Heat Capacities of N-Acetyl Amides of Glycine, L-Alanine, L-Valine, L-Isoleucine, and L-Leucine

. 2023 Jul 16 ; 28 (14) : . [epub] 20230716

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37513312

Grantová podpora
22-07164S Czech Science Foundation

As a follow-up to our effort to establish reliable thermodynamic data for amino acids, the heat capacity and phase behavior are reported for N-acetyl glycine amide (CAS RN: 2620-63-5), N-acetyl-L-alanine amide (CAS RN: 15962-47-7), N-acetyl-L-valine amide (CAS RN: 37933-88-3), N-acetyl-L-isoleucine amide (CAS RN: 56711-06-9), and N-acetyl-L-leucine amide (CAS RN: 28529-34-2). Prior to heat capacity measurement, thermogravimetric analysis and X-ray powder diffraction were performed to determine decomposition temperatures and initial crystal structures, respectively. The crystal heat capacities of the five N-acetyl amino acid amides were measured by Tian-Calvet calorimetry in the temperature interval (266-350 K), by power compensation DSC in the temperature interval (216-471 K), and by relaxation (heat-pulse) calorimetry in the temperature interval (2-268 K). As a result, reference heat capacities and thermodynamic functions for the crystalline phase from 0 K up to 470 K were developed.

Zobrazit více v PubMed

Pokorný V., Červinka C., Štejfa V., Havlín J., Růžička K., Fulem M. Heat Capacities of L-Alanine, L-Valine, L-Isoleucine, and L-Leucine: Experimental and Computational Study. J. Chem. Eng. Data. 2020;65:1833–1849. doi: 10.1021/acs.jced.9b01086. DOI

Pokorný V., Štejfa V., Havlín J., Růžička K., Fulem M. Heat Capacities of l-Histidine, l-Phenylalanine, l-Proline, l-Tryptophan and l-Tyrosine. Molecules. 2021;26:4298. doi: 10.3390/molecules26144298. PubMed DOI PMC

Štejfa V., Fulem M., Růžička K. Ideal-gas thermodynamic properties of proteinogenic aliphatic amino acids calculated by R1SM approach. J. Chem. Phys. 2019;151:144504. doi: 10.1063/1.5123450. PubMed DOI

Štejfa V., Pokorný V., Miranda C.F.P., Fernandes Ó.O.P., Santos L.M.N.B.F. Volatility Study of Amino Acids by Knudsen Effusion with QCM Mass Loss Detection. ChemPhysChem. 2020;21:938–951. doi: 10.1002/cphc.202000078. PubMed DOI

Pokorný V., Lieberzeitová E., Štejfa V., Havlín J., Fulem M., Růžička K. Heat Capacities of l-Arginine, l-Aspartic Acid, l-Glutamic Acid, l-Glutamine, and l-Asparagine. Int. J. Thermophys. 2021;42:160. doi: 10.1007/s10765-021-02911-z. DOI

Pokorný V., Štejfa V., Havlín J., Fulem M., Růžička K. Heat Capacities of L-Cysteine, L-Serine, L-Threonine, L-Lysine, and L-Methionine. Molecules. 2023;28:451. doi: 10.3390/molecules28010451. PubMed DOI PMC

Abate L., Pałecz B., Giancola C., Della Gatta G. Heat capacities, and enthalpies and entropies of fusion of some uncharged small peptides (N-acetylamino acid amides and 2,5-diketopiperazines) J. Chem. Thermodyn. 1997;29:359–368. doi: 10.1006/jcht.1996.0161. DOI

Barone G., Puliti R. Correlation between phase transition thermodynamics and crystal features of solid small peptides. J. Therm. Anal. Calorim. 1999;57:119–132. doi: 10.1023/A:1010114012269. DOI

Ferro D., Della Gatta G., Barone G. Enthalpies of sublimation and fusion for N-acetyl substituted glycine, L-alanine, and D-leucine amides. J. Therm. Anal. 1988;34:835–841. doi: 10.1007/BF02331785. DOI

Barone G., Giancola C., Lilley T.H., Mattia C.A., Puliti R. Enthalpies and entropies of fusion of some substituted dipeptides. J. Therm. Anal. 1992;38:2771–2778. doi: 10.1007/BF01979751. DOI

