Heat Capacities of l-Histidine, l-Phenylalanine, l-Proline, l-Tryptophan and l-Tyrosine

. 2021 Jul 15 ; 26 (14) : . [epub] 20210715

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34299573

Grantová podpora
19-02889S Grantová Agentura České Republiky

In an effort to establish reliable thermodynamic data for proteinogenic amino acids, heat capacities for l-histidine (CAS RN: 71-00-1), l-phenylalanine (CAS RN: 63-91-2), l-proline (CAS RN: 147-85-3), l-tryptophan (CAS RN: 73-22-3), and l-tyrosine (CAS RN: 60-18-4) were measured over a wide temperature range. Prior to heat capacity measurements, thermogravimetric analysis was performed to determine the decomposition temperatures while X-ray powder diffraction (XRPD) and heat-flux differential scanning calorimetry (DSC) were used to identify the initial crystal structures and their possible transformations. Crystal heat capacities of all five amino acids were measured by Tian-Calvet calorimetry in the temperature interval from 262 to 358 K and by power compensation DSC in the temperature interval from 307 to 437 K. Experimental values determined in this work were then combined with the literature data obtained by adiabatic calorimetry. Low temperature heat capacities of l-histidine, for which no literature data were available, were determined in this work using the relaxation (heat pulse) calorimetry from 2 K. As a result, isobaric crystal heat capacities and standard thermodynamic functions up to 430 K for all five crystalline amino acids were developed.

Zobrazit více v PubMed

Štejfa V., Pokorný V., Miranda C.F.P., Fernandes Ó.O.P., Santos L.M.N.B.F. Volatility Study of Amino Acids by Knudsen Effusion with QCM Mass Loss Detection. ChemPhysChem. 2020;21:938–951. doi: 10.1002/cphc.202000078. PubMed DOI

Červinka C., Fulem M. Cohesive properties of the crystalline phases of twenty proteinogenic α-aminoacids from first-principles calculations. Phys. Chem. Chem. Phys. 2019;21:18501–18515. doi: 10.1039/C9CP03102B. PubMed DOI

Štejfa V., Fulem M., Růžička K. Ideal-gas thermodynamic properties of proteinogenic aliphatic amino acids calculated by R1SM approach. J. Chem. Phys. 2019;151:144504. doi: 10.1063/1.5123450. PubMed DOI

Pokorný V., Červinka C., Štejfa V., Havlín J., Růžička K., Fulem M. Heat Capacities of L-Alanine, L-Valine, L-Isoleucine, and L-Leucine: Experimental and Computational Study. J. Chem. Eng. Data. 2020;65:1833–1849. doi: 10.1021/acs.jced.9b01086. DOI

Araki K., Ozeki T. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons; New York, NY, USA: 2000. Amino Acids.

Drauz K., Grayson I., Kleemann A., Krimmer H.-P., Leuchtenberger W., Weckbecker C. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2000. Amino Acids.

Löbmann K., Laitinen R., Strachan C., Rades T., Grohganz H. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs—Part 2: Molecular interactions. Eur. J. Pharm. Biopharm. 2013;85:882–888. doi: 10.1016/j.ejpb.2013.03.026. PubMed DOI

Löbmann K., Grohganz H., Laitinen R., Strachan C., Rades T. Amino acids as co-amorphous stabilizers for poorly water soluble drugs—Part 1: Preparation, stability and dissolution enhancement. Eur. J. Pharm. Biopharm. 2013;85:873–881. doi: 10.1016/j.ejpb.2013.03.014. PubMed DOI

Dunitz J.D., Gavezzotti A. Proteogenic Amino Acids: Chiral and Racemic Crystal Packings and Stabilities. J. Phys. Chem. B. 2012;116:6740–6750. doi: 10.1021/jp212094d. PubMed DOI

Dorofeeva O.V., Ryzhova O.N. Gas-Phase Enthalpies of Formation and Enthalpies of Sublimation of Amino Acids Based on Isodesmic Reaction Calculations. J. Phys. Chem. A. 2014;118:3490–3502. doi: 10.1021/jp501357y. PubMed DOI

Růžička K., Majer V. Simultaneous treatment of vapor pressures and related thermal data between the triple and normal boiling temperatures for n-alkanes C5–C20. J. Phys. Chem. Ref. Data. 1994;23:1–39. doi: 10.1063/1.555942. DOI

Weiss I.M., Muth C., Drumm R., Kirchner H.O.K. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophys. 2018;11:2. doi: 10.1186/s13628-018-0042-4. PubMed DOI PMC

Vraneš M., Panić J., Tot A., Papović S., Gadžurić S., Podlipnik Č., Bešter-Rogač M. From amino acids to dipeptide: The changes in thermal stability and hydration properties of β-alanine, L-histidine and L-carnosine. J. Mol. Liq. 2021;328:115250. doi: 10.1016/j.molliq.2020.115250. DOI

Rodante F., Marrosu G., Catalani G. Thermal analysis of different series of dipeptides. Thermochim. Acta. 1992;197:147–160. doi: 10.1016/0040-6031(92)87046-D. DOI

Rodante F., Marrosu G. Thermal analysis of some α-amino acids using simultaneous TG-DSC apparatus. The use of dynamic thermogravimetry to study the chemical kinetics of solid state decomposition. Thermochim. Acta. 1990;171:15–29. doi: 10.1016/0040-6031(90)87002-T. DOI

Rodante F., Marrosu G., Catalani G. Thermal analysis of some α-amino acids with similar structures. Thermochim. Acta. 1992;194:197–213. doi: 10.1016/0040-6031(92)80018-R. DOI

Do H.T., Chua Y.Z., Kumar A., Pabsch D., Hallermann M., Zaitsau D., Schick C., Held C. Melting properties of amino acids and their solubility in water. RSC Adv. 2020;10:44205–44215. doi: 10.1039/D0RA08947H. PubMed DOI PMC

