Graphene Nanocomposites in the Targeting Tumor Microenvironment: Recent Advances in TME Reprogramming
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40429669
PubMed Central
PMC12110983
DOI
10.3390/ijms26104525
PII: ijms26104525
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, graphene, graphene oxide, nanomaterials, photodynamic therapy, photothermal therapy,
- MeSH
- grafit * chemie terapeutické užití MeSH
- imunoterapie metody MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- nádorové mikroprostředí * účinky léků MeSH
- nádory * farmakoterapie metabolismus MeSH
- nanokompozity * chemie terapeutické užití MeSH
- protinádorové látky farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- grafit * MeSH
- protinádorové látky MeSH
Graphene-based materials (GBMs) have shown significant promise in cancer therapy due to their unique physicochemical properties, biocompatibility, and ease of functionalization. Their ability to target solid tumors, penetrate the tumor microenvironment (TME), and act as efficient drug delivery platforms highlights their potential in nanomedicine. However, the complex and dynamic nature of the TME, characterized by metabolic heterogeneity, immune suppression, and drug resistance, poses significant challenges to effective cancer treatment. GBMs offer innovative solutions by enhancing tumor targeting, facilitating deep tissue penetration, and modulating metabolic pathways that contribute to tumor progression and immune evasion. Their functionalization with targeting ligands and biocompatible polymers improves their biosafety and specificity, while their ability to modulate immune cell interactions within the TME presents new opportunities for immunotherapy. Given the role of metabolic reprogramming in tumor survival and resistance, GBMs could be further exploited in metabolism-targeted therapies by disrupting glycolysis, mitochondrial respiration, and lipid metabolism to counteract the immunosuppressive effects of the TME. This review focuses on discussing research studies that design GBM nanocomposites with enhanced biodegradability, minimized toxicity, and improved efficacy in delivering therapeutic agents with the intention to reprogram the TME for effective anticancer therapy. Additionally, exploring the potential of GBM nanocomposites in combination with immunotherapies and metabolism-targeted treatments could lead to more effective and personalized cancer therapies. By addressing these challenges, GBMs could play a pivotal role in overcoming current limitations in cancer treatment and advancing precision oncology.
Zobrazit více v PubMed
Das S., Mondal S., Sharma B., Nayak R. Unraveling the role of graphene oxide in cancer drug delivery. Global Transl. Med. 2024;3:4602. doi: 10.36922/gtm.4602. DOI
Kumawat M.K., Thakur M., Bahadur R., Kaku T., Prabhuraj R.S., Suchitta A., Srivastava R. Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics. Mater. Sci. Eng. C. 2019;103:109774. doi: 10.1016/j.msec.2019.109774. PubMed DOI
Alhazmi H.A., Ahsan W., Mangla B., Javed S., Hassan M.Z., Asmari M., Al Bratty M., Najmi A. Graphene-based biosensors for disease theranostics: Development, applications, and recent advancements. Nanotechnol. Rev. 2022;11:96–116. doi: 10.1515/ntrev-2022-0009. DOI