Puliti R., Mattia C.A., Barone G., Della Gatta G., Ferro D. Crystal structure and thermodynamics of phase transitions of N-acetyl-l-valinamide. Thermochim. Acta. 1990;162:229–240. doi: 10.1016/0040-6031(90)80345-Y. DOI

Puliti R., Mattia C.A., Barone G., Giancola C. Structures of some N-acetylamides of amino acids. Acta Crystallogr. Sect. C. 1989;45:1554–1557. doi: 10.1107/S0108270189002064. DOI

Puliti R., De Sena C., Giancola C. Crystal structures and melting thermodynamics of N-acetylsarcosinamide and N-acetyl-L-isoleucinamide. J. Therm. Anal. 1997;48:1249–1262. doi: 10.1007/BF01983435. DOI

Archer D.G. Thermodynamic Properties of the NaCl+H2O System l. Thermodynamic Properties of NaCl(cr) J. Phys. Chem. Ref. Data. 1992;21:1–21. doi: 10.1063/1.555913. DOI

Drebushchak V.A., Kovalevskaya Y.A., Paukov I.E., Boldyreva E.V. Low-temperature heat capacity of α and γ polymorphs of glycine. J. Therm. Anal. Calorim. 2003;74:109–120. doi: 10.1023/A:1026377703260. DOI

Weiss I.M., Muth C., Drumm R., Kirchner H.O.K. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophys. 2018;11:2. doi: 10.1186/s13628-018-0042-4. PubMed DOI PMC

Höhne G., Hemminger W., Flammersheim H.J. Differential Scanning Calorimetry. Springer; Berlin, Germany: London, UK: 2003.

Suzuki Y.T., Yamamura Y., Sumita M., Yasuzuka S., Saito K. Neat liquid consisting of hydrogen-bonded tetramers: Dicyclohexylmethanol. J. Phys. Chem. B. 2009;113:10077–10080. doi: 10.1021/jp9048764. PubMed DOI

Lashley J.C., Hundley M.F., Migliori A., Sarrao J.L., Pagliuso P.G., Darling T.W., Jaime M., Cooley J.C., Hults W.L., Morales L., et al. Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system. Cryogenics. 2003;43:369–378. doi: 10.1016/S0011-2275(03)00092-4. DOI

Shi Q., Snow C.L., Boerio-Goates J., Woodfield B.F. Accurate heat capacity measurements on powdered samples using a Quantum Design physical property measurement system. J. Chem. Thermodyn. 2010;42:1107–1115. doi: 10.1016/j.jct.2010.04.008. DOI

Arblaster J.W. Thermodynamic Properties of Copper. J. Phase Equilib. Diffus. 2015;36:422–444. doi: 10.1007/s11669-015-0399-x. DOI

Goursot P., Girdhar H.L., Westrum E.F. Thermodynamics of Polynuclear Aromatic Molecules. 3. Heat Capacities and Enthalpies of Fusion of Anthracene. J. Phys. Chem. 1970;74:2538–2541. doi: 10.1021/j100706a022. DOI

Huffman H.M., Borsook H. Thermal data. I. The heat capacities, entropies and free energies of seven organic compounds containing nitrogen. J. Am. Chem. Soc. 1932;54:4297–4301. doi: 10.1021/ja01350a022. DOI

Hutchens J.O., Cole A.G., Stout J.W. Heat Capacities from 11 to 305°K. and Entropies of l-Alanine and Glycine. J. Am. Chem. Soc. 1960;82:4813–4815. doi: 10.1021/ja01503a014. DOI

Mahnel T., Pokorný V., Fulem M., Sedmidubský D., Růžička K. Measurement of low-temperature heat capacity by relaxation technique: Calorimeter performance testing and heat capacity of benzo[b]fluoranthene, benzo[k]fluoranthene, and indeno[1,2,3-cd]pyrene. J. Chem. Thermodyn. 2020;142:105964. doi: 10.1016/j.jct.2019.105964. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Thermodynamic Study of N-Methylformamide and N,N-Dimethyl-Formamide

. 2024 Mar 01 ; 29 (5) : . [epub] 20240301

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...