Heat Capacities of L-Cysteine, L-Serine, L-Threonine, L-Lysine, and L-Methionine
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-07164S
Czech Science Foundation
22-07164S
Czech Science Foundation
PubMed
36615652
PubMed Central
PMC9823850
DOI
10.3390/molecules28010451
PII: molecules28010451
Knihovny.cz E-zdroje
- Klíčová slova
- L-cysteine, L-lysine, L-methionine, L-serine, L-threonine, crystalline phase, heat capacity,
- MeSH
- cystein chemie MeSH
- lysin * MeSH
- methionin MeSH
- serin MeSH
- threonin MeSH
- vysoká teplota * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cystein MeSH
- lysin * MeSH
- methionin MeSH
- serin MeSH
- threonin MeSH
In an effort to establish reliable thermodynamic data for amino acids, heat capacity and phase behavior are reported for L-cysteine (CAS RN: 52-90-4), L-serine (CAS RN: 56-45-1), L-threonine (CAS RN: 72-19-5), L-lysine (CAS RN: 56-87-1), and L-methionine (CAS RN: 63-68-3). Prior to heat capacity measurements, initial crystal structures were identified by X-ray powder diffraction, followed by a thorough investigation of the polymorphic behavior using differential scanning calorimetry in the temperature range from 183 K to the decomposition temperature determined by thermogravimetric analysis. Crystal heat capacities of all five amino acids were measured by Tian-Calvet calorimetry in the temperature interval (262-358) K and by power compensation DSC in the temperature interval from 215 K to over 420 K. Experimental values of this work were compared and combined with the literature data obtained with adiabatic calorimetry. Low-temperature heat capacities of L-threonine and L-lysine, for which no or limited literature data was available, were measured using the relaxation (heat pulse) calorimetry. As a result, reference heat capacities and thermodynamic functions for the crystalline phase from near 0 K to over 420 K were developed.
Zobrazit více v PubMed
Pokorný V., Červinka C., Štejfa V., Havlín J., Růžička K., Fulem M. Heat Capacities of L-Alanine, L-Valine, L-Isoleucine, and L-Leucine: Experimental and Computational Study. J. Chem. Eng. Data. 2020;65:1833–1849.
Štejfa V., Pokorný V., Miranda C.F.P., Fernandes Ó.O.P., Santos L.M.N.B.F. Volatility Study of Amino Acids by Knudsen Effusion with QCM Mass Loss Detection. ChemPhysChem. 2020;21:938–951. PubMed
Pokorný V., Lieberzeitová E., Štejfa V., Havlín J., Fulem M., Růžička K. Heat Capacities of l-Arginine, l-Aspartic Acid, l-Glutamic Acid, l-Glutamine, and l-Asparagine. Int. J. Thermophys. 2021;42:160.
Pokorný V., Štejfa V., Havlín J., Růžička K., Fulem M. Heat Capacities of l-Histidine, l-Phenylalanine, l-Proline, l-Tryptophan and l-Tyrosine. Molecules. 2021;26:4298. doi: 10.3390/molecules26144298. PubMed DOI PMC
Štejfa V., Fulem M., Růžička K. Ideal-gas thermodynamic properties of proteinogenic aliphatic amino acids calculated by R1SM approach. J. Chem. Phys. 2019;151:144504. doi: 10.1063/1.5123450. PubMed DOI
Drauz K., Grayson I., Kleemann A., Krimmer H.-P., Leuchtenberger W., Weckbecker C. Ullmann′s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2000. Amino Acids.
Metcalf J.S., Dunlop R.A., Powell J.T., Banack S.A., Cox P.A. L-Serine: A Naturally-Occurring Amino Acid with Therapeutic Potential. Neurotox. Res. 2018;33:213–221. doi: 10.1007/s12640-017-9814-x. PubMed DOI
Newman A., Reutzel-Edens S.M., Zografi G. Coamorphous Active Pharmaceutical Ingredient-Small Molecule Mixtures: Considerations in the Choice of Coformers for Enhancing Dissolution and Oral Bioavailability. J. Pharm. Sci. 2018;107:5–17. PubMed
Williams P.A., Hughes C.E., Martin J., Courvoisier E., Buanz A.B.M., Gaisford S., Harris K.D.M. Understanding the Solid-State Hydration Behavior of a Common Amino Acid: Identification, Structural Characterization, and Hydration/Dehydration Processes of New Hydrate Phases of l-Lysine. J. Phys. Chem. C. 2016;120:9385–9392.
Williams P.A., Hughes C.E., Harris K.D.M. L-Lysine: Exploiting Powder X-ray Diffraction to Complete the Set of Crystal Structures of the 20 Directly Encoded Proteinogenic Amino Acids. Angew. Chem. Int. Ed. 2015;54:3973–3977. doi: 10.1002/anie.201411520. PubMed DOI
Araki K., Ozeki T. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2000. Amino Acids.