Wesolowski M., Erecinska J. Relation between chemical structure of amino acids and their thermal decomposition. Analysis of the data by principal component analysis. J. Therm. Anal. Calorim. 2005;82:307–313. doi: 10.1007/s10973-005-0895-z. DOI

Anandan P., Arivanandhan M., Hayakawa Y., Rajan Babu D., Jayavel R., Ravi G., Bhagavannarayana G. Investigations on the growth aspects and characterization of semiorganic nonlinear optical single crystals of L-histidine and its hydrochloride derivative. Spectrochim. Acta Part A. 2014;121:508–513. doi: 10.1016/j.saa.2013.11.021. PubMed DOI

Rodante F., Fantauzzi F., Catalani G. Thermal analysis of a series of dipeptides having α-alanine as the first term. Mutual influence of structures. Thermochim. Acta. 1996;284:351–365. doi: 10.1016/0040-6031(96)02827-4. DOI

Lu J., Lin Q., Li Z., Rohani S. Solubility of L-Phenylalanine Anhydrous and Monohydrate Forms: Experimental Measurements and Predictions. J. Chem. Eng. Data. 2012;57:1492–1498. doi: 10.1021/je201354k. DOI

Refat M.S., El-Korashy S.A., Ahmed A.S. Preparation, structural characterization and biological evaluation of L-tyrosinate metal ion complexes. J. Mol. Struct. 2008;881:28–45. doi: 10.1016/j.molstruc.2007.08.027. DOI

Cuppen H.M., Smets M.M.H., Krieger A.M., van den Ende J.A., Meekes H., van Eck E.R.H., Görbitz C.H. The Rich Solid-State Phase Behavior of L-Phenylalanine: Disappearing Polymorphs and High Temperature Forms. Cryst. Growth Des. 2019;19:1709–1719. doi: 10.1021/acs.cgd.8b01655. PubMed DOI PMC

Madden J.J., McGandy E.L., Seeman N.C. The crystal structure of the orthorhombic form of L-(+)-histidine. Acta Crystallogr. Sect. B. 1972;28:2377–2382. doi: 10.1107/S0567740872006168. DOI

Ihlefeldt F.S., Pettersen F.B., von Bonin A., Zawadzka M., Görbitz C.H. The Polymorphs of L-Phenylalanine. Angew. Chem. Int. Ed. 2014;53:13600–13604. doi: 10.1002/anie.201406886. PubMed DOI

Kayushina R.L., Vainshtein B.K. X-ray determination of structure of L-proline. Kristallografiya. 1965;10:833–844.

Görbitz C.H., Tornroos K.W., Day G.M. Single-crystal investigation of L-tryptophan with Z’ = 16. Acta Crystallogr. Sect. B. 2012;68:549–557. doi: 10.1107/S0108768112033484. PubMed DOI

Frey M.N., Koetzle T.F., Lehmann M.S., Hamilton W.C. Precision neutron diffraction structure determination of protein and nucleic acid components. X. A comparison between the crystal and molecular structures of L-tyrosine and L-tyrosine hydrochloride. J. Chem. Phys. 1973;58:2547–2556. doi: 10.1063/1.1679537. DOI

Kitamura M. Crystallization Behavior and Transformation Kinetics of L-Histidine Polymorphs. J. Chem. Eng. Jpn. 1993;26:303–307. doi: 10.1252/jcej.26.303. DOI

Cole A.G., Hutchens J.O., Stout J.W. Heat capacities from 11 to 305°K. and entropies of L-phenylalanine, L-proline, L-tryptophan, and L-tyrosine. Some free energies of formation. J. Phys. Chem. 1963;67:1852–1855. doi: 10.1021/j100803a027. DOI

Huffman H.M., Ellis E.L. Thermal data. VIII. The heat capacities, entropies and free energies of some amino acids. J. Am. Chem. Soc. 1937;59:2150–2152. doi: 10.1021/ja01290a019. DOI

Huffman H.M., Fox S.W. Thermal Data. XIII. The Heat Capacities and Entropies of Creatine Hydrate, DL-Citrulline, DL-Ornithine, L-Proline and Taurine. J. Am. Chem. Soc. 1940;62:3464–3465. doi: 10.1021/ja01869a047. DOI

Höhne G., Hemminger W., Flammersheim H.J. Differential Scanning Calorimetry. Springer; Berlin/Heidelberg, Germany: 2003.

Suzuki Y.T., Yamamura Y., Sumita M., Yasuzuka S., Saito K. Neat liquid consisting of hydrogen-bonded tetramers: Dicyclohexylmethanol. J. Phys. Chem. B. 2009;113:10077–10080. doi: 10.1021/jp9048764. PubMed DOI

Lashley J.C., Hundley M.F., Migliori A., Sarrao J.L., Pagliuso P.G., Darling T.W., Jaime M., Cooley J.C., Hults W.L., Morales L., et al. Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system. Cryogenics. 2003;43:369–378. doi: 10.1016/S0011-2275(03)00092-4. DOI

Mahnel T., Pokorný V., Fulem M., Sedmidubský D., Růžička K. Measurement of low-temperature heat capacity by relaxation technique: Calorimeter performance testing and heat capacity of benzo[b]fluoranthene, benzo[k]fluoranthene, and indeno[1,2,3-cd]pyrene. J. Chem. Thermodyn. 2020;142:105964. doi: 10.1016/j.jct.2019.105964. DOI

Archer D.G. Thermodynamic Properties of the NaCl+H2O System l. Thermodynamic Properties of NaCl(cr) J. Phys. Chem. Ref. Data. 1992;21:1–21. doi: 10.1063/1.555913. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...