Graphene Nanocomposites in the Targeting Tumor Microenvironment: Recent Advances in TME Reprogramming

. 2025 May 09 ; 26 (10) : . [epub] 20250509

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40429669

Graphene-based materials (GBMs) have shown significant promise in cancer therapy due to their unique physicochemical properties, biocompatibility, and ease of functionalization. Their ability to target solid tumors, penetrate the tumor microenvironment (TME), and act as efficient drug delivery platforms highlights their potential in nanomedicine. However, the complex and dynamic nature of the TME, characterized by metabolic heterogeneity, immune suppression, and drug resistance, poses significant challenges to effective cancer treatment. GBMs offer innovative solutions by enhancing tumor targeting, facilitating deep tissue penetration, and modulating metabolic pathways that contribute to tumor progression and immune evasion. Their functionalization with targeting ligands and biocompatible polymers improves their biosafety and specificity, while their ability to modulate immune cell interactions within the TME presents new opportunities for immunotherapy. Given the role of metabolic reprogramming in tumor survival and resistance, GBMs could be further exploited in metabolism-targeted therapies by disrupting glycolysis, mitochondrial respiration, and lipid metabolism to counteract the immunosuppressive effects of the TME. This review focuses on discussing research studies that design GBM nanocomposites with enhanced biodegradability, minimized toxicity, and improved efficacy in delivering therapeutic agents with the intention to reprogram the TME for effective anticancer therapy. Additionally, exploring the potential of GBM nanocomposites in combination with immunotherapies and metabolism-targeted treatments could lead to more effective and personalized cancer therapies. By addressing these challenges, GBMs could play a pivotal role in overcoming current limitations in cancer treatment and advancing precision oncology.

Zobrazit více v PubMed

Das S., Mondal S., Sharma B., Nayak R. Unraveling the role of graphene oxide in cancer drug delivery. Global Transl. Med. 2024;3:4602. doi: 10.36922/gtm.4602. DOI

Kumawat M.K., Thakur M., Bahadur R., Kaku T., Prabhuraj R.S., Suchitta A., Srivastava R. Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics. Mater. Sci. Eng. C. 2019;103:109774. doi: 10.1016/j.msec.2019.109774. PubMed DOI

Alhazmi H.A., Ahsan W., Mangla B., Javed S., Hassan M.Z., Asmari M., Al Bratty M., Najmi A. Graphene-based biosensors for disease theranostics: Development, applications, and recent advancements. Nanotechnol. Rev. 2022;11:96–116. doi: 10.1515/ntrev-2022-0009. DOI

Jampilek J., Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. Materials. 2021;14:1059. doi: 10.3390/ma14051059. PubMed DOI PMC

Shafiee A., Iravani S., Varma R.S. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. Med. Comm. 2022;3:e118. doi: 10.1002/mco2.118. PubMed DOI PMC

Itoo A.M., Vemula S.L., Gupta M.T., Giram M.V., Kumar S.A., Ghosh B., Biswas S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J. Contr. Rel. 2022;350:26–59. doi: 10.1016/j.jconrel.2022.08.011. PubMed DOI

Hosseini S.M., Mohammadnejad J., Najafi-Taher R., Zadeh Z.B., Tanhaei M., Ramakrishna S. Multifunctional Carbon-Based Nanoparticles: Theranostic Applications in Cancer Therapy and Diagnosis. ACS Appl. Bio Mater. 2023;6:1323–1338. doi: 10.1021/acsabm.2c01000. PubMed DOI

Guo Z., Chakraborty S., Monikh F.A., Varsou D.D., Chetwynd A.J., Afantitis A., Lynch I., Zhang P. Functionalization of Graphene-Based Materials: Biological Behavior, Toxicology, and Safe-By-Design Aspects. Adv Biol. 2021;5:e2100637. doi: 10.1002/adbi.202100637. PubMed DOI

Fadeel B., Busy C., Merino S., Vazquez E., Flahaut E., Mouchet F., Evariste L., Gauthier L., Koivisto A.J., Vogel U., et al. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano. 2018;12:10582–10620. doi: 10.1021/acsnano.8b04758. PubMed DOI

Angelopoulou A., Papachristodoulou M., Voulgari E., Mouikis A., Zygouri P., Gournis D.P., Avgoustakis K. Paclitaxel-Loaded, Pegylated Carboxylic Graphene Oxide with High Colloidal Stability, Sustained, pH-Responsive Release and Strong Anticancer Effects on Lung Cancer A549 Cell Line. Pharmaceutics. 2024;16:1452. doi: 10.3390/pharmaceutics16111452. PubMed DOI PMC

Sattari S., Adeli M., Beyranvand S., Nemati M. Functionalized Graphene Platforms for Anticancer Drug Delivery. Int. J. Nanomed. 2021;16:5955–5980. doi: 10.2147/IJN.S249712. PubMed DOI PMC

Angelopoulou A., Voulgari E., Diamanti E.K., Gournis D., Avgoustakis K. Graphene oxide stabilized by PLA–PEG copolymers for the controlled delivery of paclitaxel. Eur. J. Pharm. Biopharm. 2015;93:18–26. doi: 10.1016/j.ejpb.2015.03.022. PubMed DOI

Rahimi S., Chen Y., Zareian M., Pandit S., Mijakovic I. Cellular and subcellular interactions of graphene-based materials with cancerous and non-cancerous cells. Adv. Drug Deliv. Rev. 2022;189:114467. doi: 10.1016/j.addr.2022.114467. PubMed DOI