Lukyanova V.A., Druzhinina A.I., Pimenova S.M., Ioutsi V.A., Buyanovskaya A.G., Takazova R.U., Sagadeev E.V., Gimadeev A.A. Thermodynamic properties of l-threonine. J. Chem. Thermodyn. 2018;116:248–252. doi: 10.1016/j.jct.2017.09.022. DOI
Weiss I.M., Muth C., Drumm R., Kirchner H.O.K. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophys. 2018;11:2. doi: 10.1186/s13628-018-0042-4. PubMed DOI PMC
Do H.T., Chua Y.Z., Kumar A., Pabsch D., Hallermann M., Zaitsau D., Schick C., Held C. Melting properties of amino acids and their solubility in water. RSC Advances. 2020;10:44205–44215. PubMed PMC
Rodante F., Marrosu G. Thermal analysis of some α-amino acids using simultaneous TG-DSC apparatus. The use of dynamic thermogravimetry to study the chemical kinetics of solid state decomposition. Thermochim. Acta. 1990;171:15–29.
Rodriguez-Mendez M.L., Rey F.J., Martin-Gil J., Martin-Gil F.J. DTG and DTA studies on amino acids. Thermochim. Acta. 1988;134:73–78. doi: 10.1016/0040-6031(88)85219-5. DOI
Pielichowski K., Flejtuch K. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 2002;13:690–696. doi: 10.1002/pat.276. DOI
Olafsson P.G., Bryan A.M. Evaluation of thermal decomposition temperatures of amino acids by differential enthalpic analysis. Microchim. Acta. 1970;58:871–878. doi: 10.1007/BF01225712. PubMed DOI
Wesolowski M., Erecińska J. Relation between chemical structure of amino acids and their thermal decomposition. J. Therm. Anal. Calorim. 2005;82:307–313. doi: 10.1007/s10973-005-0895-z. DOI
Rodante F., Fantauzzi F., Catalani G. Thermal analysis of a series of dipeptides having α-alanine as the first term. Mutual influence of structures. Thermochim. Acta. 1996;284:351–365.
Rodante F., Marrosu G., Catalani G. Thermal analysis of different series of dipeptides. Thermochim. Acta. 1992;197:147–160. doi: 10.1016/0040-6031(92)87046-D. DOI
Rodante F., Marrosu G., Catalani G. Thermal analysis of some α-amino acids with similar structures. Thermochim. Acta. 1992;194:197–213. doi: 10.1016/0040-6031(92)80018-R. DOI
Contineanu I., Neacşu A., Gheorghe D., Tănăsescu S., Perişanu Ş. The thermochemistry of threonine stereoisomers. Thermochim. Acta. 2013;563:1–5. doi: 10.1016/j.tca.2013.04.001. DOI
Moggach S.A., Clark S.J., Parsons S. L-Cysteine-I at 30 K. Acta Crystallogr. Sect. E. 2005;61:o2739–o2742. doi: 10.1107/S1600536805023688. DOI
Kerr K.A., Ashmore J.P., Koetzle T.F. A neutron diffraction study of l-cysteine. Acta Crystallogr. Sect. B. 1975;31:2022–2026. doi: 10.1107/S0567740875006772. DOI
Kistenmacher T.J., Rand G.A., Marsh R.E. Refinements of the crystal structures of dl-serine and anhydrous l-serine. Acta Crystallogr. Sect. B. 1974;30:2573–2578.