Jampilek J., Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. Materials. 2021;14:1059. doi: 10.3390/ma14051059. PubMed DOI PMC
Shafiee A., Iravani S., Varma R.S. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. Med. Comm. 2022;3:e118. doi: 10.1002/mco2.118. PubMed DOI PMC
Itoo A.M., Vemula S.L., Gupta M.T., Giram M.V., Kumar S.A., Ghosh B., Biswas S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J. Contr. Rel. 2022;350:26–59. doi: 10.1016/j.jconrel.2022.08.011. PubMed DOI
Hosseini S.M., Mohammadnejad J., Najafi-Taher R., Zadeh Z.B., Tanhaei M., Ramakrishna S. Multifunctional Carbon-Based Nanoparticles: Theranostic Applications in Cancer Therapy and Diagnosis. ACS Appl. Bio Mater. 2023;6:1323–1338. doi: 10.1021/acsabm.2c01000. PubMed DOI
Guo Z., Chakraborty S., Monikh F.A., Varsou D.D., Chetwynd A.J., Afantitis A., Lynch I., Zhang P. Functionalization of Graphene-Based Materials: Biological Behavior, Toxicology, and Safe-By-Design Aspects. Adv Biol. 2021;5:e2100637. doi: 10.1002/adbi.202100637. PubMed DOI
Fadeel B., Busy C., Merino S., Vazquez E., Flahaut E., Mouchet F., Evariste L., Gauthier L., Koivisto A.J., Vogel U., et al. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano. 2018;12:10582–10620. doi: 10.1021/acsnano.8b04758. PubMed DOI
Angelopoulou A., Papachristodoulou M., Voulgari E., Mouikis A., Zygouri P., Gournis D.P., Avgoustakis K. Paclitaxel-Loaded, Pegylated Carboxylic Graphene Oxide with High Colloidal Stability, Sustained, pH-Responsive Release and Strong Anticancer Effects on Lung Cancer A549 Cell Line. Pharmaceutics. 2024;16:1452. doi: 10.3390/pharmaceutics16111452. PubMed DOI PMC
Sattari S., Adeli M., Beyranvand S., Nemati M. Functionalized Graphene Platforms for Anticancer Drug Delivery. Int. J. Nanomed. 2021;16:5955–5980. doi: 10.2147/IJN.S249712. PubMed DOI PMC
Angelopoulou A., Voulgari E., Diamanti E.K., Gournis D., Avgoustakis K. Graphene oxide stabilized by PLA–PEG copolymers for the controlled delivery of paclitaxel. Eur. J. Pharm. Biopharm. 2015;93:18–26. doi: 10.1016/j.ejpb.2015.03.022. PubMed DOI
Rahimi S., Chen Y., Zareian M., Pandit S., Mijakovic I. Cellular and subcellular interactions of graphene-based materials with cancerous and non-cancerous cells. Adv. Drug Deliv. Rev. 2022;189:114467. doi: 10.1016/j.addr.2022.114467. PubMed DOI
Zhang J., Yang Y., Li K., Li J. Application of graphene oxide in tumor targeting and tumor therapy. J. Biomater. Sci. Polym. Ed. 2023;34:2551–2576. doi: 10.1080/09205063.2023.2265171. PubMed DOI
Wang Y., Zhang X., Yue H. Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. J. Nanobiotechnol. 2024;22:67. doi: 10.1186/s12951-024-02319-5. PubMed DOI PMC
Shi R., Tang Y.Q., Miao H. Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm. 2020;1:47–68. doi: 10.1002/mco2.6. PubMed DOI PMC
Avgoustakis K., Angelopoulou A. Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments. Pharmaceutics. 2024;16:179. doi: 10.3390/pharmaceutics16020179. PubMed DOI PMC
Kimmelman A.C., Sherman M.H. The Role of stroma in Cancer Metabolism. Cold Spring Harb. Perspect. Med. 2024;14:a041540. doi: 10.1101/cshperspect.a041540. PubMed DOI PMC
