., Shinmar P., Kaushik D. Novel drug delivery system for cancer management: A review. Curr. Cancer Ther. Rev. 2016;12:253–272. doi: 10.2174/1573394713666170406101900. DOI

Mahomoodally M.F., Sadeer N., Edoo M., Venugopala K.N. The potential application of novel drug delivery systems for phytopharmaceuticals and natural extracts current status and future perspectives. Mini Rev. Med. Chem. 2021;21:2729–2744. doi: 10.2174/1389557520666200730160911. PubMed DOI

Solans C., Izquierdo P., Nolla J., Garcia-Celma A.M.J. Nano-emulsions. Curr. Opin. Colloid. Interface Sci. 2005;10:102–110. doi: 10.1016/j.cocis.2005.06.004. DOI

Shah P., Bhalodia D., Shelat P. Nanoemulsion: A pharmaceutical review. Sys. Rev. Pharm. 2010;1:24–32. doi: 10.4103/0975-8453.59509. DOI

Becher P. Emulsions: Theory and Practice. 3rd ed. American Chemical Society; Washington, DC, USA: 2001.

Slomkowski S., Aleman J.V., Gilbert R.G., Hess M., Horie K., Jones R.G., Kubisa P., Meisel I., Mormann W., Penczek S., et al. Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011) Pure Appl. Chem. 2011;83:2229–2259. doi: 10.1351/PAC-REC-10-06-03. DOI

Gupta A., Eral H.B., Hatton T.A., Doyle P.S. Nanoemulsions: Formation, properties and applications. Soft Matter. 2016;12:2826–2841. doi: 10.1039/C5SM02958A. PubMed DOI

de Oliveira Filho J.G., Miranda M., Ferreira M.D., Plotto A. Nanoemulsions as edible coatings: A potential strategy for fresh fruits and vegetables preservation. Foods. 2021;10:2438. doi: 10.3390/foods10102438. PubMed DOI PMC

AbouAitah K., Lojkowski W. Nanomedicine as an emerging technology to foster application of essential oils to fight cancer. Pharmaceuticals. 2022;15:793. doi: 10.3390/ph15070793. PubMed DOI PMC

Sharma M., Grewal K., Jandrotia R., Batish D.R., Singh H.P., Kohli R.K. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed. Pharmacother. 2022;146:112514. doi: 10.1016/j.biopha.2021.112514. PubMed DOI

Wilson R.J., Li Y., Yang G., Zhao C.X. Nanoemulsions for drug delivery. Particuology. 2022;64:85–97. doi: 10.1016/j.partic.2021.05.009. DOI

Tayeb H.H., Sainsbury F. Nanoemulsions in drug delivery: Formulation to medical application. Nanomedicine. 2018;13:2507–2525. doi: 10.2217/nnm-2018-0088. PubMed DOI

Patel J.K., Pathak Y.V. Emerging Technologies for Nanoparticle Manufacturing. Springer; Cham, Switzerland: 2021.

Garcia C.R., Malik M.H., Biswas S., Tam V.H., Rumbaugh K.P., Li W., Liu X.L. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater. Sci. 2022;10:633–653. doi: 10.1039/D1BM01537K. PubMed DOI

Saha S., D’souza D., Londhe V.Y. Exploring the concepts of various nano-formulations loaded with herbal drugs moieties against breast cancer using PRISMA analysis. J. Drug Deliv. Sci. Technol. 2021;66:102865. doi: 10.1016/j.jddst.2021.102865. PubMed DOI

Saini A., Panesar P.S., Bera M.B. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. 2019;6:26. doi: 10.1186/s40643-019-0261-9. DOI

Khan I., Bahuguna A., Kumar P., Bajpai V.K., Kang S.C. In vitro and in vivo antitumor potential of carvacrol nanoemulsion against human lung adenocarcinoma A549 cells via mitochondrial mediated apoptosis. Sci. Rep. 2018;8:144. doi: 10.1038/s41598-017-18644-9. PubMed DOI PMC

