Thermodynamic Study of N-Methylformamide and N,N-Dimethyl-Formamide

. 2024 Mar 01 ; 29 (5) : . [epub] 20240301

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38474622

Grantová podpora
GACR No. 22-07164S Czech Science Foundation

An extensive thermodynamic study of N-methylformamide (CAS RN: 123-39-7) and N,N-dimethylformamide (CAS RN: 68-12-2), is presented in this work. The liquid heat capacities of N-methylformamide were measured by Tian-Calvet calorimetry in the temperature interval (250-300) K. The vapor pressures for N-methylformamide and N,N-dimethylformamide were measured using static method in the temperature range 238 K to 308 K. The ideal-gas thermodynamic properties were calculated using a combination of the density functional theory (DFT) and statistical thermodynamics. A consistent thermodynamic description was developed using the method of simultaneous correlation, where the experimental and selected literature data for vapor pressures, vaporization enthalpies, and liquid phase heat capacities and the calculated ideal-gas heat capacities were treated together to ensure overall thermodynamic consistency of the results. The resulting vapor pressure equation is valid from the triple point to the normal boiling point temperature.

Zobrazit více v PubMed

Fulem M., Růžička K., Červinka C., Bazyleva A., Della Gatta G. Thermodynamic study of alkane-α,ω-diamines – Evidence of odd–even pattern of sublimation properties. Fluid Phase Equilibria. 2014;371:93–105. doi: 10.1016/j.fluid.2014.03.013. DOI

Štejfa V., Chun S., Pokorný V., Fulem M., Růžička K. Thermodynamic study of acetamides. J. Mol. Liq. 2020;319:114019. doi: 10.1016/j.molliq.2020.114019. DOI

Pokorný V., Červinka C., Štejfa V., Havlín J., Růžička K., Fulem M. Heat Capacities of l-Alanine, l-Valine, l-Isoleucine, and l-Leucine: Experimental and Computational Study. J. Chem. Eng. Data. 2020;65:1833–1849. doi: 10.1021/acs.jced.9b01086. DOI

Pokorný V., Štejfa V., Havlín J., Fulem M., Růžička K. Heat Capacities of L-Cysteine, L-Serine, L-Threonine, L-Lysine, and L-Methionine. Molecules. 2023;28:451. doi: 10.3390/molecules28010451. PubMed DOI PMC

Štejfa V., Pokorný V., Lieberzeitová E., Havlín J., Fulem M., Růžička K. Heat Capacities of N-Acetyl Amides of Glycine, L-Alanine, L-Valine, L-Isoleucine, and L-Leucine. Molecules. 2023;28:5440. doi: 10.3390/molecules28145440. PubMed DOI PMC

Basma N., Cullen P.L., Clancy A.J., Shaffer M.S.P., Skipper N.T., Headen T.F., Howard C.A. The liquid structure of the solvents dimethylformamide (DMF) and dimethylacetamide (DMA) Mol. Phys. 2019;117:3353–3363. doi: 10.1080/00268976.2019.1649494. DOI

Ahlers J., Lohmann J., Gmehling J. Binary Solid–Liquid Equilibria of Organic Systems Containing Different Amides and Sulfolane. J. Chem. Eng. Data. 1999;44:727–730. doi: 10.1021/je9802975. DOI

Smirnova N.N., Tsvetkova L.Y., Bykova T.A., Marcus Y. Thermodynamic properties of N,N-dimethylformamide and N,N-dimethylacetamide. J. Chem. Thermodyn. 2007;39:1508–1513. doi: 10.1016/j.jct.2007.02.009. DOI

González J.A. Thermodynamics of mixtures containing a very strongly polar compound: V – application of the extended real associated solution model to 1-Alkanol + Secondary Amide Mixtures. Phys. Chem. Liq. 2004;42:159–172. doi: 10.1080/0031910031001331819. DOI

