Heat Capacity of Indium or Gallium Sesqui-Chalcogenides
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LL2101
Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/15_003/0000444
European Regional Development Fund
CZ.02.01.01/00/22_008/0004617
"The Energy Conversion and Storage" by Programme Johannes Amos Commenius, call Excellent Research
90254
e-INFRA CZ project by Ministry of Education, Youth and Sports of the Czech Republic
PubMed
38255536
PubMed Central
PMC10817357
DOI
10.3390/ma17020361
PII: ma17020361
Knihovny.cz E-resources
- Keywords
- Ga, Gibbs energy, In, enthalpy, entropy, heat capacity, sesqui-chalcogenides,
- Publication type
- Journal Article MeSH
The chalcogenides of p-block elements constitute a significant category of materials with substantial potential for advancing the field of electronic and optoelectronic devices. This is attributed to their exceptional characteristics, including elevated carrier mobility and the ability to fine-tune band gaps through solid solution formation. These compounds exhibit diverse structures, encompassing both three-dimensional and two-dimensional configurations, the latter exemplified by the compound In2Se3. Sesqui-chalcogenides were synthesized through the direct reaction of highly pure elements within a quartz ampoule. Their single-phase composition was confirmed using X-ray diffraction, and the morphology and chemical composition were characterized using scanning electron microscopy. The compositions of all six materials were also confirmed using X-ray photoelectron spectroscopy and Raman spectroscopy. This investigation delves into the thermodynamic properties of indium and gallium sesqui-chalcogenides. It involves low-temperature heat capacity measurements to evaluate standard entropies and Tian-Calvet calorimetry to elucidate the temperature dependence of heat capacity beyond the reference temperature of 298.15 K, as well as the enthalpy of formation assessed from DFT calculations.
See more in PubMed
Chhowalla M., Jena D., Zhang H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016;1:16052. doi: 10.1038/natrevmats.2016.52. DOI
Zhang Y., Rubio A., Lay G.L. Emergent elemental two-dimensional materials beyond graphene. J. Phys. D Appl. Phys. 2017;50:053004. doi: 10.1088/1361-6463/aa4e8b. DOI
Ponraj J.S., Xu Z.-Q., Dhanabalan S.C., Mu H., Wang Y., Yuan J., Li P., Thakur S., Ashrafi M., McCoubrey K., et al. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology. 2016;27:462001. doi: 10.1088/0957-4484/27/46/462001. PubMed DOI
Browning R., Kuperman N., Moon B., Solanki R. Atomic Layer Growth of InSe and Sb2Se3 Layered Semiconductors and Their Heterostructure. Electronics. 2017;6:27. doi: 10.3390/electronics6020027. DOI
Tabernor J., Christian P., O’Brien P. A general route to nanodimensional powders of indium chalcogenides. J. Mater. Chem. 2006;16:2082–2087. doi: 10.1039/b600921b. DOI
Mancini A.M., Micocci G., Rizzo A. New materials for optoelectronic devices: Growth and characterization of indium and gallium chalcogenide layer compounds. Mater. Chem. Phys. 1983;9:29–54. doi: 10.1016/0254-0584(82)90006-2. DOI
Tan C.K.Y., Fu W., Loh K.P. Polymorphism and Ferroelectricity in Indium(III) Selenide. Chem. Rev. 2023;123:8701–8717. doi: 10.1021/acs.chemrev.3c00129. PubMed DOI
Aksimentyeva O.I., Demchenko P.Y., Savchyn V.P., Balitskii O.A. The chemical exfoliation phenomena in layered GaSe-polyaniline composite. Nanoscale Res. Lett. 2013;8:29. doi: 10.1186/1556-276X-8-29. PubMed DOI PMC
Mudd G.W., Svatek S.A., Ren T., Patanè A., Makarovsky O., Eaves L., Beton P.H., Kovalyuk Z.D., Lashkarev G.V., Kudrynskyi Z.R., et al. Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement. Adv. Mater. 2013;25:5714–5718. doi: 10.1002/adma.201302616. PubMed DOI PMC
Sfuncia G., Nicotra G., Giannazzo F., Pécz B., Gueorguiev G.K., Kakanakova-Georgieva A. 2D graphitic-like gallium nitride and other structural selectivity in confinement at the graphene/SiC interface. CrystEngComm. 2023;25:5810–5817. doi: 10.1039/D3CE00515A. DOI
Sangiovanni D.G., Faccio R., Gueorguiev G.K., Kakanakova-Georgieva A. Discovering atomistic pathways for supply of metal atoms from methyl-based precursors to graphene surface. Phys. Chem. Chem. Phys. 2023;25:829–837. doi: 10.1039/D2CP04091C. PubMed DOI
Sedmidubský D., Sofer Z., Huber Š., Luxa J., Točík R., Mahnel T., Růžička K. Chemical bonding and thermodynamic properties of gallium and indium monochalcogenides. J. Chem. Thermodyn. 2019;128:97–102. doi: 10.1016/j.jct.2018.08.013. DOI
Julien C., Barnier S., Massot M., Pardo M.P. Vibrational studies of solid solutions formed in the gallium-cadmium-sulphur system. Mater. Res. Bull. 1994;29:785–794. doi: 10.1016/0025-5408(94)90204-6. DOI
Krost A., Richter W., Zahn D.R.T., Hingerl K., Sitter H. Chemical reaction at the ZnSe/GaAs interface detected by Raman spectroscopy. Appl. Phys. Lett. 1990;57:1981–1982. doi: 10.1063/1.104149. DOI
Halsall M.P., Wolverson D., Davies J.J., Lunn B., Ashenford D.E. Ga2Te3 and tellurium interfacial layers in ZnTe/GaSb heterostructures studied by Raman scattering. Appl. Phys. Lett. 1992;60:2129–2131. doi: 10.1063/1.107085. DOI
Tao H., Mao S., Dong G., Xiao H., Zhao X. Raman scattering studies of the Ge–In sulfide glasses. Solid State Commun. 2006;137:408–412. doi: 10.1016/j.ssc.2005.12.032. DOI
Lewandowska R., Bacewicz R., Filipowicz J., Paszkowicz W. Raman scattering in α-In2Se3 crystals. Mater. Res. Bull. 2001;36:2577–2583. doi: 10.1016/S0025-5408(01)00746-2. DOI
Zahn D.R.T., Mackey K.J., Williams R.H., Münder H., Geurts J., Richter W. Formation of interfacial layers in InSb-CdTe heterostructures studied by Raman scattering. Appl. Phys. Lett. 1987;50:742–744. doi: 10.1063/1.98085. DOI
Höhne G.W.H., Hemminger W.F., Flammersheim H.-J. Differential Scanning Calorimetry. 2nd ed. Springer; Berlin/Heidelberg, Germany: 2003.
