Heat Capacities of α-, β-, and γ- Polymorphs of Glycine
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-07164S
Grantová Agentura České Republiky
PubMed
39598759
PubMed Central
PMC11596786
DOI
10.3390/molecules29225366
PII: molecules29225366
Knihovny.cz E-zdroje
- Klíčová slova
- crystalline phase, glycine, heat capacity, polymorphism,
- Publikační typ
- časopisecké články MeSH
As a part of our effort to establish reliable thermodynamic data for amino acids, the heat capacity and phase behavior are reported for two stable polymorphs (α and γ) of glycine (aminoacetic acid, CAS RN: 56-40-6). Prior to heat capacity measurement, thermogravimetric analysis and X-ray powder diffraction were performed to determine decomposition temperatures and initial crystal structures, respectively. The literature heat capacities obtained by adiabatic calorimetry are available in the temperature interval (7-304). The literature data were used for validating performance of our relaxation (heat-pulse) calorimeter, which was used for measurement of the heat capacity of α-glycine in the temperature interval (2-267) K. The crystal heat capacities of the α- and γ-glycine were extended towards higher temperatures using Tian-Calvet calorimetry in the temperature interval (262-358) and power compensation DSC in the temperature interval (310-449) K. As a result, reference heat capacities and thermodynamic functions for the crystalline phase from 0 K up to 450/435 K for α/γ-glycine were developed. The literature heat capacities for β-glycine over the range 0 K to 295 K were treated in the same manner in order to provide thermodynamic data for all three polymorphs existing at the atmospheric pressure.
Zobrazit více v PubMed
Pokorný V., Červinka C., Štejfa V., Havlín J., Růžička K., Fulem M. Heat Capacities of L-Alanine, L-Valine, L-Isoleucine, and L-Leucine: Experimental and Computational Study. J. Chem. Eng. Data. 2020;65:1833–1849. doi: 10.1021/acs.jced.9b01086. DOI
Pokorný V., Lieberzeitová E., Štejfa V., Havlín J., Fulem M., Růžička K. Heat Capacities of l-Arginine, l-Aspartic Acid, l-Glutamic Acid, l-Glutamine, and l-Asparagine. Int. J. Thermophys. 2021;42:160. doi: 10.1007/s10765-021-02911-z. DOI
Pokorný V., Štejfa V., Havlín J., Růžička K., Fulem M. Heat Capacities of l-Histidine, l-Phenylalanine, l-Proline, l-Tryptophan and l-Tyrosine. Molecules. 2021;26:4298. doi: 10.3390/molecules26144298. PubMed DOI PMC
Pokorný V., Štejfa V., Havlín J., Fulem M., Růžička K. Heat Capacities of L-Cysteine, L-Serine, L-Threonine, L-Lysine, and L-Methionine. Molecules. 2023;28:451. doi: 10.3390/molecules28010451. PubMed DOI PMC
Xavier N.F., Jr., da Silva A.M., Jr., Bauerfeldt G.F. What Rules the Relative Stability of α-, β-, and γ-Glycine Polymorphs? Cryst. Growth Des. 2020;20:4695–4706. doi: 10.1021/acs.cgd.0c00489. DOI
Sivakumar A., Sahaya Jude Dhas S., Dai L., Sivaprakash P., Kumar R.S., Almansour A.I., Arumugam S., Kim I., Martin Britto Dhas S.A. Sustainability of crystallographic phase of α-Glycine under dynamic shocked conditions. J. Mol. Struct. 2023;1292:136139. doi: 10.1016/j.molstruc.2023.136139. DOI
Goryainov S.V., Boldyreva E.V., Kolesnik E.N. Raman observation of a new (ζ) polymorph of glycine? Chem. Phys. Lett. 2006;419:496–500. doi: 10.1016/j.cplett.2005.11.123. DOI