Mitzel T.M. Encyclopedia of Reagents for Organic Synthesis (EROS) Wiley; Hoboken, NJ, USA: 2009. N-Methylformamide; pp. 1–5. DOI

Comins D.L., Joseph S.P. Encyclopedia of Reagents for Organic Synthesis (EROS) Wiley; Hoboken, NJ, USA: 2001. N,N-Dimethylformamide; pp. 1–4. DOI

Bipp H., Kieczka H. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany: 2012. Formamides; pp. 1–12. DOI

Heinrich J., Ilavský J., Surový J. Temperature Dependence of N-Methylformamide Vapour Pressure, Liquid-Vapour Equilibrium of the N-Methylformamide-Water System (in Slovak) Chemické zvesti. 1961;15:414–418.

Sköld R., Suurkuusk J., Wadsö I. Thermochemistry of solutions of biochemical model compounds 7. Aqueous solutions of some amides, t-butanol and pentanol. J. Chem. Thermodyn. 1976;8:1075–1080. doi: 10.1016/0021-9614(76)90138-5. DOI

Rouw A., Somsen G. Solvation and hydrophobic hydration of alkyl-substituted ureas and amides in NN-dimethylformamide + water mixtures. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Cond. Phases. 1982;78:3397–3408. doi: 10.1039/f19827803397. DOI

Barone G., Castronuovo G., Della Gatta G., Elia V., Iannone A. Enthalpies of vaporization of seven alkylamides. Fluid Phase Equilibria. 1985;21:157–164. doi: 10.1016/0378-3812(85)90066-4. DOI

Zaitseva K.V., Zaitsau D.H., Varfolomeev M.A., Verevkin S.P. Vapour pressures and enthalpies of vaporisation of alkyl formamides. Fluid Phase Equilibria. 2019;494:228–238. doi: 10.1016/j.fluid.2019.04.036. DOI

Bendová L., Jurečka P., Hobza P., Vondrášek J. Model of Peptide Bond–Aromatic Ring Interaction:  Correlated Ab Initio Quantum Chemical Study. J. Phys. Chem. B. 2007;111:9975–9979. doi: 10.1021/jp072859+. PubMed DOI

Biswas S., Mallik B.S. Probing the vibrational dynamics of amide bands of N-methylformamide, N, N-dimethylacetamide, and N-methylacetamide in water. Comput. Theor. Chem. 2020;1190:113001. doi: 10.1016/j.comptc.2020.113001. DOI

Andrushchenko V., Matějka P., Anderson D.T., Kaminský J., Horníček J., Paulson L.O., Bouř P. Solvent Dependence of the N-Methylacetamide Structure and Force Field. J. Phys. Chem. A. 2009;113:9727–9736. doi: 10.1021/jp9045512. PubMed DOI

Reimann M., Kaupp M. Evaluation of an Efficient 3D-RISM-SCF Implementation as a Tool for Computational Spectroscopy in Solution. J. Phys. Chem. A. 2020;124:7439–7452. doi: 10.1021/acs.jpca.0c06322. PubMed DOI

Konicek J., Wadsö I. Thermochemical Properties of Some Carboxylic Acids, Amines, and N-Substituted Amides in Aqueous Solution. Acta Chem. Scand. 1971;25:1541–1551. doi: 10.3891/acta.chem.scand.25-1541. DOI

Kortüm G., Biedersee H.V. Dampf/Flüssigkeit-Gleichgewichte (Siedediagramme) binärer Systeme hoher relativer Flüchtigkeit. Wasser/N-Methylacetamid, Wasser/N-Methylformamid und N-Methylformamid/N-Methylacetamid. Chemie-Ing.-Techn. 1970;42:552–560. doi: 10.1002/cite.330420810. DOI

Stein S.E. NIST Standard Reference Database 1A, NIST Mass Spectral Libraries [Database on the Internet]. NIST. [(accessed on 22 January 2024)];2023 Available online: https://www.nist.gov/srd/nist-standard-reference-database-1a.