Schworer S., Vardhana S.A., Thompson C.B. Cancer metabolism drives a stromal regenerative response. Cell Metab. 2019;29:576–591. doi: 10.1016/j.cmet.2019.01.015. PubMed DOI PMC
Ahmed N., Escalona R., Leung D., Chan E., Kannourakis G. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin. Cancer Biol. 2018;53:265–281. doi: 10.1016/j.semcancer.2018.10.002. PubMed DOI
Arner E.N., Rathmell J.C. Metabolic Programming and Immune Suppression in the Tumor Microenvironment. Cancer Cell. 2023;41:421–433. doi: 10.1016/j.ccell.2023.01.009. PubMed DOI PMC
Zhao Y., Ye X., Xiong Z., Ihsan A., Ares I., Martinez M., Lopez-Torres B., Martinez-Larranaga M.R., Anadon A., Wang X., et al. Cancer Metabolism: The Role of ROS in DNA Damage and Induction of Apoptosis in Cancer Cells. Metabolites. 2023;13:796. doi: 10.3390/metabo13070796. PubMed DOI PMC
Schiliro C., Firestein B.L. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells. 2021;10:1056. doi: 10.3390/cells10051056. PubMed DOI PMC
Jin L., Alesi G.N., Kang S. Glutaminolysis as a target for cancer therapy. Oncogene. 2016;35:3619–3625. doi: 10.1038/onc.2015.447. PubMed DOI PMC
Fu Y., Zou T., Shen X., Nelson P.J., Li J., Wu C., Yang J., Zheng Y., Bruns C., Zhao Y., et al. Lipid metabolism in cancer progression and therapeutic strategies. MedComm. 2020;2:27–59. doi: 10.1002/mco2.27. PubMed DOI PMC
Zaidi N., Lupien L., Kuemmerle N.B., Kinlaw W.B., Swinnen J.V., Smans K. Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res. 2013;52:585–589. doi: 10.1016/j.plipres.2013.08.005. PubMed DOI PMC
Maffuid K., Cao Y. Decoding the Complexity of Immune—Cancer Cell Interactions: Empowering the Future of Cancer Immunotherapy. Cancers. 2023;15:4188. doi: 10.3390/cancers15164188. PubMed DOI PMC
Kim J., DeBerardinis R.J. Mechanisms and Implications of Metabolic Heterogeneity in Cancer. Cell Metab. 2019;30:434–446. doi: 10.1016/j.cmet.2019.08.013. PubMed DOI PMC
Lin Z., Hua G., Hu X. Lipid metabolism associated crosstalk: The bidirectional interaction between cancer cells and immune/stromal cells within the tumor microenvironment for prognostic insight. Cancer Cell Int. 2024;24:295. doi: 10.1186/s12935-024-03481-4. PubMed DOI PMC
Chang C.H., Qiu J., O’Sullivan D., Buck M.D., Noguchi T., Curtis J.D., Chen Q., Gindin M., Gubin M.M., van der Windt G.J.W., et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell. 2015;162:1229–1241. doi: 10.1016/j.cell.2015.08.016. PubMed DOI PMC
Kim S., Koh J., Song S.G., Yim J., Kim M., Keam B., Kim Y.T., Kim J., Chung D.H., Jeon Y.K. High tumor hexokinase-2 expression promotes a pro-tumorigenic immune microenvironment by modulating CD8+/regulatory T-cell infiltration. BMC Cancer. 2022;22:1120. doi: 10.1186/s12885-022-10239-6. PubMed DOI PMC
Qian Y., Yin Y., Zheng X., Liu Z., Wang X. Metabolic regulation of tumor-associated macrophage heterogeneity: Insights into the tumor microenvironment and immunotherapeutic opportunities. Biomark. Res. 2024;12:1. doi: 10.1186/s40364-023-00549-7. PubMed DOI PMC
Ren M., Zheng X., Gao H., Jiang A., Yao Y., He W. Nanomedicines Targeting Metabolism in the Tumor Microenvironment. Front. Bioeng. Biotechnol. 2022;10:943906. doi: 10.3389/fbioe.2022.943906. PubMed DOI PMC