Ragab T.I.M., Zoheir K.M.A., Mohamed N.A., El Gendy A.G., Abd-ElGawad A.M., Abdelhameed M.F., Farrag A.R.H., Elshamy A.I. Cytoprotective potentialities of carvacrol and its nanoemulsion against cisplatin-induced nephrotoxicity in rats: Development of nano-encapsulation form. Heliyon. 2022;8:e09198. doi: 10.1016/j.heliyon.2022.e09198. PubMed DOI PMC

Khan I., Bahuguna A., Bhardwaj M., Khaket T.P., Kang S.C. Carvacrol nanoemulsion evokes cell cycle arrest, apoptosis induction and autophagy inhibition in doxorubicin resistant-A549 cell line. Artif. Cells Nanomed. Biotechnol. 2018;46:664–675. doi: 10.1080/21691401.2018.1434187. PubMed DOI

Akhavan-Mahdavi S., Sadeghi R., Esfanjani A.F., Hedayati S., Shaddel R., Dima C., Malekjani N., Boostani S., Jafari S.M. Nanodelivery systems for d-limonene; techniques and applications. Food Chem. 2022;384:132479. doi: 10.1016/j.foodchem.2022.132479. PubMed DOI

Alhakamy N.A., Badr-Eldin S.M., Ahmed O.A.A., Aldawsari H.M., Okbazghi S.Z., Alfaleh M.A., Abdulaal W.H., Neamatallah T., Al-hejaili O.D., Fahmy U.A. Green nanoemulsion stabilized by in situ self-assembled natural oil/native cyclodextrin complexes: An eco-friendly approach for enhancing anticancer activity of costunolide against lung cancer cells. Pharmaceutics. 2022;14:227. doi: 10.3390/pharmaceutics14020227. PubMed DOI PMC

Alghamdi R.S., Alkhatib M.H., Balamash K.S., Khojah S.M. Apoptotic effect of bleomycin formulated in cinnamon oil nanoemulsion on HeLa cervical cancer cells. Asian J. Pharm. Sci. 2020;14:356–361.

AlMotwaa S.M., Alkhatib M.H., Alkreathy H.M. Nanoemulsion-based camphor oil carrying ifosfamide: Preparation, characterization, and in-vitro evaluation in cancer cells. Int. J. Pharm. Sci. Rev. Res. 2019;10:2018–2026.

Khatamian N., Tabrizi M.H., Ardalan P., Yadamani S., Maragheh A.D. Synthesis of Carum carvi essential oil nanoemulsion, the cytotoxic effect, and expression of caspase 3 gene. J. Food Biochem. 2019;43:e12956. doi: 10.1111/jfbc.12956. PubMed DOI

Nirmala M.J., Durai L., Rao K.A., Nagarajan R. Ultrasonic nanoemulsification of Cuminum cyminum essential oil and its applications in medicine. Int. J. Nanomed. 2020;15:795–807. doi: 10.2147/IJN.S230893. PubMed DOI PMC

Asgari H.T., Es-haghi A., Karimi E. Anti-angiogenic, antibacterial, and antioxidant activities of nanoemulsions synthesized by Cuminum cyminum L. tinctures. J. Food Meas. Charact. 2021;15:3649–3659. doi: 10.1007/s11694-021-00947-1. DOI

Afshari H.S.T., Tabrizi M.H., Ardalan T., Anoushirvani N.J., Mahdizadeh R. Anethum graveolens essential oil nanoemulsions (AGEO-NE) as an exclusive apoptotic inducer in human lung adenocarcinoma (A549) cells. Nutr. Cancer. 2022;74:1411–1419. doi: 10.1080/01635581.2021.1952450. PubMed DOI

Eid A.M., Issa L., Al-Kharouf O., Jaber R., Hreash F. Development of Coriandrum sativum oil nanoemulgel and evaluation of its antimicrobial and anticancer activity. Biomed. Res. Int. 2021;2021:5247816. doi: 10.1155/2021/5247816. PubMed DOI PMC