Messow U., Quitzsch K., Seyffert U., Geiseler G. Studies on Thermodynamics of Binary-Liquid Mixtures with Homolog Formamides.10. Binary-Systems Benzene(1) and N-Methylformamide(2), Tetrachloromethane(1) and N-Methylformamide(2), Cyclohexane(1) and N-Methylformamide(2), and Heptane(1) and N-Methylformamide(2) Z. Phys. Chem.-Leipzig. 1974;255:947–968.

Ushakov V.S., Sedov S.M., Knyazev B.A., Kuchkaev B.I. The thermodynamic properties of N-methylformamide. Zh. Fiz. Khim. 1996;70:1573–1577.

Zielkiewicz J. (Vapour+liquid) equilibria in (N-methylformamide+methanol+water) at the temperature 313.15 K. J. Chem. Thermodyn. 1996;28:887–894. doi: 10.1006/jcht.1996.0078. DOI

Zielkiewicz J. (Vapour + liquid) equilibria in (N-methylformamide + ethanol + water) at the temperature 313.15 K. J. Chem. Eng. Data. 1997;29:229–237. doi: 10.1006/jcht.1996.0155. DOI

Zielkiewicz J. Excess Molar Volumes and Excess Gibbs Energies in N-Methylformamide + Water, or + Methanol, or + Ethanol at the Temperature 303.15 K. J. Chem. Eng. Data. 1998;43:650–652. doi: 10.1021/je980001v. DOI

Harris R.A., Wittig R., Gmehling J., Letcher T.M., Ramjugernath D., Raal J.D. Vapor–Liquid Equilibria for Four Binary Systems at 363.15 K:  N-Methylformamide + Hexane, + Benzene, + Chlorobenzene, and + Acetonitrile. J. Chem. Eng. Data. 2003;48:341–343. doi: 10.1021/je020130i. DOI

Chen W.-K., Lee K.-J., Chang C.-M.J., Ko J.-W., Lee L.-S. Vapor-liquid equilibria and density measurement for binary mixtures of o-xylene+NMF, m-xylene+NMF and p-xylene+NMF at 333.15 K, 343.15 K and 353.15 K from 0 kPa to 101.3 kPa. Fluid Phase Equilib. 2010;291:40–47. doi: 10.1016/j.fluid.2009.12.002. DOI

Li R., Meng X., Liu X., Gao J., Xu D., Wang Y. Separation of azeotropic mixture (2, 2, 3, 3-Tetrafluoro-1-propanol + water) by extractive distillation: Entrainers selection and vapour-liquid equilibrium measurements. J. Chem. Thermodyn. 2019;138:205–210. doi: 10.1016/j.jct.2019.06.026. DOI

Ivanova T.M., Geller B.E. Properties of the Dimethylformamide-Water System. 2. Vapor Density and Osmotic Pressure of the Aqueous Solutions. Zh. Fiz. Khim. 1961;35:1221–1229.

Gopal R., Rizvi S.A. Vapour Pressures of some Mono- and Di-Alkyl Substituted Aliphatic Amides at Different Temperatures. J. Ind. Chem. Soc. 1968;45:13–16.

Quitzsch K., Strittmatter D., Geiseler G. Studien zur Thermodynamik binärer Flüssigkeitsgemische mit homologen Formamiden VIII. Die binären Systeme R-Heptan(l)/Dimethylformamid(2) und n-Heptan(l)/Diäthylformamid(2) Z. Phys. Chem. 1969;240:107–126. doi: 10.1515/zpch-1969-24011. DOI

Myasnikova L.F., Shmelev V.A., Vaisman I.L., Bushinskii V.I., Novokhatka D.A. Temperature dependence of the vapor-pressure of dimethylformamide and its aqueous solutions. Zh. Prikl. Khim. 1974;47:2604–2606.