Zhang J., Yang Y., Li K., Li J. Application of graphene oxide in tumor targeting and tumor therapy. J. Biomater. Sci. Polym. Ed. 2023;34:2551–2576. doi: 10.1080/09205063.2023.2265171. PubMed DOI

Wang Y., Zhang X., Yue H. Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. J. Nanobiotechnol. 2024;22:67. doi: 10.1186/s12951-024-02319-5. PubMed DOI PMC

Shi R., Tang Y.Q., Miao H. Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm. 2020;1:47–68. doi: 10.1002/mco2.6. PubMed DOI PMC

Avgoustakis K., Angelopoulou A. Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments. Pharmaceutics. 2024;16:179. doi: 10.3390/pharmaceutics16020179. PubMed DOI PMC

Kimmelman A.C., Sherman M.H. The Role of stroma in Cancer Metabolism. Cold Spring Harb. Perspect. Med. 2024;14:a041540. doi: 10.1101/cshperspect.a041540. PubMed DOI PMC

Schworer S., Vardhana S.A., Thompson C.B. Cancer metabolism drives a stromal regenerative response. Cell Metab. 2019;29:576–591. doi: 10.1016/j.cmet.2019.01.015. PubMed DOI PMC

Ahmed N., Escalona R., Leung D., Chan E., Kannourakis G. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin. Cancer Biol. 2018;53:265–281. doi: 10.1016/j.semcancer.2018.10.002. PubMed DOI

Arner E.N., Rathmell J.C. Metabolic Programming and Immune Suppression in the Tumor Microenvironment. Cancer Cell. 2023;41:421–433. doi: 10.1016/j.ccell.2023.01.009. PubMed DOI PMC

Zhao Y., Ye X., Xiong Z., Ihsan A., Ares I., Martinez M., Lopez-Torres B., Martinez-Larranaga M.R., Anadon A., Wang X., et al. Cancer Metabolism: The Role of ROS in DNA Damage and Induction of Apoptosis in Cancer Cells. Metabolites. 2023;13:796. doi: 10.3390/metabo13070796. PubMed DOI PMC

Schiliro C., Firestein B.L. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells. 2021;10:1056. doi: 10.3390/cells10051056. PubMed DOI PMC

Jin L., Alesi G.N., Kang S. Glutaminolysis as a target for cancer therapy. Oncogene. 2016;35:3619–3625. doi: 10.1038/onc.2015.447. PubMed DOI PMC

Fu Y., Zou T., Shen X., Nelson P.J., Li J., Wu C., Yang J., Zheng Y., Bruns C., Zhao Y., et al. Lipid metabolism in cancer progression and therapeutic strategies. MedComm. 2020;2:27–59. doi: 10.1002/mco2.27. PubMed DOI PMC

Zaidi N., Lupien L., Kuemmerle N.B., Kinlaw W.B., Swinnen J.V., Smans K. Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res. 2013;52:585–589. doi: 10.1016/j.plipres.2013.08.005. PubMed DOI PMC

Maffuid K., Cao Y. Decoding the Complexity of Immune—Cancer Cell Interactions: Empowering the Future of Cancer Immunotherapy. Cancers. 2023;15:4188. doi: 10.3390/cancers15164188. PubMed DOI PMC

Kim J., DeBerardinis R.J. Mechanisms and Implications of Metabolic Heterogeneity in Cancer. Cell Metab. 2019;30:434–446. doi: 10.1016/j.cmet.2019.08.013. PubMed DOI PMC

Lin Z., Hua G., Hu X. Lipid metabolism associated crosstalk: The bidirectional interaction between cancer cells and immune/stromal cells within the tumor microenvironment for prognostic insight. Cancer Cell Int. 2024;24:295. doi: 10.1186/s12935-024-03481-4. PubMed DOI PMC

Chang C.H., Qiu J., O’Sullivan D., Buck M.D., Noguchi T., Curtis J.D., Chen Q., Gindin M., Gubin M.M., van der Windt G.J.W., et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell. 2015;162:1229–1241. doi: 10.1016/j.cell.2015.08.016. PubMed DOI PMC

Kim S., Koh J., Song S.G., Yim J., Kim M., Keam B., Kim Y.T., Kim J., Chung D.H., Jeon Y.K. High tumor hexokinase-2 expression promotes a pro-tumorigenic immune microenvironment by modulating CD8+/regulatory T-cell infiltration. BMC Cancer. 2022;22:1120. doi: 10.1186/s12885-022-10239-6. PubMed DOI PMC

Qian Y., Yin Y., Zheng X., Liu Z., Wang X. Metabolic regulation of tumor-associated macrophage heterogeneity: Insights into the tumor microenvironment and immunotherapeutic opportunities. Biomark. Res. 2024;12:1. doi: 10.1186/s40364-023-00549-7. PubMed DOI PMC

Ren M., Zheng X., Gao H., Jiang A., Yao Y., He W. Nanomedicines Targeting Metabolism in the Tumor Microenvironment. Front. Bioeng. Biotechnol. 2022;10:943906. doi: 10.3389/fbioe.2022.943906. PubMed DOI PMC

Roma-Rodrigues C., Pombo I., Raposo L., Pedrosa P., Fernandes A.R., Baptista P.V. Nanotheranostics Targeting the Tumor Microenvironment. Front. Bioeng. Biotechnol. 2019;7:197. doi: 10.3389/fbioe.2019.00197. PubMed DOI PMC