Azani H., Tabrizi M.H., Neamati A., Khadem F., Khatamian N. The Ferula assa-foetida essential oil nanoemulsion (FAEO-NE) as the selective, apoptotic, and anti-angiogenic anticancer compound in human MCF-7 breast cancer cells and murine mammary tumor models. Nutr. Cancer. 2021;74:2196–2206. doi: 10.1080/01635581.2021.1985533. PubMed DOI

Nosrat T., Tabrizi M.H., Etminan A., Irani M., Zarei B., Rahmati A. In vitro and in vivo anticancer activity of Ferula gummosa essential oil nanoemulsions (FGEO-NE) for the colon cancer treatment. J. Polym. Environ. 2022;30:4166–4177. doi: 10.1007/s10924-022-02495-1. DOI

Bashlouei S.G., Karimi E., Zareian M., Oskoueian E., Shakeri M. Heracleum persicum essential oil nanoemulsion: A nanocarrier system for the delivery of promising anticancer and antioxidant bioactive agents. Antioxidants. 2022;11:831. doi: 10.3390/antiox11050831. PubMed DOI PMC

Nirmala M.J., Durai L., Gopakunnar V., Nagarajan R. Preparation of celery essential oil-based nanoemulsion by ultrasonication and evaluation of its potential anticancer and antibacterial activity. Int. J. Nanomed. 2020;15:7651–7666. doi: 10.2147/IJN.S252640. PubMed DOI PMC

Perumalsamy H., Shanmugam R., Kim J.R., Anandapadmanaban G., Huq M.A., Dua K., Chellappan D.K., Yoon T.H., Balusamy S.R. Nanoemulsion and encapsulation strategy of hydrophobic oregano essential oil increased human prostate cancer cell death via apoptosis by attenuating lipid metabolism. Bioinorg. Chem. Appl. 2022;2022:9569226. doi: 10.1155/2022/9569226. PubMed DOI PMC

Ali H., Al-Khalifa A.R., Aouf A., Boukhebti H., Farouk A. Effect of nanoencapsulation on volatile constituents, and antioxidant and anticancer activities of Algerian Origanum glandulosum Desf. essential oil. Sci. Rep. 2020;10:2812. doi: 10.1038/s41598-020-59686-w. PubMed DOI PMC

Abedinpour N., Ghanbariasad A., Taghinezhad A., Osanloo M. Preparation of nanoemulsions of Mentha piperita essential oil and investigation of their cytotoxic effect on human breast cancer lines. Bionanoscience. 2021;11:428–436. doi: 10.1007/s12668-021-00827-4. DOI

Nirmala M.J., Durai L., Anusha G.S., Nagarajan R. Thyroid cancer cells and as an antibacterial agent in Staphylococcus aureus. Bionanoscience. 2021;11:1017–1029. doi: 10.1007/s12668-021-00893-8. DOI

Tubtimsri S., Limmatvapirat C., Limsirichaikul S., Akkaramongkolporn P., Inoue Y., Limmatvapirat S. Fabrication and characterization of spearmint oil loaded nanoemulsions as cytotoxic agents against oral cancer cell. Asian J. Pharm. Sci. 2018;13:425–437. doi: 10.1016/j.ajps.2018.02.003. PubMed DOI PMC

Ovidi E., Masci V.L., Taddei A.R., Paolicelli P., Petralito S., Trilli J., Mastrogiovanni F., Tiezzi A., Casadei M.A., Giacomello P., et al. Chemical investigation and screening of anti-proliferative activity on human cell lines of pure and nano-formulated lavandin essential oil. Pharmaceuticals. 2020;13:352. doi: 10.3390/ph13110352. PubMed DOI PMC

Salehi F., Jamali T., Kavoosi G., Ardestani S.K., Vahdati S.N. Stabilization of Zataria essential oil with pectin-based nanoemulsion for enhanced cytotoxicity in monolayer and spheroid drug-resistant breast cancer cell cultures and deciphering its binding mode with gDNA. Int. J. Biol. Macromol. 2020;164:3645–3655. doi: 10.1016/j.ijbiomac.2020.08.084. PubMed DOI