Bludilina V.I., Baev A.K., Matveev V.K., Gaidym I.L., Shcherbina E.I. Thermodynamic study of the evaporation of dimethylformamide, N-methylpyrrolidone and tetrahydrofurfuryl alcohol. Zh. Fiz. Khim. 1979;53:1052–1053.

Agarwal R.S., Bapat S.L. Solubility characteristics of R22-DMF refrigerant-absorbent combination. Int. J. Refrig. 1985;8:70–74. doi: 10.1016/0140-7007(85)90076-3. DOI

Shealy G.S., Sandler S.I. Vapor-liquid equilibrium for four mixtures containing N,N-dimethylformamide. J. Chem. Eng. Data. 1985;30:455–459. doi: 10.1021/je00042a026. DOI

Wilding W.V., Wilson L.C., Wilson G.M. Vapor liquid equilibrium measurements on five binary mixtures. Fluid Phase Equilibria. 1987;36:67–90. doi: 10.1016/0378-3812(87)85014-8. DOI

Polishchuk A.P., Luk’yanchikova I.A., Sergeev E.N., Rumyantsev E.M. Thermodynamic study of the dimethylformamide-ethylene glycol monobutyl ether-ammonium nitrate system. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 1988;31:48–52.

Marzal P., Gabaldon C., Seco A., Monton J.B. Isobaric Vapor-Liquid Equilibria of 1-Butanol + N,N-Dimethylformamide and 1-Pentanol + N,N-Dimethylformamide Systems at 50.00 and 100.00 kPa. J. Chem. Eng. Data. 1995;40:589–592. doi: 10.1021/je00019a010. DOI

Blanco B., Beltrán S., Cabezas J.L., Coca J. Phase Equilibria of Binary Systems Formed by Hydrocarbons from Petroleum Fractions and the Solvents N-Methylpyrrolidone and N,N-Dimethylformamide. 1. Isobaric Vapor–Liquid Equilibria. J. Chem. Eng. Data. 1997;42:938–942. doi: 10.1021/je970059u. DOI

Wang C., Li H., Zhu L., Han S. Isothermal and isobaric vapor + liquid equilibria of N,N-dimethylformamide + n-propanol + n-butanol. Fluid Phase Equilibria. 2001;189:119–127. doi: 10.1016/S0378-3812(01)00575-1. DOI

Muñoz R., Montón J.B., Burguet M.C., de la Torre J. Phase equilibria in the systems isobutyl alcohol+N,N-dimethylformamide, isobutyl acetate+N,N-dimethylformamide and isobutyl alcohol+isobutyl acetate+N,N-dimethylformamide at 101.3;kPa. Fluid Phase Equilibria. 2005;232:62–69. doi: 10.1016/j.fluid.2005.03.014. DOI

Cui X., Chen G., Han X. Experimental Vapor Pressure Data and a Vapor Pressure Equation for N,N-Dimethylformamide. J. Chem. Eng. Data. 2006;51:1860–1861. doi: 10.1021/je060224i. DOI

Fulem M., Růžička K., Morávek P., Pangrác J., Hulicius E., Kozyrkin B., Shatunov V. Vapor Pressure of Selected Organic Iodides. J. Chem. Eng. Data. 2010;55:4780–4784. doi: 10.1021/je100398m. DOI

Čenský M., Roháč V., Růžička K., Fulem M., Aim K. Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 1. Fluid Phase Equilibria. 2010;298:192–198. doi: 10.1016/j.fluid.2010.06.019. DOI

Barone G., Della Gatta G., Elia V. Direct Determination of Enthalpies of Vaporization of Liquid Compounds by a Miniaturized Effusion Cell Adapted to a Commercial Microcalorimeter. J. Therm. Anal. 1984;29:763–772. doi: 10.1007/BF01913535. DOI

Majer V., Svoboda V. IUPAC Chemical Data Series No. 32: Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation. Blackwell Scientific; Oxford, UK: 1985.