Guerra D., Gómez L.A., Restrepo A., David J. New stable phases of glycine crystals. Chem. Phys. 2020;530:110645. doi: 10.1016/j.chemphys.2019.110645. DOI
Drebushchak V.A., Boldyreva E.V., Kovalevskaya Y.A., Paukov I.E., Drebushchak T.N. Low-temperature heat capacity of β-glycine and a phase transition at 252 K. J. Therm. Anal. Calorim. 2005;79:65–70. doi: 10.1007/s10973-004-0563-8. DOI
Boldyreva E.V., Drebushchak V.A., Drebushchak T.N., Paukov I.E., Kovalevskaya Y.A., Shutova E.S. Polymorphism of glycine, Part II. J. Therm. Anal. Calorim. 2003;73:419–428. doi: 10.1023/A:1025457524874. DOI
Boldyreva E.V., Drebushchak V.A., Drebushchak T.N., Paukov I.E., Kovalevskaya Y.A., Shutova E.S. Polymorphism of glycine, Part I. J. Therm. Anal. Calorim. 2003;73:409–418. doi: 10.1023/A:1025405508035. DOI
Drebushchak V.A., Kovalevskaya Y.A., Paukov I.E., Boldyreva E.V. Low-temperature heat capacity of α and γ polymorphs of glycine. J. Therm. Anal. Calorim. 2003;74:109–120. doi: 10.1023/A:1026377703260. DOI
Boldyreva E.V., Drebushchak T.N., Shutova E.S. Structural distortion of the α, β, and γ polymorphs of glycine on cooling. Z. Kristallogr. 2003;218:366–376. doi: 10.1524/zkri.218.5.366.20729. DOI
Iitaka Y. The crystal structure of [gamma]-glycine. Acta Crystallogr. 1961;14:1–10. doi: 10.1107/S0365110X61000012. DOI
Boldyreva E. Glycine: The Gift that Keeps on Giving. Isr. J. Chem. 2021;61:828–850. doi: 10.1002/ijch.202100103. DOI
Araki K., Ozeki T. Kirk-Othmer Encyclopedia of Chemical Technology. Wiley; New York, NY, USA: 2000. Amino Acids.
Drauz K., Grayson I., Kleemann A., Krimmer H.-P., Leuchtenberger W., Weckbecker C. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany: 2000. Amino Acids.
Altwegg K., Balsiger H., Bar-Nun A., Berthelier J.-J., Bieler A., Bochsler P., Briois C., Calmonte U., Combi M.R., Cottin H., et al. Prebiotic chemicals—Amino acid and phosphorus—In the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv. 2016;2:1600285. doi: 10.1126/sciadv.1600285. PubMed DOI PMC
Kitadai N., Maruyama S. Origins of building blocks of life: A review. Geosci. Front. 2018;9:1117–1153. doi: 10.1016/j.gsf.2017.07.007. DOI
Razak M.A., Begum P.S., Viswanath B., Rajagopal S. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review. Oxidative Med. Cell. Longev. 2017;2017:1716701. doi: 10.1155/2017/1716701. PubMed DOI PMC
Gundersen R.Y., Vaagenes P., Breivik T., Fonnum F., Opstad P.K. Glycine—An important neurotransmitter and cytoprotective agent. Acta Anaesthesiol. Scand. 2005;49:1108–1116. doi: 10.1111/j.1399-6576.2005.00786.x. PubMed DOI
Wang W., Wu Z., Dai Z., Yang Y., Wang J., Wu G. Glycine metabolism in animals and humans: Implications for nutrition and health. Amino Acids. 2013;45:463–477. doi: 10.1007/s00726-013-1493-1. PubMed DOI
Mahnel T., Pokorný V., Fulem M., Sedmidubský D., Růžička K. Measurement of low-temperature heat capacity by relaxation technique: Calorimeter performance testing and heat capacity of benzo[b]fluoranthene, benzo[k]fluoranthene, and indeno [1,2,3-cd]pyrene. J. Chem. Thermodyn. 2020;142:105964. doi: 10.1016/j.jct.2019.105964. DOI
Weiss I.M., Muth C., Drumm R., Kirchner H.O.K. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophys. 2018;11:2. doi: 10.1186/s13628-018-0042-4. PubMed DOI PMC