Salehi F., Behboudi H., Salehi E., Ardestani S.K., Piroozmand F., Kavoosi G. Apple pectin-based Zataria multiflora essential oil (ZEO) nanoemulsion: An approach to enhance ZEO DNA damage induction in breast cancer cells as in vitro and in silico studies reveal. Front. Pharmacol. 2022;13:946161. doi: 10.3389/fphar.2022.946161. PubMed DOI PMC

Aouf A., Ali H., Al-Khalifa A.R., Mahmoud K.F., Farouk A. Influence of nanoencapsulation using high-pressure homogenization on the volatile constituents and anticancer and antioxidant activities of Algerian Saccocalyx satureioides Coss. et Durieu. Molecules. 2020;25:4756. doi: 10.3390/molecules25204756. PubMed DOI PMC

Al-Otaibi W.A., AlMotwaa S.M. Oxaliplatin-loaded nanoemulsion containing Teucrium polium L. essential oil induces apoptosis in colon cancer cell lines through ROS-mediated pathway. Drug Deliv. 2022;29:2190–2205. doi: 10.1080/10717544.2022.2096711. PubMed DOI PMC

Furtado C.D.M., de Faria F.S.E.V., Azevedo R.B., Py-Daniel K., Camara A.L.D., da Silva J.R., Oliveira E.D., Rodriguez A.F.R., Degterev I.A. Tectona grandis leaf extract, free and associated with nanoemulsions, as a possible photosensitizer of mouse melanoma B16 cell. J. Photochem. Photobiol. B Biol. 2017;167:242–248. doi: 10.1016/j.jphotobiol.2017.01.004. PubMed DOI

Mansour K.A., El-Neketi M., Lahloub M.F., Elbermawi A. An approach to enhance their cytotoxic and antiviral effects. Molecules. 2022;27:3639. doi: 10.3390/molecules27113639. PubMed DOI PMC

AlMotwaa S.M., Al-Otaibi W.A. Formulation design, statistical optimization and in vitro biological activities of nano-emulsion containing essential oil from cotton-lavender (Santolina chamaecyparissus L.) J. Drug Deliv. Sci. Technol. 2022;75:103664. doi: 10.1016/j.jddst.2022.103664. DOI

AlMotwaa S.M., Al-Otaibi W.A. Gemcitabine-loaded nanocarrier of essential oil from Pulicaria crispa: Preparation, optimization, and in vitro evaluation of anticancer activity. Pharmaceutics. 2022;14:1336. doi: 10.3390/pharmaceutics14071336. PubMed DOI PMC

Keykhasalar R., Tabrizi M.H., Ardalan P., Khatamian N. The apoptotic, cytotoxic, and antiangiogenic impact of Linum usitatissimum seed essential oil nanoemulsions on the human ovarian cancer cell line A2780. Nutr. Cancer. 2021;73:2388–2396. doi: 10.1080/01635581.2020.1824001. PubMed DOI

Irani M., Tabrizi M.H., Ardalan T., Nosrat T. Artemisia vulgaris essential oil nanoemulsions (AVEO-NE), a novel anti-angiogenic agent and safe apoptosis inducer in MCF-7 human cancer cells. Inorg. Nano-Met. Chem. 2022;52:417–428.

Al Sarayrah A.K., Al Tarawneh R.Z., Nasr M., Ebada S.S. Comparative study of the efficacy of different Artemisia cina extracts and their nanoparticulated forms against A549 lung cancer cell line. Pharm. Chem. J. 2020;54:938–942. doi: 10.1007/s11094-020-02300-0. DOI

Roozitalab G., Yousefpoor Y., Abdollahi A., Safari M., Rasti F., Osanloo M. Antioxidative, anticancer, and antibacterial activities of a nanoemulsion-based gel containing Myrtus communis L. essential oil. Chem. Pap. 2022;76:4261–4271. doi: 10.1007/s11696-022-02185-1. PubMed DOI PMC