Jin W., Zhang Y., Zhao Z., Gao M. Developing targeted therapies for neuroblastoma by dissecting the effects of metabolic reprogramming on tumor microenvironments and progression. Theranostics. 2024;14:3439–3469. doi: 10.7150/thno.93962. PubMed DOI PMC

Wang L., Zhang L., Zhang Z., Wu P., Zhang Y., Chen X. Advances in targeting tumor microenvironment for immunotherapy. Front. Immunol. 2024;15:1472772. doi: 10.3389/fimmu.2024.1472772. PubMed DOI PMC

Bhat A.A., Nisar S., Singh M., Ashraf B., Masoodi T., Prasad C.P., Sharma A., Maacha S., Karedath T., Hashem S., et al. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun. 2022;42:689–715. doi: 10.1002/cac2.12295. PubMed DOI PMC

Zhao Y., Guo S., Deng J., Shen J., Du F., Wu F., Wu X., Chen Y., Li M., Chen M., et al. VEGF/VEGFR-Targeted Therapy and Immunotherapy in Non-small Cell Lung Cancer: Targeting the Tumor Microenvironment. Int. J. Biol. Sci. 2022;18:3845–3858. doi: 10.7150/ijbs.70958. PubMed DOI PMC

Yamaguchi R., Perkins G. Challenges in targeting cancer metabolism for cancer therapy. EMBO Rep. 2012;13:1034–1035. doi: 10.1038/embor.2012.176. PubMed DOI PMC

Teicher B.A., Marston Linehan W., Helman L.J. Targeting Cancer Metabolism. Clin. Cancer Res. 2012;18:5537–5545. doi: 10.1158/1078-0432.CCR-12-2587. PubMed DOI PMC

Saadh M.J., Mustafa M.A., Qassem L.Y., Ghadir G.K., Alaraj M., Alubiady M.H.S., Al-Abdeen A.H.Z., Shakier H.G., Alshahrani M.Y., Zwamel A.H. Targeting hypoxic and acidic tumor microenvironment by nanoparticles: A review. J. Drug Deliv. Sci. Technol. 2024;96:105660. doi: 10.1016/j.jddst.2024.105660. DOI

Zhou Y., Yuan J., Xu K., Li S., Liu Y. Nanotechnology Reprogramming Metabolism for Enhanced Tumor Immunotherapy. ACS Nano. 2024;18:1846–1864. doi: 10.1021/acsnano.3c11260. PubMed DOI

Zhang X., An M., Zhang J., Zhao Y., Liu Y. Nano-medicine therapy reprogramming metabolic network of tumour microenvironment: New opportunity for cancer therapies. J. Drug Target. 2024;32:241–257. doi: 10.1080/1061186X.2024.2309565. PubMed DOI

Iannazzo D., Espro C., Celesti C., Ferlazzo A., Neri G. Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots. Cancers. 2021;13:3194. doi: 10.3390/cancers13133194. PubMed DOI PMC

Pourmadadi M., Soleimani Dinani H., Saeidi Tabar F., Khassi K., Janfaza S., Tasnim N., Hoorfar M. Properties and Applications of Graphene and Its Derivatives in Biosensors for Cancer Detection: A Comprehensive Review. Biosensors. 2022;12:269. doi: 10.3390/bios12050269. PubMed DOI PMC

Uzdrowska K., Knap N., Gulczynski J., Kuban-Jankowska A., Struck-Lewicka W., Markuszewski M.J., Baczek T., Izycka-Swieszewska E., Gorska-Ponikowska M. Chasing Graphene-Based Anticancer Drugs: Where are We Now on the Biomedical Graphene Roadmap? Int. J. Nanomed. 2024;19:3973–3989. doi: 10.2147/IJN.S447397. PubMed DOI PMC

Tabish T.A., Zhang S., Winyard P.G. Developing the next generation of graphene-based platforms for cancer therapeutics: The potential role of reactive oxygen species. Redox Biol. 2018;15:34–40. doi: 10.1016/j.redox.2017.11.018. PubMed DOI PMC

White E., Mehnert J.M., Chan C.S. Autophagy, Metabolism, and Cancer. Clin. Cancer Res. 2015;21:5037–5046. doi: 10.1158/1078-0432.CCR-15-0490. PubMed DOI PMC

Poillet-Perez L., White E. Role of tumor and host autophagy in cancer metabolism. Genes Dev. 2019;33:610–619. doi: 10.1101/gad.325514.119. PubMed DOI PMC

Zhang X., Shao S., Song N., Yang B., Liu F., Tong Z., Wang F., Li J. Integrated omics characterization reveals reduced cancer indicators and elevated inflammatory factors after thermal ablation in non-small cell lung cancer patients. Respir. Res. 2024;25:309. doi: 10.1186/s12931-024-02917-9. PubMed DOI PMC

Leone R.D., Powell J.D. Metabolism of immune cells in cancer. Nat. Rev. Cancer. 2020;20:516–531. doi: 10.1038/s41568-020-0273-y. PubMed DOI PMC

Navas L.E., Carnero A. NAD+ metabolism, stemness, the immune response, and cancer. Sig. Transduct. Target. Ther. 2021;6:2. doi: 10.1038/s41392-020-00354-w. PubMed DOI PMC

Jin J., Byun J.-K., Choi Y.-K., Park K.-G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 2023;55:706–715. doi: 10.1038/s12276-023-00971-9. PubMed DOI PMC

Zou Y., Liu Z., Liu W., Liu Z. Current knowledge and potential intervention of hexosamine biosynthesis pathway in lung cancer. World J. Surg. Oncol. 2023;21:334. doi: 10.1186/s12957-023-03226-z. PubMed DOI PMC