Roma-Rodrigues C., Pombo I., Raposo L., Pedrosa P., Fernandes A.R., Baptista P.V. Nanotheranostics Targeting the Tumor Microenvironment. Front. Bioeng. Biotechnol. 2019;7:197. doi: 10.3389/fbioe.2019.00197. PubMed DOI PMC
Jin W., Zhang Y., Zhao Z., Gao M. Developing targeted therapies for neuroblastoma by dissecting the effects of metabolic reprogramming on tumor microenvironments and progression. Theranostics. 2024;14:3439–3469. doi: 10.7150/thno.93962. PubMed DOI PMC
Wang L., Zhang L., Zhang Z., Wu P., Zhang Y., Chen X. Advances in targeting tumor microenvironment for immunotherapy. Front. Immunol. 2024;15:1472772. doi: 10.3389/fimmu.2024.1472772. PubMed DOI PMC
Bhat A.A., Nisar S., Singh M., Ashraf B., Masoodi T., Prasad C.P., Sharma A., Maacha S., Karedath T., Hashem S., et al. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun. 2022;42:689–715. doi: 10.1002/cac2.12295. PubMed DOI PMC
Zhao Y., Guo S., Deng J., Shen J., Du F., Wu F., Wu X., Chen Y., Li M., Chen M., et al. VEGF/VEGFR-Targeted Therapy and Immunotherapy in Non-small Cell Lung Cancer: Targeting the Tumor Microenvironment. Int. J. Biol. Sci. 2022;18:3845–3858. doi: 10.7150/ijbs.70958. PubMed DOI PMC
Yamaguchi R., Perkins G. Challenges in targeting cancer metabolism for cancer therapy. EMBO Rep. 2012;13:1034–1035. doi: 10.1038/embor.2012.176. PubMed DOI PMC
Teicher B.A., Marston Linehan W., Helman L.J. Targeting Cancer Metabolism. Clin. Cancer Res. 2012;18:5537–5545. doi: 10.1158/1078-0432.CCR-12-2587. PubMed DOI PMC
Saadh M.J., Mustafa M.A., Qassem L.Y., Ghadir G.K., Alaraj M., Alubiady M.H.S., Al-Abdeen A.H.Z., Shakier H.G., Alshahrani M.Y., Zwamel A.H. Targeting hypoxic and acidic tumor microenvironment by nanoparticles: A review. J. Drug Deliv. Sci. Technol. 2024;96:105660. doi: 10.1016/j.jddst.2024.105660. DOI
Zhou Y., Yuan J., Xu K., Li S., Liu Y. Nanotechnology Reprogramming Metabolism for Enhanced Tumor Immunotherapy. ACS Nano. 2024;18:1846–1864. doi: 10.1021/acsnano.3c11260. PubMed DOI
Zhang X., An M., Zhang J., Zhao Y., Liu Y. Nano-medicine therapy reprogramming metabolic network of tumour microenvironment: New opportunity for cancer therapies. J. Drug Target. 2024;32:241–257. doi: 10.1080/1061186X.2024.2309565. PubMed DOI
Iannazzo D., Espro C., Celesti C., Ferlazzo A., Neri G. Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots. Cancers. 2021;13:3194. doi: 10.3390/cancers13133194. PubMed DOI PMC
Pourmadadi M., Soleimani Dinani H., Saeidi Tabar F., Khassi K., Janfaza S., Tasnim N., Hoorfar M. Properties and Applications of Graphene and Its Derivatives in Biosensors for Cancer Detection: A Comprehensive Review. Biosensors. 2022;12:269. doi: 10.3390/bios12050269. PubMed DOI PMC
Uzdrowska K., Knap N., Gulczynski J., Kuban-Jankowska A., Struck-Lewicka W., Markuszewski M.J., Baczek T., Izycka-Swieszewska E., Gorska-Ponikowska M. Chasing Graphene-Based Anticancer Drugs: Where are We Now on the Biomedical Graphene Roadmap? Int. J. Nanomed. 2024;19:3973–3989. doi: 10.2147/IJN.S447397. PubMed DOI PMC
Tabish T.A., Zhang S., Winyard P.G. Developing the next generation of graphene-based platforms for cancer therapeutics: The potential role of reactive oxygen species. Redox Biol. 2018;15:34–40. doi: 10.1016/j.redox.2017.11.018. PubMed DOI PMC