Chua Y.Z., Do H.T., Schick C., Zaitsau D., Held C. New experimental melting properties as access for predicting amino-acid solubility. RSC Adv. 2018;8:6365–6372. doi: 10.1039/C8RA00334C. PubMed DOI PMC
Do H.T., Chua Y.Z., Kumar A., Pabsch D., Hallermann M., Zaitsau D., Schick C., Held C. Melting properties of amino acids and their solubility in water. RSC Adv. 2020;10:44205–44215. doi: 10.1039/D0RA08947H. PubMed DOI PMC
Parks G.S., Huffman H.M., Barmore M. Thermal Data on Organic Compounds. XI. The Heat Capacities, Entropies and Free Energies of Ten Compounds Containing Oxygen or Nitrogen. J. Am. Chem. Soc. 1933;55:2733–2740. doi: 10.1021/ja01334a016. DOI
Hutchens J.O., Cole A.G., Stout J.W. Heat Capacities from 11 to 305° K. and Entropies of l-Alanine and Glycine. J. Am. Chem. Soc. 1960;82:4813–4815. doi: 10.1021/ja01503a014. DOI
Contarini S., Wendlandt W.W. Thermovoltaic detection. III. Thermal decomposition of some amino acids. Thermochim. Acta. 1983;70:283–290. doi: 10.1016/0040-6031(83)80202-0. DOI
Rodriguez-Mendez M.L., Rey F.J., Martin-Gil J., Martin-Gil F.J. DTG and DTA studies on amino acids. Thermochim. Acta. 1988;134:73–78. doi: 10.1016/0040-6031(88)85219-5. DOI
Rodante F., Marrosu G., Catalani G. Thermal analysis of some α-amino acids with similar structures. Thermochim. Acta. 1992;194:197–213. doi: 10.1016/0040-6031(92)80018-R. DOI
Wesolowski M., Erecińska J. Relation between chemical structure of amino acids and their thermal decomposition. J. Therm. Anal. Calorim. 2005;82:307–313. doi: 10.1007/s10973-005-0895-z. DOI
Srinivasan K. Crystal growth of α and γ glycine polymorphs and their polymorphic phase transformations. J. Cryst. Growth. 2008;311:156–162. doi: 10.1016/j.jcrysgro.2008.10.084. DOI
Acree W., Jr., Chickos J.S. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C11–C192. J. Phys. Chem. Ref. Data. 2017;46:013104. doi: 10.1063/1.4970519. DOI
Spink C.H., Wadsö I. Thermochemistry of solutions of biochemical model compounds. 4. The partial molar heat capacities of some amino acids in aqueous solution. J. Chem. Thermodyn. 1975;7:561–572. doi: 10.1016/0021-9614(75)90190-1. DOI
Drebushchak V.A., Boldyreva E.V., Drebushchak T.N., Shutova E.S. Synthesis and calorimetric investigation of unstable β-glycine. J. Cryst. Growth. 2002;241:266–268. doi: 10.1016/S0022-0248(02)01208-3. DOI
Badelin V.G., Kulikov O.V., Vatagin V.S., Udzig E., Zielenkiewicz A., Zielenkiewicz W., Krestov G.A. Physico-chemical properties of peptides and their solutions. Thermochim. Acta. 1990;169:81–93. doi: 10.1016/0040-6031(90)80135-L. DOI
Marsh R.E. A refinement of the crystal structure of glycine. Acta Crystallogr. 1958;11:654–663. doi: 10.1107/S0365110X58001717. DOI
Iitaka Y. The crystal structure of β-glycine. Acta Crystallogr. 1960;13:35–45. doi: 10.1107/S0365110X60000066. DOI
Perlovich G.L., Hansen L.K., Bauer-Brandl A. The Polymorphism of Glycine. Thermochemical and structural aspects. J. Therm. Anal. Calorim. 2001;66:699–715. doi: 10.1023/A:1013179702730. DOI
Tylczyński Z., Busz P. Transformation from γ to α modification in glycine crystal. Phase Transit. 2014;87:1157–1164. doi: 10.1080/01411594.2014.953951. DOI
Kozhin V.M. Thermal expansion tensors of α-, β-, and γ-modifications of glycine. Kristallografiya. 1978;23:1211.