Abadi A.V.M., Karimi E., Oskoueian E., Mohammad G.R.K.S., Shafaei N. Chemical investigation and screening of anti-cancer potential of Syzygium aromaticum L. bud (clove) essential oil nanoemulsion. 3Biotech. 2022;12:49. doi: 10.1007/s13205-022-03117-2. PubMed DOI PMC

Nirmala M.J., Durai L., Gopakumar V., Nagarajan R. Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. Int. J. Nanomed. 2019;14:6439–6450. doi: 10.2147/IJN.S211047. PubMed DOI PMC

Abd-Rabou A.A., Edris A.E. Frankincense essential oil nanoemulsion specifically induces lung cancer apoptosis and inhibits survival pathways. Cancer Nanotechnol. 2022;13:22. doi: 10.1186/s12645-022-00128-9. DOI

Panyajai P., Chueahongthong F., Viriyaadhammaa N., Nirachonkul W., Tima S., Chiampanichayakul S., Anuchapreeda S., Okonogi S. Anticancer activity of Zingiber ottensii essential oil and its nanoformulations. PLoS ONE. 2022;17:e0262335. doi: 10.1371/journal.pone.0262335. PubMed DOI PMC

Weerapol Y., Manmuan S., Chaothanaphat N., Okonogi S., Limmatvapirat C., Limmatvapirat S., Tubtimsri S. Impact of fixed oil on Ostwald ripening of anti-oral cancer nanoemulsions loaded with Amomum kravanh essential oil. Pharmaceutics. 2022;14:938. doi: 10.3390/pharmaceutics14050938. PubMed DOI PMC

Periasamy V.S., Athinarayanan J., Alshatwi A.A. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason. Sonochem. 2016;31:449–455. doi: 10.1016/j.ultsonch.2016.01.035. PubMed DOI

Abd-Rabou A.A., Edris A.E. Cytotoxic, apoptotic, and genetic evaluations of Nigella sativa essential oil nanoemulsion against human hepatocellular carcinoma cell lines. Cancer Nanotechnol. 2021;12:28. doi: 10.1186/s12645-021-00101-y. DOI

Tabassum H., Ahmad I.Z. Evaluation of the anticancer activity of sprout extract-loaded nanoemulsion of N-sativa against hepatocellular carcinoma. J. Microencapsul. 2018;35:643–656. doi: 10.1080/02652048.2019.1571641. PubMed DOI

Arazmjoo S., Es-haghi A., Mahmoodzadeh H. Evaluation of anti- cancer and antioxidant properties of nanoemulsions synthesized by Nigella sativa L. tincture. Nanomed J. 2021;8:57–64.

Karkanrood M.V., Tabrizi M.H., Ardalan T., Soltani M., Khadem F., Nosrat T., Moeini S. Pistacia atlantica fruit essential oil nanoemulsions (PAEO-NE), an effective antiangiogenic therapeutic and cell-dependent apoptosis inducer on A549 human lung cancer cells. Inorg. Nano-Met. Chem. 2022 doi: 10.1080/24701556.2022.2034008. DOI

Khatamian N., Soltani M., Shadan B., Neamati A., Tabrizi M.H., Hormozi B. Pinus morrisonicola needles essential oil nanoemulsions as a novel strong antioxidant and anticancer agent. Inorg. Nano-Met. 2022;52:253–261. doi: 10.1080/24701556.2021.1892760. DOI

Navaei Shoorvarzi S., Shahraki F., Shafaei N., Karimi E., Oskoueian E. Citrus aurantium L. bloom essential oil nanoemulsion: Synthesis, characterization, cytotoxicity, and its potential health impacts on mice. J. Food Biochem. 2020;44:e13181. doi: 10.1111/jfbc.13181. PubMed DOI

Gomes M.R.F., Schuh R.S., Jacques A.L.B., Augustin O.A., Bordignon S.A.L., Dias D.O., Kelmann R.G., Koester L.S., Gehring M.P., Morrone F.B. Citotoxic activity evaluation of essential oils and nanoemulsions of Drimys angustifolia and D. brasiliensis on human glioblastoma (U-138 MG) and human bladder carcinoma (T24) cell lines in vitro. Rev. Bras. Farmacogn. 2013;23:259–267. doi: 10.1590/S0102-695X2012005000136. DOI