Herrig S., Thol M., Harvey A.H., Lemmon E.W. A Reference Equation of State for Heavy Water. J. Phys. Chem. Ref. Data. 2018;47:043102. doi: 10.1063/1.5053993. DOI

Wagner W., Pruß A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data. 2002;31:387–535. doi: 10.1063/1.1461829. DOI

Acree W., Chickos J.S. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1 − C10. J. Phys. Chem. Ref. Data. 2016;45 doi: 10.1063/1.4948363. DOI

Panneerselvam K., Antony M.P., Srinivasan T.G., Vasudeva Rao P.R. Enthalpies of vaporization of N,N-dialkyl monamides at 298.15 K. Thermochim. Acta. 2009;495:1–4. doi: 10.1016/j.tca.2009.05.007. DOI

Koutek B., Pokorný V., Mahnel T., Štejfa V., Řehák K., Fulem M., Růžička K. Estimating Vapor Pressure Data from Gas–Liquid Chromatography Retention Times: Analysis of Multiple Reference Approaches, Review of Prior Applications, and Outlook. J. Chem. Eng. Data. 2022;67:2017–2043. doi: 10.1021/acs.jced.2c00236. DOI

de Visser C., Somsen G. Molar Heat Capacities of Binary Mixtures of Water and Some Amides at 298.15 K. Z. Phys. Chem. Neue Folge. 1974;92:159–162. doi: 10.1524/zpch.1974.92.1-3.159. DOI

Bonner O.D., Cerutti P.J. The partial molar heat capacities of some solutes in water and deuterium oxide. J. Chem. Thermodyn. 1976;8:105–112. doi: 10.1016/0021-9614(76)90082-3. DOI

de Visser C., Pel P., Somsen G. Volumes and heat capacities of water andN-methylformamide in mixtures of these solvents. J. Sol. Chem. 1977;6:571–580. doi: 10.1007/BF00655371. DOI

Kolker A.M., Kulikov M.V., Krestov A.G. Volumes and heat capacities of binary non-aqueous mixtures. Part 1. The systems acetonitrile—formamide and acetonitrile—N-methylformamide. Thermochimica Acta. 1992;211:61–72. doi: 10.1016/0040-6031(92)87007-W. DOI

Sharma V.K., Dua R. Topological and thermodynamic investigations of mixtures containing o-chlorotoluene and lower amides. J. Chem. Thermodyn. 2014;71:182–195. doi: 10.1016/j.jct.2013.12.006. DOI

Sharma V.K., Dua R., Sharma D. Topological Investigations of Excess Heat Capacities of Binary and Ternary Liquid Mixtures Containing o-Chlorotoluene, Amides and Cyclohexane at 298.15, 303.15 and 308.15 K. J. Sol. Chem. 2015;44:1452–1478. doi: 10.1007/s10953-015-0358-5. DOI

Kolker A.M., Kulikov M.V., Krestov A.G. Volumes and heat capacities of binary non-aqueous mixtures. Part 2. The systems acetonitrile-N,N-dimethylformamide and acetonitrile-hexamethylphosphoric triamide. Thermochimica Acta. 1992;211:73–84. doi: 10.1016/0040-6031(92)87008-X. DOI

Vittal Prasad T.E., Rajiah A., Prasad D.H.L. Heat Capacity of Toluene + Dimethyl Formamide Mixtures. Phys. Chem. Liq. 1994;27:215–218. doi: 10.1080/00319109408029529. DOI

Checoni R.F., Volpe P.L.O. Measurements of the Molar Heat Capacities and Excess Molar Heat Capacities for Water + Organic Solvents Mixtures at 288.15 K to 303.15 K and Atmospheric Pressure. J. Sol. Chem. 2010;39:259–276. doi: 10.1007/s10953-010-9500-6. DOI

