Heat Capacities of N-Acetyl Amides of Glycine, L-Alanine, L-Valine, L-Isoleucine, and L-Leucine
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-07164S
Czech Science Foundation
PubMed
37513312
PubMed Central
PMC10385853
DOI
10.3390/molecules28145440
PII: molecules28145440
Knihovny.cz E-zdroje
- Klíčová slova
- N-acetyl glycine amide, N-acetyl-L-alanine amide, N-acetyl-L-isoleucine amide, N-acetyl-L-leucine amide, N-acetyl-L-valine amide, crystalline phase, heat capacity,
- MeSH
- alanin MeSH
- amidy MeSH
- aminokyseliny MeSH
- glycin MeSH
- isoleucin * metabolismus MeSH
- leucin metabolismus MeSH
- valin * metabolismus MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alanin MeSH
- amidy MeSH
- aminokyseliny MeSH
- glycin MeSH
- isoleucin * MeSH
- leucin MeSH
- valin * MeSH
As a follow-up to our effort to establish reliable thermodynamic data for amino acids, the heat capacity and phase behavior are reported for N-acetyl glycine amide (CAS RN: 2620-63-5), N-acetyl-L-alanine amide (CAS RN: 15962-47-7), N-acetyl-L-valine amide (CAS RN: 37933-88-3), N-acetyl-L-isoleucine amide (CAS RN: 56711-06-9), and N-acetyl-L-leucine amide (CAS RN: 28529-34-2). Prior to heat capacity measurement, thermogravimetric analysis and X-ray powder diffraction were performed to determine decomposition temperatures and initial crystal structures, respectively. The crystal heat capacities of the five N-acetyl amino acid amides were measured by Tian-Calvet calorimetry in the temperature interval (266-350 K), by power compensation DSC in the temperature interval (216-471 K), and by relaxation (heat-pulse) calorimetry in the temperature interval (2-268 K). As a result, reference heat capacities and thermodynamic functions for the crystalline phase from 0 K up to 470 K were developed.
Zobrazit více v PubMed
Pokorný V., Červinka C., Štejfa V., Havlín J., Růžička K., Fulem M. Heat Capacities of L-Alanine, L-Valine, L-Isoleucine, and L-Leucine: Experimental and Computational Study. J. Chem. Eng. Data. 2020;65:1833–1849. doi: 10.1021/acs.jced.9b01086. DOI
Pokorný V., Štejfa V., Havlín J., Růžička K., Fulem M. Heat Capacities of l-Histidine, l-Phenylalanine, l-Proline, l-Tryptophan and l-Tyrosine. Molecules. 2021;26:4298. doi: 10.3390/molecules26144298. PubMed DOI PMC
Štejfa V., Fulem M., Růžička K. Ideal-gas thermodynamic properties of proteinogenic aliphatic amino acids calculated by R1SM approach. J. Chem. Phys. 2019;151:144504. doi: 10.1063/1.5123450. PubMed DOI
Štejfa V., Pokorný V., Miranda C.F.P., Fernandes Ó.O.P., Santos L.M.N.B.F. Volatility Study of Amino Acids by Knudsen Effusion with QCM Mass Loss Detection. ChemPhysChem. 2020;21:938–951. doi: 10.1002/cphc.202000078. PubMed DOI
Pokorný V., Lieberzeitová E., Štejfa V., Havlín J., Fulem M., Růžička K. Heat Capacities of l-Arginine, l-Aspartic Acid, l-Glutamic Acid, l-Glutamine, and l-Asparagine. Int. J. Thermophys. 2021;42:160. doi: 10.1007/s10765-021-02911-z. DOI
Pokorný V., Štejfa V., Havlín J., Fulem M., Růžička K. Heat Capacities of L-Cysteine, L-Serine, L-Threonine, L-Lysine, and L-Methionine. Molecules. 2023;28:451. doi: 10.3390/molecules28010451. PubMed DOI PMC
Abate L., Pałecz B., Giancola C., Della Gatta G. Heat capacities, and enthalpies and entropies of fusion of some uncharged small peptides (N-acetylamino acid amides and 2,5-diketopiperazines) J. Chem. Thermodyn. 1997;29:359–368. doi: 10.1006/jcht.1996.0161. DOI
Barone G., Puliti R. Correlation between phase transition thermodynamics and crystal features of solid small peptides. J. Therm. Anal. Calorim. 1999;57:119–132. doi: 10.1023/A:1010114012269. DOI