An X., Yu W., Liu J., Tang D., Yang L., Chen X. Oxidative cell death in cancer: Mechanisms and therapeutic opportunities. Cell Death Dis. 2024;15:556. doi: 10.1038/s41419-024-06939-5. PubMed DOI PMC

Arfin S., Jha N.K., Jha S.K., Kesari K.K., Ruokolainen J., Roychoudhury S., Rathi B., Kumar D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants. 2021;10:642. doi: 10.3390/antiox10050642. PubMed DOI PMC

Perini G., Palmieri V., Ciasca G., Primiano A., Gervasoni J., De Spirito M., Papi M. Functionalized Graphene Quantum Dots Modulate Malignancy of Glioblastoma Multiforme by Downregulating Neurospheres Formation. C-J. Carbon Res. 2021;7:4. doi: 10.3390/c7010004. DOI

Szlasa W., Zendran I., Zalesinska A., Tarek M., Kulbacka J. Lipid composition of the cancer cell membrane. J. Bioenerg. Biomembr. 2020;52:321–342. doi: 10.1007/s10863-020-09846-4. PubMed DOI PMC

Perini G., Palmieri V., Friggeri G., Augello A., De Spirito M., Papi M. Carboxylated graphene quantum dots-mediated photothermal therapy enhances drug-membrane permeability, ROS production, and the immune system recruitment on 3D glioblastoma models. Cancer Nano. 2023;14:13. doi: 10.1186/s12645-023-00168-9. DOI

Campos-Sandoval J.A., Gomez-Garcia M.C., de los Santos-Jimenez J., Mates J.M., Alonso F.J., Marquez J. Antioxidant responses related to temozolomide resistance in glioblastoma. Neurocchem. Intern. 2021;149:105136. doi: 10.1016/j.neuint.2021.105136. PubMed DOI

Campbell E., Hasan M.T., Gonzalez-Rodriguez R., Truly T., Lee B.H., Green K.N., Akkaraju G., Naumov A.V. Graphene quantum dot formulation for cancer imaging and redox-based drug delivery. Nanomed. Nanotechnol. Biol. Med. 2021;37:102408. doi: 10.1016/j.nano.2021.102408. PubMed DOI

Campbell E., Hasan M.T., Gonzalez-Rodriguez R., Akkaraju G., Naumov A.V. Doped Graphene Quantum Dots for Intracellular Multicolor Imaging and Cancer Detection. ACS Biomater. Sci. Engineer. 2019;5:4671–4682. doi: 10.1021/acsbiomaterials.9b00603. PubMed DOI

Tomar V., Kumar P., Sharma D., Joshi R.K., Nemiwal M. Anticancer potential of ferrocene-containing derivatives: Current and future prospective. J. Mol. Struct. 2025;1319:139589. doi: 10.1016/j.molstruc.2024.139589. DOI

Li W., Yu J., Wang J., Fan X., Xu X., Wang H., Xiong Y., Li X., Zhang X., Zhang Q., et al. How does ferrocene correlate with ferroptosis? Multiple approaches to explore ferrocene-appended GPX4 inhibitors as anticancer agents. Chem Sci. 2024;15:10477–10490. doi: 10.1039/D4SC02002B. PubMed DOI PMC

Favaron C., Gabano E., Zanellato I., Gaiaschi L., Casali C., Bottone M.G., Ravera M. Effects of Ferrocene and Ferrocenium on MCF-7 Breast Cancer Cells and Interconnection with Regulated Cell Death Pathways. Molecules. 2023;28:6469. doi: 10.3390/molecules28186469. PubMed DOI PMC

Guo M., Xiang H.-J., Wang Y., Zhang Q.-L., An L., Yang S.-P., Ma Y., Wang Y., Liu J.-G. Ruthenium nitrosyl functionalized graphene quantum dots as an efficient nanoplatform for NIR-light-controlled and mitochondria-targeted delivery of nitric oxide combined with photothermal therapy. Chem. Commun. 2017;53:3253–3256. doi: 10.1039/C7CC00670E. PubMed DOI

Poderoso J.J., Helfenberger K., Poderoso C. The effect of nitric oxide on mitochondrial respiration. Nitric Oxide. 2019;88:61–72. doi: 10.1016/j.niox.2019.04.005. PubMed DOI

Tengan C.H., Moraes C.T. NO control of mitochondrial function in normal and transformed cells. Biochim. Biophys. Acta. 2018;1858:573–581. doi: 10.1016/j.bbabio.2017.02.009. PubMed DOI PMC

Huang M., Myers C.R., Wang Y., You M. Mitochondria as a Novel Target for Cancer Chemoprevention: Emergence of Mitochondrial-targeting Agents. Cancer Prev. Res. 2021;14:285–306. doi: 10.1158/1940-6207.CAPR-20-0425. PubMed DOI PMC

Fan Z., Nie Y., Wei Y., Zhao J., Liao X., Zhang J. Facile and large-scale synthesis of graphene quantum dots for selective targeting and imaging of cell nucleus and mitochondria. Mater. Sci. Eng. C. 2019;103:109824. doi: 10.1016/j.msec.2019.109824. PubMed DOI

Zhang D., Wen L., Huang R., Wang H., Hu X., Xing D. Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots. Biomaterials. 2018;153:14–26. doi: 10.1016/j.biomaterials.2017.10.034. PubMed DOI