Javanshir A., Karimi E., Maragheh A.D., Tabrizi M.H. The antioxidant and anticancer potential of Ricinus communis L. essential oil nanoemulsions. J. Food Meas. Charact. 2020;14:1356–1365. doi: 10.1007/s11694-020-00385-5. DOI

Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013;8:102. doi: 10.1186/1556-276X-8-102. PubMed DOI PMC

Filipczak N., Pan J., Yalamarty S.S.K., Torchilin V.P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020;156:4–22. doi: 10.1016/j.addr.2020.06.022. PubMed DOI

Andra V.V.S.N.L., Pammi S.V.N., Bhatraju L.V.K.P., Ruddaraju L.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. Bionanoscience. 2022;12:274–291. doi: 10.1007/s12668-022-00941-x. PubMed DOI PMC

Tatipamula V.B., Kukavica B. Phenolic compounds as antidiabetic, anti-inflammatory, and anticancer agents and improvement of their bioavailability by liposomes. Cell Biochem. Funct. 2021;39:926–944. doi: 10.1002/cbf.3667. PubMed DOI

Chavda V.P., Vihol D., Mehta B., Shah D.V., Patel M., Vora L.K., Pereira-Silva M., Paiva-Santos A.C. Phytochemical-loaded liposomes for anticancer therapy: An updated review. Nanomedicine. 2022;17:547–568. doi: 10.2217/nnm-2021-0463. PubMed DOI

Jahadi M., Keighobadi K., Azimzadeh B., Keivani H., Khosravi-Darani K. Liposomes as herbal compound carriers: An updated review. Curr. Nutr. Food Sci. 2021;17:790–797. doi: 10.2174/1573401317666210224122418. DOI

Ba Z.Z., Zheng Y.P., Zhang H., Sun X.Y., Lin D.H. Potential anti-cancer activity of furanodiene. Chin. J. Cancer Res. 2009;21:154–158. doi: 10.1007/s11670-009-0154-0. DOI

Han N., Shi Q., Wang X.P., Huang X.Y., Ruan M.Y., Ren L.H., Lang X.X., Wu K., Du S.Y. Liposome co-loaded with beta-elemene and IR780 for combined chemo-phototherapy. J. Drug Deliv. Sci. Technol. 2022;68:103122. doi: 10.1016/j.jddst.2022.103122. DOI

Celia C., Trapasso E., Locatelli M., Navarra M., Ventura C.A., Wolfram J., Carafa M., Morittu V.M., Britti D., Di Marzio L., et al. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells. Colloids Surf. B Biointerfaces. 2013;112:548–553. doi: 10.1016/j.colsurfb.2013.09.017. PubMed DOI

Emtiazi H., Sharif A.S., Hemati M., Haghiralsadat B.F., Pardakhti A. Comparative study of nano-liposome and nano-niosome for delivery of Achillea millefolium essential oils: Development, optimization, characterization and their cytotoxicity effects on cancer cell lines and antibacterial activity. Chem. Biodivers. 2022;19:e202200397. doi: 10.1002/cbdv.202200397. PubMed DOI

Kryeziu T.L., Haloci E., Loshaj-Shala A., Bagci U., Oral A., Stefkov G.J., Zimmer A., Basholli-Salihu M. Nanoencapsulation of Origanum vulgare essential oil into liposomes with anticancer potential. Pharmazie. 2022;77:172–178. PubMed

Salari S., Salari R. Nanoliposomal system of rosemary essential oil made by specific human cell phospholipids and evaluation of its anti-cancer properties. Appl. Nanosci. 2019;9:2085–2089. doi: 10.1007/s13204-019-01009-1. DOI

Bohlooli S., Fathi P. Nanoliposomal formulation of Agrostemma githago aqueous extract shows enhanced cytotoxic effect on gastric cancer cell line. Nanomed. J. 2015;2:21–28.