Ferro D., Della Gatta G., Barone G. Enthalpies of sublimation and fusion for N-acetyl substituted glycine, L-alanine, and D-leucine amides. J. Therm. Anal. 1988;34:835–841. doi: 10.1007/BF02331785. DOI
Barone G., Giancola C., Lilley T.H., Mattia C.A., Puliti R. Enthalpies and entropies of fusion of some substituted dipeptides. J. Therm. Anal. 1992;38:2771–2778. doi: 10.1007/BF01979751. DOI
Puliti R., Mattia C.A., Barone G., Della Gatta G., Ferro D. Crystal structure and thermodynamics of phase transitions of N-acetyl-l-valinamide. Thermochim. Acta. 1990;162:229–240. doi: 10.1016/0040-6031(90)80345-Y. DOI
Puliti R., Mattia C.A., Barone G., Giancola C. Structures of some N-acetylamides of amino acids. Acta Crystallogr. Sect. C. 1989;45:1554–1557. doi: 10.1107/S0108270189002064. DOI
Puliti R., De Sena C., Giancola C. Crystal structures and melting thermodynamics of N-acetylsarcosinamide and N-acetyl-L-isoleucinamide. J. Therm. Anal. 1997;48:1249–1262. doi: 10.1007/BF01983435. DOI
Archer D.G. Thermodynamic Properties of the NaCl+H2O System l. Thermodynamic Properties of NaCl(cr) J. Phys. Chem. Ref. Data. 1992;21:1–21. doi: 10.1063/1.555913. DOI
Drebushchak V.A., Kovalevskaya Y.A., Paukov I.E., Boldyreva E.V. Low-temperature heat capacity of α and γ polymorphs of glycine. J. Therm. Anal. Calorim. 2003;74:109–120. doi: 10.1023/A:1026377703260. DOI
Weiss I.M., Muth C., Drumm R., Kirchner H.O.K. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophys. 2018;11:2. doi: 10.1186/s13628-018-0042-4. PubMed DOI PMC
Höhne G., Hemminger W., Flammersheim H.J. Differential Scanning Calorimetry. Springer; Berlin, Germany: London, UK: 2003.
Suzuki Y.T., Yamamura Y., Sumita M., Yasuzuka S., Saito K. Neat liquid consisting of hydrogen-bonded tetramers: Dicyclohexylmethanol. J. Phys. Chem. B. 2009;113:10077–10080. doi: 10.1021/jp9048764. PubMed DOI
Lashley J.C., Hundley M.F., Migliori A., Sarrao J.L., Pagliuso P.G., Darling T.W., Jaime M., Cooley J.C., Hults W.L., Morales L., et al. Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system. Cryogenics. 2003;43:369–378. doi: 10.1016/S0011-2275(03)00092-4. DOI
Shi Q., Snow C.L., Boerio-Goates J., Woodfield B.F. Accurate heat capacity measurements on powdered samples using a Quantum Design physical property measurement system. J. Chem. Thermodyn. 2010;42:1107–1115. doi: 10.1016/j.jct.2010.04.008. DOI
Arblaster J.W. Thermodynamic Properties of Copper. J. Phase Equilib. Diffus. 2015;36:422–444. doi: 10.1007/s11669-015-0399-x. DOI
Goursot P., Girdhar H.L., Westrum E.F. Thermodynamics of Polynuclear Aromatic Molecules. 3. Heat Capacities and Enthalpies of Fusion of Anthracene. J. Phys. Chem. 1970;74:2538–2541. doi: 10.1021/j100706a022. DOI
Huffman H.M., Borsook H. Thermal data. I. The heat capacities, entropies and free energies of seven organic compounds containing nitrogen. J. Am. Chem. Soc. 1932;54:4297–4301. doi: 10.1021/ja01350a022. DOI
Hutchens J.O., Cole A.G., Stout J.W. Heat Capacities from 11 to 305°K. and Entropies of l-Alanine and Glycine. J. Am. Chem. Soc. 1960;82:4813–4815. doi: 10.1021/ja01503a014. DOI
Mahnel T., Pokorný V., Fulem M., Sedmidubský D., Růžička K. Measurement of low-temperature heat capacity by relaxation technique: Calorimeter performance testing and heat capacity of benzo[b]fluoranthene, benzo[k]fluoranthene, and indeno[1,2,3-cd]pyrene. J. Chem. Thermodyn. 2020;142:105964. doi: 10.1016/j.jct.2019.105964. DOI
Thermodynamic Study of N-Methylformamide and N,N-Dimethyl-Formamide