Dong X., Yu X., Lu M., Xu Y., Zhou L., Peng T. Quantitative chemical proteomics reveals that phenethyl isothiocyanate covalently targets BID to promote apoptosis. Cell Death Discov. 2024;10:456. doi: 10.1038/s41420-024-02225-7. PubMed DOI PMC

Tang L., Zhang Y. Mitochondria are the primary target in isothiocyanate-induced apoptosis in human bladder cancer cells. Mol. Cancer Ther. 2005;4:1250–1259. doi: 10.1158/1535-7163.MCT-05-0041. PubMed DOI

Saeed L.M., Mahmood M., Pyrek S.J., Fahmi T., Xu Y., Mustafa T., Nima Z.A., Bratton S.M., Casciano D., Dervishi E., et al. Single-walled carbon nanotube and graphene nanodelivery of gambogic acid increases its cytotoxicity in breast and pancreatic cancer cells. J. Appl. Toxicol. 2014;34:1188–1199. doi: 10.1002/jat.3018. PubMed DOI PMC

Yang L., Sun Q., Chen S., Ma D., Qi Y., Liu H., Tan S., Yue Q., Cai L. pH-responsive hydrogel with gambogic acid and calcium nanowires for promoting mitochondrial apoptosis in osteosarcoma. J. Control. Real. 2025;377:563–577. doi: 10.1016/j.jconrel.2024.11.055. PubMed DOI

Seo M.J., Lee D.M., Kim I.Y., Lee D., Choi M.-K., Lee J.-Y., Park S.S., Jeong S.-Y., Choi E.K., Choi K.S. Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis. Cell Death Dis. 2019;10:187. doi: 10.1038/s41419-019-1360-4. PubMed DOI PMC

Hatami E., Jaggi M., Chauhan S.C., Yallapu M.M. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim. Biophys. Acta Rev. Cancer. 2020;1874:188381. doi: 10.1016/j.bbcan.2020.188381. PubMed DOI PMC

Li Y., Liu Y., Fu Y., Wei T., Le Guyader L., Gao G., Liu R.-S., Chang Y.-Z., Chen C. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials. 2012;33:402–411. doi: 10.1016/j.biomaterials.2011.09.091. PubMed DOI

Han C., Zhang C., Ma T., Zhang C., Luo J., Xu X., Zhao H., Chen Y., Kong L. Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect. Acta Biomater. 2018;77:268–281. doi: 10.1016/j.actbio.2018.07.018. PubMed DOI

Choudhary N., Collignon T.E., Tewari D., Bishayee A. Hypericin and its anticancer effects: From mechanism of action to potential therapeutic application. Phytomedicine. 2022;105:154356. doi: 10.1016/j.phymed.2022.154356. PubMed DOI

Lenkavska L., Blascakova L., Jurasekova Z., Macajova M., Bilcik B., Cavarga I., Miskovsky P., Huntosova V. Benefits of hypericin transport and delivery by low- and high-density lipoproteins to cancer cells: From in vitro to ex ovo. Photodiagn. Photodyn. Ther. 2019;25:214–224. doi: 10.1016/j.pdpdt.2018.12.013. PubMed DOI

Bulkova V., Vargova J., Babincak M., Jendzelovsky R., Zdrahal Z., Roudnicky P., Kosuth J., Fedorocko P. New findings on the action of hypericin in hypoxic cancer cells with a focus on the modulation of side population cells. Biomed. Pharmacother. 2023;163:114829. doi: 10.1016/j.biopha.2023.114829. PubMed DOI PMC

Miccoli L., Beurdeley-Thomas A., De Pinieux G., Sureau S., Oudard S., Dutrillaux B., Poupon M.F. Light-induced Photoactivation of Hypericin Affects the Energy Metabolism of Human Glioma Cells by Inhibiting Hexokinase Bound to Mitochondria. Cancer Res. 1998;58:5777–5786. PubMed

Theodossiou T.A., Hothersall J.S., De Witte P.A., Pantos A., Agostinis P. The Multifaceted Photocytotoxic Profile of Hypericin. Mol. Pharm. 2009;6:1775–1789. doi: 10.1021/mp900166q. PubMed DOI

Wu C., Wang L., Tian Y., Guan X., Liu Q., Li S., Qin X., Yang H., Liu Y. “Triple-Punch” Anticancer Strategy Mediated by Near-Infrared Photosensitizer/CpG Oligonucleotides Dual-Dressed and Mitochondria-Targeted Nanographene. ACS Appl. Mater. Interfaces. 2018;10:6942–6955. doi: 10.1021/acsami.7b18896. PubMed DOI

Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem. Rev. 2017;117:10043–10120. doi: 10.1021/acs.chemrev.7b00042. PubMed DOI PMC

Hanagata N. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int. J. Nanomed. 2012;7:2181–2195. doi: 10.2147/IJN.S30197. PubMed DOI PMC

Zeng W.-N., Yu Q.-P., Wang D., Liu J.-L., Yang Q.-J., Zhou Z.-K., Zeng Y.-P. Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J Nanobiotechnol. 2021;19:79. doi: 10.1186/s12951-021-00831-6. PubMed DOI PMC

Wang H., Li X., Tse B.W.-C., Yang H., Thorling C.A., Liu Y., Touraud M., Chouane J.B., Liu X., Roberts M.S., et al. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics. 2018;8:1227–1242. doi: 10.7150/thno.22872. PubMed DOI PMC

Wei Y., Zhou F., Zhang D., Chen Q., Xing D. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy. Nanoscale. 2016;8:3530–3538. doi: 10.1039/C5NR07785K. PubMed DOI