Batool S., Asad M.J., Arshad M., Ahmed W., Sohail M.F., Abbasi S.W., Ahmad S., Saleem R.S.Z., Ahmed M.S. In silico validation, fabrication and evaluation of nano-liposomes of Bistorta amplexicaulis extract for improved anticancer activity against hepatoma cell line (HepG2) Curr. Drug Deliv. 2021;18:910–922. doi: 10.2174/1567201818666210316113640. PubMed DOI

Yue Y., Yang Y.M., Shi L., Wang Z.R. Suppression of human hepatocellular cancer cell proliferation by Brucea javanica oil-loaded liposomes via induction of apoptosis. Arch. Med. Sci. 2015;11:856–862. doi: 10.5114/aoms.2015.53306. PubMed DOI PMC

Lazuardi M., Suharjomo S., Chien C.H., He J.L., Lee C.W., Peng C.K., Hermanto B., Sukmanadi M., Sugihartuti R., Maslachah L. Encapsulation of progesterone-like compounds in 10% liposome increases their concentration in rats administered an injectable dosage form of these compounds. Kafkas Univ. Vet. Fak. Derg. 2022;28:27–34.

Khairnar S.V., Pagare P., Thakre A., Nambiar A.R., Junnuthula V., Abraham M.C., Kolimi P., Nyavanandi D., Dyawanapelly S. Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics. 2022;14:1886. doi: 10.3390/pharmaceutics14091886. PubMed DOI PMC

Muller R.H., Shegokar R., Keck C.M. 20 Years of lipid nanoparticles (SLN & NLC): Present state of development & industrial applications. Curr. Drug Discov. Technol. 2011;8:207–227. PubMed

Parhi R., Suresh P. Preparation and characterization of solid lipid nanoparticles—A review. Curr. Drug Discov. Technol. 2012;9:2–16. doi: 10.2174/157016312799304552. PubMed DOI

Gupta S., Tejavath K.K. Nano phytoceuticals: A step forward in tracking down paths for therapy against pancreatic ductal adenocarcinoma. J. Clust. Sci. 2022 doi: 10.1007/s10876-021-02213-2. DOI

Vergallo C. Nutraceutical vegetable oil nanoformulations for prevention and management of diseases. Nanomaterials. 2020;10:1232. doi: 10.3390/nano10061232. PubMed DOI PMC

Yap K.M., Sekar M., Fuloria S., Wu Y.S., Gan S.H., Rani N.N.I.M., Subramaniyan V., Kokare C., Lum P.T., Begum M.Y., et al. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature. Int. J. Nanomed. 2021;16:7891–7941. doi: 10.2147/IJN.S328135. PubMed DOI PMC

Ghiasi F., Eskandari M.H., Golmakani M.T., Gahruie H.H., Zarei R., Naghibalhossaini F., Hosseini S.M.H. A novel promising delivery system for cuminaldehyde using gelled lipid nanoparticles: Characterization and anticancer, antioxidant, and antibacterial activities. Int. J. Pharm. 2021;610:121274. doi: 10.1016/j.ijpharm.2021.121274. PubMed DOI

Rodenak-Kladniew B., Islan G.A., de Bravo M.G., Duran N., Castro G.R. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf. B Biointerfaces. 2017;154:123–132. doi: 10.1016/j.colsurfb.2017.03.021. PubMed DOI

Sharifalhoseini M., Es-Haghi A., Vaezi G., Shajiee H. Biosynthesis and characterisation of solid lipid nanoparticles and investigation of toxicity against breast cancer cell line. IET Nanobiotechnol. 2021;15:654–663. doi: 10.1049/nbt2.12062. PubMed DOI PMC

Khadem F.S., Es-Haghi A., Tabrizi M.H., Shabestarian H. The loaded Ferula assa-foetida seed essential oil in solid lipid nanoparticles (FSEO-SLN) as the strong apoptosis inducer agents in human NTERA-2 embryocarcinoma cells. Mater. Technol. 2022;37:1120–1128. doi: 10.1080/10667857.2021.1924436. DOI

Kelidari H.R., Alipanah H., Roozitalab G., Ebrahimi M., Osanloo M. Anticancer effect of solid-lipid nanoparticles containing Mentha longifolia and Mentha pulegium essential oils: In vitro study on human melanoma and breast cancer cell lines. Biointerface Res. Appl. Chem. 2022;12:2128–2137.