Štejfa V., Fulem M., Růžička K., Červinka C. Thermodynamic study of selected monoterpenes III. J. Chem. Thermodyn. 2014;79:280–289. doi: 10.1016/j.jct.2014.04.022. DOI
Pokorný V., Štejfa V., Havlín J., Fulem M., Růžička K. Heat Capacities of L-Cysteine, L-Serine, L-Threonine, L-Lysine, and L-Methionine. Molecules. 2023;28:451. doi: 10.3390/molecules28010451. PubMed DOI PMC
Mahnel T., Pokorný V., Fulem M., Sedmidubský D., Růžička K. Measurement of low-temperature heat capacity by relaxation technique: Calorimeter performance testing and heat capacity of benzo[b]fluoranthene, benzo[k]fluoranthene, and indeno[1,2,3-cd]pyrene. J. Chem. Thermodyn. 2020;142:105964. doi: 10.1016/j.jct.2019.105964. DOI
Suzuki Y.T., Yamamura Y., Sumita M., Yasuzuka S., Saito K. Neat liquid consisting of hydrogen-bonded tetramers: Dicyclohexylmethanol. J. Phys. Chem. B. 2009;113:10077–10080. doi: 10.1021/jp9048764. PubMed DOI
Archer D.G. Thermodynamic Properties of the NaCl+H2O System l. Thermodynamic Properties of NaCl(cr) J. Phys. Chem. Ref. Data. 1992;21:1–21. doi: 10.1063/1.555913. DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Knacke O., Kubaschewski O., Hesselmann K. Thermochemical Properties of Inorganic Substances. 2nd ed. Springer; Berlin/Heidelberg, Germany: 1991.
Tyurin A.V., Gavrichev K.S., Golushina L.N., Gorbunov V.E., Zlomanov V.P. Heat Capacity and Thermodynamic Functions of Ga2Se3 from 14 to 320 K. Inorg. Mater. 2005;41:1139–1143. doi: 10.1007/s10789-005-0275-x. DOI
Tyurin A.V., Gavrichev K.S., Zlomanov V.P., Bykova T.A. Low-temperature heat capacity and thermodynamic functions of Ga2Te3. Inorg. Mater. 2006;42:954–957. doi: 10.1134/S0020168506090056. DOI
Koshchenko V.I., Grinberg Y.K., Demidenko A.F., Zhegalina V.A. Temperature dependence of thermodynamic properties of indium selenide in the 5–300 K range. Izv. Akad. Nauk SSSR Neorg. Mater. 1981;17:1979–1982.
Boehnke U.C., Kühn G., Berezovski G.A., Spassov T. Some aspects of the thermal behaviour of In2Se3. J. Therm. Anal. 1987;32:115–120. doi: 10.1007/BF01914554. DOI
Mills K.C. Molar heat capacities and enthalpies of transition for the indium selenides, InSe(c), InSe1.2(c) and In2Se3(c) High Temp. High Press. 1976;8:225–230.
Zlomanov V.P., Sheiman M.S., Legendre B. Phase diagram and thermodynamic properties of phases in the In-Te system. J. Phase Equilib. 2001;22:339. doi: 10.1361/105497101770338851. DOI
Bale C.W., Bélisle E., Chartrand P., Decterov S.A., Eriksson G., Hack K., Jung I.H., Kang Y.B., Melançon J., Pelton A.D., et al. FactSage thermochemical software and databases—Recent developments. Calphad. 2009;33:295–311. doi: 10.1016/j.calphad.2008.09.009. DOI
Cox J.D., Wagman D.D., Medvedev V.A. CODATA Key Values for Thermodynamics. Hemisphere Publishing Corp.; New York, NY, USA: 1989.