Zhu H., Zhang B., Zhu N., Li M., Yu Q. Mitochondrion targeting peptide-modified magnetic graphene oxide delivering mitoxantrone for impairment of tumor mitochondrial functions. Chin. Chem. Lett. 2021;32:1220–1223. doi: 10.1016/j.cclet.2020.09.003. DOI

Evison B.J., Sleebs B.E., Watson K.G., Phillips D.R., Cutts S.M. Mitoxantrone, More than Just Another Topoisomerase II Poison. Med. Res. Rev. 2015;36:248–299. doi: 10.1002/med.21364. PubMed DOI

Kim C.-W., Choi K.-C. Effects of anticancer drugs on the cardiac mitochondrial toxicity and their underlying mechanisms for novel cardiac protective strategies. Life Sci. 2021;277:119607. doi: 10.1016/j.lfs.2021.119607. PubMed DOI

Zhang B., Yu Q., Zhang Y.-M., Liu Y. Two-dimensional supramolecular assemblies based on β-cyclodextrin-grafted graphene oxide for mitochondrial dysfunction and photothermal therapy. Chem. Commun. 2019;55:12200–12203. doi: 10.1039/C9CC05727G. PubMed DOI

Verwilst P., Han J., Lee J., Mun S., Kang H.-G., Kim J.S. Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: A theranostic case study. Biomaterials. 2017;115:104–114. doi: 10.1016/j.biomaterials.2016.11.023. PubMed DOI

Zhang C., Liu Z., Zheng Y., Geng Y., Han C., Shi Y., Sun H., Zhang C., Chen Y., Zhang L., et al. Glycyrrhetinic Acid Functionalized Graphene Oxide for Mitochondria Targeting and Cancer Treatment In Vivo. Small. 2017;14:1703306. doi: 10.1002/smll.201703306. PubMed DOI

Jin X., Li L., Peng Q., Gan C., Gao L., He S., Tan S., Pu W., Liu Y., Gong Y., et al. Glycyrrhetinic acid restricts mitochondrial energy metabolism by targeting SHMT2. iScience. 2022;25:104349. doi: 10.1016/j.isci.2022.104349. PubMed DOI PMC

Song J., Ko H.-S., Sohn E.J., Kim B., Kim J.H., Kim H.J., Kim C., Kim J., Kim S.-H. Inhibition of protein kinase C α/βII and activation of c-Jun NH2-terminal kinase mediate glycyrrhetinic acid induced apoptosis in non-small cell lung cancer NCI-H460 cells. Bioorg. Med. Chem. Lett. 2014;4:1188–1191. doi: 10.1016/j.bmcl.2013.12.111. PubMed DOI

Guo Q., Zhao M., Wang Q., Lu T., Luo P., Chen L., Xia F., Pang H., Shen S., Cheng G., et al. Glycyrrhetinic acid inhibits non-small cell lung cancer via promotion of Prdx6- and caspase-3-mediated mitochondrial apoptosis. Biomed. Pharmacother. 2024;173:116304. doi: 10.1016/j.biopha.2024.116304. PubMed DOI

Fiore C., Salvi M., Palermo M., Sinigaglia G., Armanini D., Toninello A. On the mechanism of mitochondrial permeability transition induction by glycyrrhetinic acid. Biochim. Biophys. Acta-Bioenerg. 2004;1658:195–201. doi: 10.1016/j.bbabio.2004.05.012. PubMed DOI

Jiang J.-H., Pi J., Jin H., Cai J.-Y. Functional graphene oxide as cancer-targeted drug delivery system toselectively induce oesophageal cancer cell apoptosis. Artif. Cells Nanomed. Biotechnol. 2018;46:297–301. doi: 10.1080/21691401.2018.1492418. PubMed DOI

Chauhan A., Joshi H., Kandari D., Aggarwal D., Chauhan R., Tuli H.S., Mehrotra A., Sood A., Sharma U., Mathkar D.M., et al. Oridonin: A natural terpenoid having the potential to modulate apoptosis and survival signaling in cancer. Phytomed. Plus. 2025;5:100721. doi: 10.1016/j.phyplu.2024.100721. DOI

Takebe N., Miele L., Harris P., Jeong W., Bando H., Kahn M., Yang S.X., Ivy S.P. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat. Rev. Clin. Oncol. 2015;12:445–464. doi: 10.1038/nrclinonc.2015.61. PubMed DOI PMC

Iluta S., Nistor M., Buruiana S., Dima D. Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research. Life. 2025;15:228. doi: 10.3390/life15020228. PubMed DOI PMC

Halim A., Luo Q., Ju Y., Song G. A Mini Review Focused on the Recent Applications of Graphene Oxide in Stem Cell Growth and Differentiation. Nanomaterials. 2018;8:736. doi: 10.3390/nano8090736. PubMed DOI PMC

Fiorillo M., Verre A.F., Iliut M., Peiris-Pages M., Ozsvari B., Gandara R., Cappello A.R., Sotgia F., Vijayaraghavan A., Lisanti M.P. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget. 2015;6:3553–3562. doi: 10.18632/oncotarget.3348. PubMed DOI PMC

Suryaprakash S., Li M., Lao Y.-H., Wang H.-X., Leong K.W. Graphene oxide cellular patches for mesenchymal stem cell-based cancer therapy. Carbon. 2018;129:863–868. doi: 10.1016/j.carbon.2017.12.031. DOI