Valizadeh A., Khaleghi A.A., Roozitalab G., Osanloo M. High anticancer efficacy of solid lipid nanoparticles containing Zataria multiflora essential oil against breast cancer and melanoma cell lines. BMC Pharmacol. Toxicol. 2021;22:52. doi: 10.1186/s40360-021-00523-9. PubMed DOI PMC

Tabatabaeain S.F., Karimi E., Hashemi M. Satureja khuzistanica essential oil-loaded solid lipid nanoparticles modified with chitosan-folate: Evaluation of encapsulation efficiency, cytotoxic and pro-apoptotic properties. Front. Chem. 2022;10:904973. doi: 10.3389/fchem.2022.904973. PubMed DOI PMC

Dousti M., Sari S., Saffari M., Kelidari H., Asare-Addo K., Nokhodchi A. Loading Pistacia atlantica essential oil in solid lipid nanoparticles and its effect on apoptosis of breast cancer cell line MDA-MB-231. Pharm Dev. Technol. 2022;27:63–71. doi: 10.1080/10837450.2021.2022693. PubMed DOI

Das S., Ng W.K., Tan R.B. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur. J. Pharm. Sci. 2012;47:139–151. doi: 10.1016/j.ejps.2012.05.010. PubMed DOI

van Gent M.E., Ali M., Nibbering P.H., Klodzinska S.N. Current advances in lipid and polymeric antimicrobial peptide delivery systems and coatings for the prevention and treatment of bacterial infections. Pharmaceutics. 2021;13:1840. doi: 10.3390/pharmaceutics13111840. PubMed DOI PMC

Chauhan I., Yasir M., Verma M., Singh A.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv. Pharm. Bull. 2020;10:150–165. doi: 10.34172/apb.2020.021. PubMed DOI PMC

Elmowafy M., Al-Sanea M.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J. 2021;29:999–1012. doi: 10.1016/j.jsps.2021.07.015. PubMed DOI PMC

Fang C.L., Al-Suwayeh S.A., Fang J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol. 2013;7:41–55. doi: 10.2174/187221013804484827. PubMed DOI

Rahman H.S., Othman H.H., Hammadi N.I., Yeap S.K., Amin K.M., Samad N.A., Alitheen N.B. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomed. 2020;15:2439–2483. doi: 10.2147/IJN.S227805. PubMed DOI PMC

Izham M.N.M., Hussin Y., Rahim N.F.C., Aziz M.N.M., Yeap S.K., Rahman H.S., Masarudin M.J., Mohamad N.E., Abdullah R., Alitheen N.B. Physicochemical characterization, cytotoxic effect and toxicity evaluation of nanostructured lipid carrier loaded with eucalyptol. BMC Complement. Med. Ther. 2021;21:254. doi: 10.1186/s12906-021-03422-y. PubMed DOI PMC

Geronimo G., da Silva G.H.R., de Moura L.D., Ribeiro L.N.M., Guilherme V.A., Mendonca T.C., Castro S.R., Breitkreitz M.C., de Paula E. Development of S75:R25 bupivacaine-loaded lipid nanoparticles functionalized with essential oils for treating melanoma. J. Chem. Technol. Biotechnol. 2021;96:2197–2207. doi: 10.1002/jctb.6715. DOI

Najjari N., Sari S., Saffari M., Kelidari H., Nokhodchi A. Formulation optimization and characterization of Pistacia atlantica Desf. essential oil-loaded nanostructured lipid carriers on the proliferation of human breast cancer cell line SKBR3 (in vitro studies) J. Herb. Med. 2022;36:100600. doi: 10.1016/j.hermed.2022.100600. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...