Park K., Evans J.M.B., Myerson A.S. Determination of Solubility of Polymorphs Using Differential Scanning Calorimetry. Cryst. Growth Des. 2003;3:991–995. doi: 10.1021/cg0340502. DOI
Yu L., Huang J., Jones K.J. Measuring Free-Energy Difference between Crystal Polymorphs through Eutectic Melting. J. Phys. Chem. B. 2005;109:19915–19922. doi: 10.1021/jp053653g. PubMed DOI
Tylczyński Z. (Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland). Private communication. 2024.
Mnyukh Y.V. Molecular Mechanism of Polymorphic Transitions. Mol. Cryst. Liq. 1979;52:163–199. doi: 10.1080/00268947908071732. DOI
Dunitz J.D. Phase transitions in molecular crystals: Looking backwards, glancing sideways. Phys. Scr. 2016;91:112501. doi: 10.1088/0031-8949/91/11/112501. DOI
Kawakami K. Reversibility of enantiotropically related polymorphic transformations from a practical viewpoint: Thermal analysis of kinetically reversible/irreversible polymorphic transformations. J. Pharm. Sci. 2007;96:982–989. doi: 10.1002/jps.20748. PubMed DOI
Höhne G., Hemminger W., Flammersheim H.J. Differential Scanning Calorimetry. Springer; Berlin/Heidelberg, Germany: London, UK: 2003.
National Bureau of Standards Certificate: Standard Reference Material 720 Synthetic Sapphire (α-Al2O3) National Institute of Standards and Technology; Gaithersburg, MD, USA: 1982.
Suzuki Y.T., Yamamura Y., Sumita M., Yasuzuka S., Saito K. Neat liquid consisting of hydrogen-bonded tetramers: Dicyclohexylmethanol. J. Phys. Chem. B. 2009;113:10077–10080. doi: 10.1021/jp9048764. PubMed DOI
Lashley J.C., Hundley M.F., Migliori A., Sarrao J.L., Pagliuso P.G., Darling T.W., Jaime M., Cooley J.C., Hults W.L., Morales L., et al. Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system. Cryogenics. 2003;43:369–378. doi: 10.1016/S0011-2275(03)00092-4. DOI
Shi Q., Snow C.L., Boerio-Goates J., Woodfield B.F. Accurate heat capacity measurements on powdered samples using a Quantum Design physical property measurement system. J. Chem. Thermodyn. 2010;42:1107–1115. doi: 10.1016/j.jct.2010.04.008. DOI
Arblaster J.W. Thermodynamic Properties of Copper. J. Phase Equilib. Diffus. 2015;36:422–444. doi: 10.1007/s11669-015-0399-x. DOI
Mahnel T., Štejfa V., Maryška M., Fulem M., Růžička K. Reconciled thermophysical data for anthracene. J. Chem. Thermodyn. 2019;129:61–72. doi: 10.1016/j.jct.2018.08.034. DOI
Goursot P., Girdhar H.L., Westrum E.F. Thermodynamics of Polynuclear Aromatic Molecules. 3. Heat Capacities and Enthalpies of Fusion of Anthracene. J. Phys. Chem. 1970;74:2538–2541. doi: 10.1021/j100706a022. DOI
Huffman H.M., Borsook H. Thermal data. I. The heat capacities, entropies and free energies of seven organic compounds containing nitrogen. J. Am. Chem. Soc. 1932;54:4297–4301. doi: 10.1021/ja01350a022. DOI
Archer D.G. Thermodynamic Properties of the NaCl + H2O System l. Thermodynamic Properties of NaCl(cr) J. Phys. Chem. Ref. Data. 1992;21:1–21. doi: 10.1063/1.555913. DOI
Degen T., Sadki M., Bron E., König U., Nénert G. The HighScore suite. Powder Diffr. 2014;29:S13–S18. doi: 10.1017/S0885715614000840. DOI
Gates-Rector S., Blanton T. The Powder Diffraction File: A quality materials characterization database. Powder Diffr. 2019;34:352–360. doi: 10.1017/S0885715619000812. DOI