Kang S., Lee J., Ryu S., Kwon Y., Kim K.-H., Jeong D.H., Paik S.R., Kim B.-S. Gold Nanoparticle/Graphene Oxide Hybrid Sheets Attached on Mesenchymal Stem Cells for Effective Photothermal Cancer Therapy. Chem. Mater. 2017;29:3461–3476. doi: 10.1021/acs.chemmater.6b05164. DOI

Haque S., Tripathy S., Patra C.R. Graphene Based Nanomaterials for ROS-Mediated Cancer Therapeutics. In: Chakraborti S., editor. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer; Singapore: 2022. pp. 1–26. DOI

Dash B.S., Jose G., Lu Y.-J., Chen J.-P. Functionalized Reduced Graphene Oxide as a Versatile Tool for Cancer Therapy. Int. J. Mol. Sci. 2021;22:2989. doi: 10.3390/ijms22062989. PubMed DOI PMC

Kretowski R., Cechowska-Pasko M. The Reduced Graphene Oxide (rGO) Induces Apoptosis, Autophagy and Cell Cycle Arrest in Breast Cancer Cells. Int. J. Mol. Sci. 2022;23:9285. doi: 10.3390/ijms23169285. PubMed DOI PMC

Zhang J., Cao H.-Y., Wang J.-Q., Wu G.-D., Wang L. Graphene Oxide and Reduced Graphene Oxide Exhibit Cardiotoxicity Through the Regulation of Lipid Peroxidation, Oxidative Stress, and Mitochondrial Dysfunction. Front. Cell Dev. Biol. 2021;9:616888. doi: 10.3389/fcell.2021.616888. PubMed DOI PMC

Vinothini K., Rajendran N.K., Rajan M., Ramu A., Marraiki N., Elgorban A.M. A magnetic nanoparticle functionalized reduced graphene oxide-based drug carrier system for a chemo-photodynamic cancer therapy. New J. Chem. 2020;44:5265–5277. doi: 10.1039/D0NJ00049C. DOI

Kretowski R., Szynaka B., Jablonska-Trypuc A., Kiełtyka-Dadasiewicz A., Cechowska-Pasko M. The Synergistic Effect of Reduced Graphene Oxide and Proteasome Inhibitor in the Induction of Apoptosis through Oxidative Stress in Breast Cancer Cell Lines. Int. J. Mol. Sci. 2024;25:5436. doi: 10.3390/ijms25105436. PubMed DOI PMC

Tarjanyi O., Haerer J., Vecsernyes M., Berta G., Stayer-Harci A., Balogh B., Farkas K., Boldizsár F., Szeberényi J., Sétáló G., Jr. Prolonged treatment with the proteasome inhibitor MG-132 induces apoptosis in PC12 rat pheochromocytoma cells. Sci. Rep. 2022;12:5808. doi: 10.1038/s41598-022-09763-z. PubMed DOI PMC

Zanotto-Filho A., Braganhol E., Battastini A.M.O., Moreire J.C.F. Proteasome inhibitor MG132 induces selective apoptosis in glioblastoma cells through inhibition of PI3K/Akt and NFkappaB pathways, mitochondrial dysfunction, and activation of p38-JNK1/2 signaling. Invest. New Drugs. 2012;30:2252–2262. doi: 10.1007/s10637-012-9804-z. PubMed DOI

Kavinkumar T., Varunkumar K., Ravikumar V., Manivannan S. Anticancer activity of graphene oxide-reduced graphene oxide-silver nanoparticle composites. J. Colloid Interface Sci. 2017;505:1125–1133. doi: 10.1016/j.jcis.2017.07.002. PubMed DOI

Qian X., Zhang J., Gu Z., Chen Y. Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials. 2019;211:1–13. doi: 10.1016/j.biomaterials.2019.04.023. PubMed DOI

Gurunathan S., Han J.W., Park J.H., Kim E., Choi Y., Kwon D., Kim J. Reduced graphene oxide–silver nanoparticle nanocomposite: A potential anticancer nanotherapy. Int. J. Nanomed. 2015;10:6257–6276. doi: 10.2147/IJN.S92449. PubMed DOI PMC

Yuan Y.-G., Gurunathan S. Combination of graphene oxide–silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int. J. Nanomed. 2017;12:6537–6558. doi: 10.2147/IJN.S125281. PubMed DOI PMC

Yang Y., Liu L., Tian Y., Gu M., Wang Y., Ashrafizadeh M., Aref A.R., Canadas I., Klionsky D.J., Goel A., et al. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Let. 2024;587:216659. doi: 10.1016/j.canlet.2024.216659. PubMed DOI

Coreas R., Castillo C., Li Z., Yan D., Gao Z., Chen J., Bitounis D., Parviz D., Strano M.S., Demokritou P., et al. Biological impacts of reduced graphene oxide affected by protein corona formation. Chem. Res. Toxicol. 2022;35:1244–1256. doi: 10.1021/acs.chemrestox.2c00042. PubMed DOI PMC

Sawosz E., Jaworski S., Kutwin M., Vadalasetty K.P., Grodzik M., Wierzbicki M., Kurantowicz N., Strojny B., Hotowy A., Lipińska L., et al. Graphene Functionalized with Arginine Decreases the Development of Glioblastoma Multiforme Tumor in a Gene-Dependent Manner. Int. J. Mol. Sci. 2015;16:25214–25233. doi: 10.3390/ijms161025214. PubMed DOI PMC

Liu Y., Borchert G.L., Donald S., Diwan B., Anver M., Phang J.M. Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res. 2009;69:6414–6422. doi: 10.1158/0008-5472.CAN-09-1223. PubMed DOI PMC