Shoemaker D.P., Donohue J., Schomaker V., Corey R.B. The Crystal Structure of Ls-Threonine1. J. Am. Chem. Soc. 1950;72:2328–2349. doi: 10.1021/ja01162a002. DOI
Torii K., Iitaka Y. Crystal structures and molecular conformations of l-methionine and l-norleucine. Acta Crystallogr. Sect. B. 1973;29:2799–2807. doi: 10.1107/S0567740873007569. DOI
Görbitz C.H., Karen P., Dušek M., Petříček V. An exceptional series of phase transitions in hydrophobic amino acids with linear side chains. IUCrJ. 2016;3:341–353. doi: 10.1107/S2052252516010472. PubMed DOI PMC
Paukov I., Kovalevskaya Y., Boldyreva E. Low-temperature thermodynamic properties of L -cysteine. J. Therm. Anal. Calorim. 2008;93:423–428. doi: 10.1007/s10973-007-8697-0. DOI
Lima J.A., Freire P.T.C., Melo F.E.A., Filho J.M., Fischer J., Havenith R.W.A., Broer R., Bordallo H.N. Using Raman spectroscopy to understand the origin of the phase transition observed in the crystalline sulfur based amino acid l-methionine. Vib. Spectrosc. 2013;65:132–141. doi: 10.1016/j.vibspec.2012.12.004. DOI
Guinet Y., Paccou L., Danède F., Hédoux A. Revisiting the phase transition sequence in L-methionine: Description of the disordering mechanism in an essential amino acid. J. Chem. Phys. 2022;156:034501. doi: 10.1063/5.0077743. PubMed DOI
Grunenberg A., Bougeard D., Schrader B. DSC-investigations of 22 crystalline neutral aliphatic amino acids in the temperature range 233 to 423 K. Thermochim. Acta. 1984;77:59–66. doi: 10.1016/0040-6031(84)87046-X. DOI
Hutchens J.O., Cole A.G., Stout J.W. Heat capacities and entropies of L-cystine and L-methionine: The transition of L-methionine near 305.5 °K. J. Biol. Chem. 1964;239:591–595. PubMed
Sabbah R., Minadakis C. Thermodynamics of sulfur compounds II. Thermochemical study of L-cysteine and L-methionine. Thermochim. Acta. 1981;43:269–277. doi: 10.1016/0040-6031(81)85184-2. DOI
Roux M.V., Notario R., Segura M., Chickos J.S., Liebman J.F. The enthalpy of formation of methionine revisited. J. Phys. Org. Chem. 2012;25:916–924. doi: 10.1002/poc.2961. DOI
Kerr K.A., Ashmore J.P. Structure and conformation of orthorhombic l-cysteine. Acta Crystallogr. Sect. B. 1973;29:2124–2127. doi: 10.1107/S0567740873006217. DOI
Harding M.M., Long H.A. The crystal and molecular structure of l-cysteine. Acta Crystallogr. Sect. B. 1968;24:1096–1102.
Moggach S.A., Allan D.R., Clark S.J., Gutmann M.J., Parsons S., Pulham C.R., Sawyer L. High-pressure polymorphism in l-cysteine: The crystal structures of l-cysteine-III and l-cysteine-IV. Acta Crystallogr. Sect. B. 2006;62:296–309. doi: 10.1107/S0108768105038802. PubMed DOI
Moggach S.A., Allan D.R., Morrison C.A., Parsons S., Sawyer L. Effect of pressure on the crystal structure of L-serine-I and the crystal structure of L-serine-II at 5.4 GPa. Acta Crystallogr. Sect. B. 2005;61:58–68. doi: 10.1107/S0108768104031787. PubMed DOI
Kolesnik E.N., Goryajnov S.V., Boldyreva E.V. Different behavior of the crystals of L- and DL-serine at high pressure. Transitions in L-serine and the stability of the phase of DL-serine. Dokl. Akad. Nauk. 2005;404:61–64.
Fisch M., Lanza A., Boldyreva E., Macchi P., Casati N. Kinetic Control of High-Pressure Solid-State Phase Transitions: A Case Study on l-Serine. J. Phys. Chem. C. 2015;119:18611–18617. doi: 10.1021/acs.jpcc.5b05838. DOI
Giordano N., Beavers C.M., Kamenev K.V., Marshall W.G., Moggach S.A., Patterson S.D., Teat S.J., Warren J.E., Wood P.A., Parsons S. High-pressure polymorphism in l-threonine between ambient pressure and 22 GPa. CrystEngComm. 2019;21:4444–4456. doi: 10.1039/C9CE00388F. DOI
Dalhus B., Görbitz C.H. Crystal Structures of Hydrophobic Amino Acids. I. Redeterminations of L-Methionine and L-Valine at 120 K. Acta Chem. Scand. 1996;50:544–548.
Khawas B. The unit cells and space groups of l-methionine, l-[beta]-phenylalanine and dl-tyrosine. Acta Crystallogr. Sect. B. 1970;26:1919–1922.
Huffman H.M., Ellis E.L. Thermal Data. III. The Heat Capacities, Entropies and Free Energies of Four Organic Compounds Containing Sulfur. J. Am. Chem. Soc. 1935;57:46–48. doi: 10.1021/ja01304a014. DOI
Hutchens J.O., Cole A.G., Stout J.W. Heat capacities from 11 to 305 °K., entropies, enthalpy, and free-energy formation of L-serine. J. Biol. Chem. 1964;239:4194–4195. doi: 10.1016/S0021-9258(18)91154-3. PubMed DOI
Cole A.G., Hutchens J.P., Robie R.A., Stout J.W. Apparatus and methods for low temperature heat-capacity measurements. Heat capacity of standard benzoic acid. J. Am. Chem. Soc. 1960;82:4807–4813. doi: 10.1021/ja01503a013. DOI
Varushchenko R.M., Druzhinina A.I., Sorkin E.L. Low-temperature heat capacity of 1-bromoperfluorooctane. J. Chem. Thermodyn. 1997;29:623–637. doi: 10.1006/jcht.1996.0173. DOI
Vojtíšková O., Štejfa V., Pokorný V., Růžička K., Fulem M. Heat capacities of selected active pharmaceutical ingredients II. J. Chem. Thermodyn. 2022 in preparation .