Shokouhi M., Jalili A.H., Hosseini-Jenab M., Vahidi M. Thermo-physical properties of aqueous solutions of N,N-dimethylformamide. J. Mol. Liq. 2013;186:142–146. doi: 10.1016/j.molliq.2013.07.005. DOI

Tyczyńska M., Jóźwiak M., Komudzińska M., Majak T. Effect of temperature and composition on the volumetric, acoustic and thermal properties of N,N-dimethylformamide + propan-1-ol mixture. J. Mol. Liq. 2019;290:111124. doi: 10.1016/j.molliq.2019.111124. DOI

Komudzińska M., Tyczyńska M., Jóźwiak M., Burakowski A., Gliński J. Volumetric, acoustic and thermal properties of aqueous N,N-dimethylformamide system. Effect of temperature and composition. J. Mol. Liq. 2020;300:112321. doi: 10.1016/j.molliq.2019.112321. DOI

Tyczynska M., Dentkiewicz A., Jozwiak M. Thermodynamic and Thermal Analyze of N,N-Dimethylformamide + 1-Butanol Mixture Properties Based on Density, Sound Velocity and Heat Capacity Data. Molecules. 2023;28:4698. doi: 10.3390/molecules28124698. PubMed DOI PMC

Sarge S.M., Höhne G., Hemminger W. Calorimetry: Fundamentals, Instrumentation and Applications. Wiley; Hoboken, NJ, USA: 2014.

Popov E.M., Zheltova V.N., Kogan G.A. Vibrational spectra and force fields of the simplest amides. Zh. Strukt. Khim. 1970;11:1053–1060. doi: 10.1007/BF00744594. DOI

Shin S., Kurawaki A., Hamada Y., Shinya K., Ohno K., Tohara A., Sato M. Conformational behavior of N-methylformamide in the gas, matrix, and solution states as revealed by IR and NMR spectroscopic measurements and by theoretical calculations. J. Mol. Struct. 2006;791:30–40. doi: 10.1016/j.molstruc.2006.01.005. DOI

Frenkel M., Kabo G.J., Marsh K.N., Roganov G.N., Wilhoit R.C. Thermodynamics of Organic Compounds in the Gas State. Thermodynamics Research Center; College Station, TX, USA: 1994.

Suzuki I. Infrared Spectra and Normal Vibrations of N-Methylformamides HCONHCH-3, HCONDCH-3, DCONDCH-3, AND DCONDCH-3. Bull. Chem. Soc. Jpn. 1962;35:540–551. doi: 10.1246/bcsj.35.540. DOI

Glushko A.S., Kabo G.Y., Frenkel M.L. Thermodynamic properties of amides. Zh. Prikl. Khim. 1985;58:447–450.

Jao T.C., Scott I., Steele D. The Vibrational-Spectra of Amides - Dimethyl Formamide. J. Mol. Spectrosc. 1982;92:1–17. doi: 10.1016/0022-2852(82)90077-7. DOI

Růžička K., Majer V. Simple and controlled extrapolation of vapor pressures toward the triple point. AIChE J. 1996;42:1723–1740. doi: 10.1002/aic.690420624. DOI

Tsonopoulos C. Empirical correlation of second virial coefficients. AIChE J. 1974;20:263–272. doi: 10.1002/aic.690200209. DOI

Wilson L.C., Jasperson L.V., VonNiederhausern D., Giles N.F., Ihmels C. DIPPR Project 851—Thirty Years of Vapor–Liquid Critical Point Measurements and Experimental Technique Development. J. Chem. Eng. Data. 2018;63:3408–3417. doi: 10.1021/acs.jced.8b00298. DOI

Kessler M., Povarov J.M., Gorbanev A.I. Dipole moment of N-Methylformamid. Chem. Zentralblatt. 1967;138:445–448.

McClellan A.L. Tables of Experimental Dipole Moments. Volume 2 Rahara Enterprises; El Cerrito, CF, USA: 1974.