Keshet R., Erez A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis. Models Mech. 2018;11:dmm033332. doi: 10.1242/dmm.033332. PubMed DOI PMC

Hajipour Keyvani A., Mohammadnejad P., Pazoki-Toroudi H., Perez Gilabert I., Chu T., Manshian B.B., Soenen S.J., Sohrabi B. Advancements in Cancer Treatment: Harnessing the Synergistic Potential of Graphene-Based Nanomaterials in Combination Therapy. ACS Appl. Mater. Interfaces. 2025;17:2756–2790. doi: 10.1021/acsami.4c15536. PubMed DOI

Rasool M., Malik A., Waquar S., Arooj M., Zahid S., Asif M. New challenges in the use of nanomedicine in cancer therapy. Bioengineered. 2022;13:759–773. doi: 10.1080/21655979.2021.2012907. PubMed DOI PMC

Asadi M., Ghorbani S.H., Mahdavian L., Aghamohammadi M. Graphene-based hybrid composites for cancer diagnostic and therapy. J. Transl. Med. 2024;22:611. doi: 10.1186/s12967-024-05438-7. PubMed DOI PMC

Boddu A., Obireddy S.R., Zhang D., Krishna Rao K.S.V., Lai W.-F. ROS-generating, pH-responsive and highly tunable reduced graphene oxide-embedded microbeads showing intrinsic anticancer properties and multi-drug co-delivery capacity for combination cancer therapy. Drug Deliv. 2022;29:2481–2490. doi: 10.1080/10717544.2022.2100512. PubMed DOI PMC

Khakpour E., Salehi S., Naghib S.M., Ghorbanzadeh S., Zhang W. Graphene-based nanomaterials for stimuli-sensitive controlled delivery of therapeutic molecules. Front. Bioeng. Biotechnol. 2023;11:1129768. doi: 10.3389/fbioe.2023.1129768. PubMed DOI PMC

Semenov K.N., Shemchuk O.S., Ageev S.V., Andoskin P.A., Iurev G.O., Murin I.V., Kozhukhov P.K., Maystrenko D.N., Molchanov E.E., Kholmurodova D.K., et al. Development of Graphene-Based Materials with the Targeted Action for Cancer Theranostics. Biochemistry. 2024;89:1362–1391. doi: 10.1134/S0006297924080029. PubMed DOI

Mukherjee S., Mukherjee A., Bytesnikova Z., Ashrafi A.M., Richtera L., Adam V. 2D graphene-based advanced nanoarchitectonics for electrochemical biosensors: Applications in cancer biomarker detection. Biosens. Bioelectron. 2024;250:116050. doi: 10.1016/j.bios.2024.116050. PubMed DOI

Sadeghi M.S., Sangrizeh F.H., Jahani N., Abedin M.S., Chaleshgari S., Ardakan A.K., Baeelashaki R., Ranjbarpazuki G., Rahmanian P., Zandieh M.A., et al. Graphene oxide nanoarchitectures in cancer therapy: Drug and gene delivery, phototherapy, immunotherapy, and vaccine development. Environ. Res. 2023;237:117027. doi: 10.1016/j.envres.2023.117027. PubMed DOI

Fucikova J., Keep O., Kasikova L., Petroni G., Yamazaki T., Liu P., Zhao L., Spisek R., Kroemer G., Galluzzi Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020;11:1013. doi: 10.1038/s41419-020-03221-2. PubMed DOI PMC

Yunus M.A., Ramli M.M., Osman N.H., Mohamed R. Stimulation of Innate and Adaptive Immune Cells with Graphene Oxide and Reduced Graphene Oxide Affect Cancer Progression. Arch. Immunol. Ther. Exp. 2021;69:20. doi: 10.1007/s00005-021-00625-6. PubMed DOI

Xu C., Hong H., Lee Y., Park K.S., Sun M., Wang T., Aikins M.E., Xu Y., Moon J.J. Efficient Lymph Node-Targeted Delivery of Personalized Cancer Vaccines with Reactive Oxygen Species-Inducing Reduced Graphene Oxide Nanosheets. ACS Nano. 2020;14:13268–13278. doi: 10.1021/acsnano.0c05062. PubMed DOI PMC

Yue H., Wei W., Gu Z., Ni D., Luo N., Yang Z., Zhao L., Garate J.A., Zhou R., Su Z., et al. Exploration of graphene oxide as an intelligent platform for cancer vaccines. Nanoscale. 2015;7:19949–19957. doi: 10.1039/C5NR04986E. PubMed DOI

Jomova K., Alomar S.Y., Alwasel S.H., Nepovimova E., Kuca K., Valko M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024;98:1323–1367. doi: 10.1007/s00204-024-03696-4. PubMed DOI PMC

Ristic B., Harhaji-Trajkovic L., Bosnjak M., Dakic I., Mijatovic S., Trajkovic V. Modulation of Cancer Cell Autophagic Responses by Graphene-Based Nanomaterials: Molecular Mechanisms and Therapeutic Implications. Cancers. 2021;13:4145. doi: 10.3390/cancers13164145. PubMed DOI PMC

Sandbhor P., Palkar P., Bhat S., John G., Goda J.S. Nanomedicine as a multimodal therapeutic paradigm against cancer: On the way forward in advancing precision therapy. Nanoscale. 2024;16:6330–6364. doi: 10.1039/D3NR06131K. PubMed DOI

Tabish T.A., Narayan R.J. Mitochondria-targeted graphene for advanced cancer therapeutics. Acta Biomater. 2021;129:43–56. doi: 10.1016/j.actbio.2021.04.054. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...