Höhne G., Hemminger W., Flammersheim H.J. Differential Scanning Calorimetry. Springer; Berlin, Germany: London, UK: 2003.
Suzuki Y.T., Yamamura Y., Sumita M., Yasuzuka S., Saito K. Neat liquid consisting of hydrogen-bonded tetramers: Dicyclohexylmethanol. J. Phys. Chem. B. 2009;113:10077–10080. doi: 10.1021/jp9048764. PubMed DOI
Lashley J.C., Hundley M.F., Migliori A., Sarrao J.L., Pagliuso P.G., Darling T.W., Jaime M., Cooley J.C., Hults W.L., Morales L., et al. Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system. Cryogenics. 2003;43:369–378. doi: 10.1016/S0011-2275(03)00092-4. DOI
Shi Q., Snow C.L., Boerio-Goates J., Woodfield B.F. Accurate heat capacity measurements on powdered samples using a Quantum Design physical property measurement system. J. Chem. Thermodyn. 2010;42:1107–1115. doi: 10.1016/j.jct.2010.04.008. DOI
Arblaster J.W. Thermodynamic Properties of Copper. J. Phase Equilib. Diffus. 2015;36:422–444. doi: 10.1007/s11669-015-0399-x. DOI
Goursot P., Girdhar H.L., Westrum E.F. Thermodynamics of Polynuclear Aromatic Molecules.3. Heat Capacities and Enthalpies of Fusion of Anthracene. J. Phys. Chem. 1970;74:2538–2541.
Huffman H.M., Borsook H. Thermal data. I. The heat capacities, entropies and free energies of seven organic compounds containing nitrogen. J. Am. Chem. Soc. 1932;54:4297–4301. doi: 10.1021/ja01350a022. DOI
Hutchens J.O., Cole A.G., Stout J.W. Heat Capacities from 11 to 305 °K. and Entropies of l-Alanine and Glycine. J. Am. Chem. Soc. 1960;82:4813–4815. doi: 10.1021/ja01503a014. DOI
Mahnel T., Pokorný V., Fulem M., Sedmidubský D., Růžička K. Measurement of low-temperature heat capacity by relaxation technique: Calorimeter performance testing and heat capacity of benzo[b]fluoranthene, benzo[k]fluoranthene, and indeno[1,2,3-cd]pyrene. J. Chem. Thermodyn. 2020;142:105964. doi: 10.1016/j.jct.2019.105964. DOI
Archer D.G. Thermodynamic Properties of the NaCl + H2O System l. Thermodynamic Properties of NaCl(cr) J. Phys. Chem. Ref. Data. 1992;21:1–21.
Lukyanova V.A., Druzhinina A.I., Pimenova S.M., Ioutsi V.A., Buyanovskaya A.G., Takazova R.U., Sagadeyev E.V., Gimadeev A.A. Thermodynamic properties of l-tryptophan. J. Chem. Thermodyn. 2017;105:44–49. doi: 10.1016/j.jct.2016.09.041. DOI
Deiko Y.A., Il’in D.Y., Druzhinina A.I., Konstantinova N.M., Lukonina N.S., Dmitrienko A.O., Luk’yanova V.A. Thermodynamic Properties of L-Asparagine Monohydrate. Russ. J. Phys. Chem. A. 2022;96:1840–1848.
Cole A.G., Hutchens J.O., Stout J.W. Heat capacities from 11 to 305°K. and entropies of L-phenylalanine, L-proline, L-tryptophan, and L-tyrosine. Some free energies of formation. J. Phys. Chem. 1963;67:1852–1855.
Hutchens J.O., Cole A.G., Robie R.A., Stout J.W. Heat capacities from 11 to 305°K, entropies and free energies of formation of L-asparagine monohydrate, L-aspartic acid, L-glutamic acid, and L-glutamine. J. Biol. Chem. 1963;238:2407–2412. doi: 10.1016/S0021-9258(19)67985-8. PubMed DOI
Heat Capacities of α-, β-, and γ- Polymorphs of Glycine
Thermodynamic Study of N-Methylformamide and N,N-Dimethyl-Formamide
Heat Capacity of Indium or Gallium Sesqui-Chalcogenides
Heat Capacities of N-Acetyl Amides of Glycine, L-Alanine, L-Valine, L-Isoleucine, and L-Leucine