Meija J., Coplen T.B., Berglund M., Brand W.A., De Bièvre P., Gröning M., Holden N.E., Irrgeher J., Loss R.D., Walczyk T., et al. Atomic weights of the elements 2013 (IUPAC Technical Report) Pur. Appl. Chem. 2016;88:265–291. doi: 10.1515/pac-2015-0305. DOI

Newell D.B., Cabiati F., Fischer J., Fujii K., Karshenboim S.G., Margolis H.S., de Mirandés E., Mohr P.J., Nez F., Pachucki K., et al. The CODATA 2017 values of h, e, k, and NA for the revision of the SI. Metrologia. 2018;55:L13. doi: 10.1088/1681-7575/aa950a. DOI

Höhne G.W.H., Flammersheim H.-J., Hemminger W. Differential Scanning Calorimetry. Springer; Berlin, Germany: 2003.

Irikura K.K., Frurip D.J. Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics. American Chemical Society; Washington, DC, USA: 1998.

East A.L.L., Radom L. Ab initio statistical thermodynamical models for the computation of third-law entropies. J. Chem. Phys. 1997;106:6655–6674. doi: 10.1063/1.473958. DOI

Pfaendtner J., Yu X., Broadbelt L.J. The 1-D hindered rotor approximation. Theor. Chem. Acc. 2007;118:881–898. doi: 10.1007/s00214-007-0376-5. DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian, Inc.; Wallingford, CT, USA: 2016. Gaussian 16 Revision B.01.

Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Červinka C., Fulem M., Růžička K. Evaluation of Accuracy of Ideal-Gas Heat Capacity and Entropy Calculations by Density Functional Theory (DFT) for Rigid Molecules. J. Chem. Eng. Data. 2012;57:227–232. doi: 10.1021/je201095b. DOI

Červinka C., Fulem M., Růžička K. Evaluation of Uncertainty of Ideal-Gas Entropy and Heat Capacity Calculations by Density Functional Theory (DFT) for Molecules Containing Symmetrical Internal Rotors. J. Chem. Eng. Data. 2013;58:1382–1390. doi: 10.1021/je4001558. DOI

Štejfa V., Fulem M., Růžička K. First-principles calculation of ideal-gas thermodynamic properties of long-chain molecules by R1SM approach—Application to n-alkanes. J. Chem. Phys. 2019;150:224101. doi: 10.1063/1.5093767. PubMed DOI

Pitzer K.S., Gwinn W.D. Energy Levels and Thermodynamic Functions for Molecules with Internal Rotation I. Rigid Frame with Attached Tops. J. Chem. Phys. 1942;10:428–440. doi: 10.1063/1.1723744. DOI

Marston C.C., Balintkurti G.G. The Fourier Grid Hamiltonian Method for Bound-State Eigenvalues and Eigenfunctions. J. Chem. Phys. 1989;91:3571–3576. doi: 10.1063/1.456888. DOI

Červinka C., Fulem M., Štejfa V., Růžička K. Analysis of Uncertainty in the Calculation of Ideal-Gas Thermodynamic Properties Using the One-Dimensional Hindered Rotor (1-DHR) Model. J. Chem. Eng. Data. 2017;62:445–455. doi: 10.1021/acs.jced.6b00757. DOI

King M.B., Al-Najjar H. Method for correlating and extending vapor pressure data to lower temperatures using thermal data. Vapor pressure equations for some n-alkanes at temperatures below the normal boiling point. Chem. Eng. Sci. 1974;29:1003–1011. doi: 10.1016/0009-2509(74)80092-8. DOI

Mahnel T., Štejfa V., Maryška M., Fulem M., Růžička K. Reconciled thermophysical data for anthracene. J. Chem. Thermodyn. 2019;129:61–72. doi: 10.1016/j.jct.2018.08.034. DOI

Cox E.R. Hydrocarbon vapor pressures. Ind. Eng. Chem. 1936;28:613–616. doi: 10.1021/ie50317a029. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...