An exceptional series of phase transitions in hydrophobic amino acids with linear side chains
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
28461895
PubMed Central
PMC5391856
DOI
10.1107/s2052252516010472
PII: ed5010
Knihovny.cz E-resources
- Keywords
- amino acids, disorder, hydrogen bonding, modulated phases, molecular crystals, phase transitions, polymorphism, side-chain stacking,
- Publication type
- Journal Article MeSH
The solid-state phase transitions and intermediate structures of S-2-amino-butanoic acid (l-2-aminobutyric acid), S-2-aminopentanoic acid (l-norvaline), S-2-aminohexanoic acid (l-norleucine) and l-methionine between 100 and 470 K, identified by differential scanning calorimetry, have been characterized in a comprehensive single-crystal X-ray diffraction investigation. Unlike other enantiomeric amino acids investigated until now, this group featuring linear side chains displays up to five distinct phases. The multiple transitions between them involve a number of different processes: alteration of the hydrogen-bond pattern, to our knowledge the first example of this observed for an amino acid, sliding of molecular bilayers, seen previously only for racemates and quasiracemates, concerted side-chain rearrangements and abrupt as well as gradual modifications of the side-chain disorder. Ordering of l-norleucine upon cooling even proceeds via an incommensurately modulated structure. l-Methionine has previously been described as being fully ordered at room temperature. An accurate refinement now reveals extensive disorder for both molecules in the asymmetric unit, while two previously unknown phases occur above room temperature.
See more in PubMed
Agilent (2014). CrysAlisPro. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
Akimoto, T. & Iitaka, Y. (1972). Acta Cryst. B28, 3106–3107.
Alagar, M., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2005). Acta Cryst. E61, o1165–o1167.
Bruker (2014). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Coles, S. J., Gelbrich, T., Griesser, U. J., Hursthouse, M. B., Pitak, M. & Threlfall, T. (2009). Cryst. Growth Des. 9, 4610–4612.
Dalhus, B. & Görbitz, C. H. (1996a). Acta Chem. Scand. 50, 544–548.
Dalhus, B. & Görbitz, C. H. (1996b). Acta Cryst. C52, 1761–1764.
Ende, J. A. van den & Cuppen, H. M. (2014). Cryst. Growth Des. 14, 3343–3351.
Görbitz, C. H. (2010). Acta Cryst. B66, 253–259. PubMed
Görbitz, C. H. (2011). J. Phys. Chem. B, 115, 2447–2453. PubMed
Görbitz, C. H. (2014). Acta Cryst. E70, 341–343. PubMed PMC
Görbitz, C. H., Alebachew, F. & Petříček, V. (2012). J. Phys. Chem. B, 116, 10715–10721. PubMed
Görbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1756–1759.
Görbitz, C. H. & Karen, P. (2015). J. Phys. Chem. B, 119, 4975–4984. PubMed
Görbitz, C. H., Paulsen, J. C. & Borgersen, J. (2015). Acta Cryst. E71, o398–o399. PubMed PMC
Görbitz, C. H., Qi, L., Mai, N. T. K. & Kristiansen, H. (2014). Acta Cryst. E70, 337–340. PubMed PMC
Görbitz, C. H., Vestli, K. & Orlando, R. (2009). Acta Cryst. B65, 393–400. PubMed
Görbitz, C. H., Wragg, D. S., Bakke, I. M. B., Fleischer, C., Grønnevik, G., Mykland, M., Park, Y., Trovik, K. W., Serigstad, H. & Sundsli, B. E. V. (2016). Acta Cryst. C72, 536–543. PubMed
Harding, M. M., Kariuki, B. M., Williams, L. & Anwar, J. (1995). Acta Cryst. B51, 1059–1062.
Ichikawa, T. & Iitaka, Y. (1968). Acta Cryst. B24, 1488–1501.
Ihlefeldt, F. S., Pettersen, F. B., von Bonin, A., Zawadzka, M. & Görbitz, C. H. (2014). Angew. Chem. Int. Ed. 53, 13600–13604. PubMed
Karen, P. (2003). J. Solid State Chem. 170, 9–23.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
Mathieson, A. M. (1952). Acta Cryst. 5, 332–341.
Moggach, S. A., Clark, S. J. & Parsons, S. (2005). Acta Cryst. E61, o2739–o2742.
Mossou, E., Teixeira, S. C. M., Mitchell, E. P., Mason, S. A., Adler-Abramovich, L., Gazit, E. & Forsyth, V. T. (2014). Acta Cryst. C70, 326–331. PubMed
Nakata, K., Takaki, Y. & Sakurai, K. (1980). Acta Cryst. B36, 504–506.
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.
Petříček, V., van der Lee, A. & Evain, M. (1995). Acta Cryst. A51, 529–535.
Sadler, P., Bihari, S., Parsons, S. & Messenger, D. (2005). Personal Communication (refcode LMETON11). CCDC, Cambridge, England.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. PubMed
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. PubMed
Smets, M. M. H., Brugman, S. J. T., van Eck, E. R. H., van den Ende, J. A., Meekes, H. & Cuppen, H. M. (2015). Cryst. Growth Des. 15, 5157–5167. PubMed PMC
Taniguchi, T., Takaki, Y. & Sakurai, K. (1980). Bull. Chem. Soc. Jpn, 53, 803–804.
Torii, K. & Iitaka, Y. (1970). Acta Cryst. B26, 1317–1326. PubMed
Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799–2807.
Voogd, J. & Derissen, J. L. (1980). Acta Cryst. B36, 3175–3177.
Wolff, P. M. de, Janssen, T. & Janner, A. (1981). Acta Cryst. A37, 625–636.
Heat Capacities of L-Cysteine, L-Serine, L-Threonine, L-Lysine, and L-Methionine