White E., Mehnert J.M., Chan C.S. Autophagy, Metabolism, and Cancer. Clin. Cancer Res. 2015;21:5037–5046. doi: 10.1158/1078-0432.CCR-15-0490. PubMed DOI PMC
Poillet-Perez L., White E. Role of tumor and host autophagy in cancer metabolism. Genes Dev. 2019;33:610–619. doi: 10.1101/gad.325514.119. PubMed DOI PMC
Zhang X., Shao S., Song N., Yang B., Liu F., Tong Z., Wang F., Li J. Integrated omics characterization reveals reduced cancer indicators and elevated inflammatory factors after thermal ablation in non-small cell lung cancer patients. Respir. Res. 2024;25:309. doi: 10.1186/s12931-024-02917-9. PubMed DOI PMC
Leone R.D., Powell J.D. Metabolism of immune cells in cancer. Nat. Rev. Cancer. 2020;20:516–531. doi: 10.1038/s41568-020-0273-y. PubMed DOI PMC
Navas L.E., Carnero A. NAD+ metabolism, stemness, the immune response, and cancer. Sig. Transduct. Target. Ther. 2021;6:2. doi: 10.1038/s41392-020-00354-w. PubMed DOI PMC
Jin J., Byun J.-K., Choi Y.-K., Park K.-G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 2023;55:706–715. doi: 10.1038/s12276-023-00971-9. PubMed DOI PMC
Zou Y., Liu Z., Liu W., Liu Z. Current knowledge and potential intervention of hexosamine biosynthesis pathway in lung cancer. World J. Surg. Oncol. 2023;21:334. doi: 10.1186/s12957-023-03226-z. PubMed DOI PMC
An X., Yu W., Liu J., Tang D., Yang L., Chen X. Oxidative cell death in cancer: Mechanisms and therapeutic opportunities. Cell Death Dis. 2024;15:556. doi: 10.1038/s41419-024-06939-5. PubMed DOI PMC
Arfin S., Jha N.K., Jha S.K., Kesari K.K., Ruokolainen J., Roychoudhury S., Rathi B., Kumar D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants. 2021;10:642. doi: 10.3390/antiox10050642. PubMed DOI PMC
Perini G., Palmieri V., Ciasca G., Primiano A., Gervasoni J., De Spirito M., Papi M. Functionalized Graphene Quantum Dots Modulate Malignancy of Glioblastoma Multiforme by Downregulating Neurospheres Formation. C-J. Carbon Res. 2021;7:4. doi: 10.3390/c7010004. DOI
Szlasa W., Zendran I., Zalesinska A., Tarek M., Kulbacka J. Lipid composition of the cancer cell membrane. J. Bioenerg. Biomembr. 2020;52:321–342. doi: 10.1007/s10863-020-09846-4. PubMed DOI PMC
Perini G., Palmieri V., Friggeri G., Augello A., De Spirito M., Papi M. Carboxylated graphene quantum dots-mediated photothermal therapy enhances drug-membrane permeability, ROS production, and the immune system recruitment on 3D glioblastoma models. Cancer Nano. 2023;14:13. doi: 10.1186/s12645-023-00168-9. DOI
Campos-Sandoval J.A., Gomez-Garcia M.C., de los Santos-Jimenez J., Mates J.M., Alonso F.J., Marquez J. Antioxidant responses related to temozolomide resistance in glioblastoma. Neurocchem. Intern. 2021;149:105136. doi: 10.1016/j.neuint.2021.105136. PubMed DOI
Campbell E., Hasan M.T., Gonzalez-Rodriguez R., Truly T., Lee B.H., Green K.N., Akkaraju G., Naumov A.V. Graphene quantum dot formulation for cancer imaging and redox-based drug delivery. Nanomed. Nanotechnol. Biol. Med. 2021;37:102408. doi: 10.1016/j.nano.2021.102408. PubMed DOI
Campbell E., Hasan M.T., Gonzalez-Rodriguez R., Akkaraju G., Naumov A.V. Doped Graphene Quantum Dots for Intracellular Multicolor Imaging and Cancer Detection. ACS Biomater. Sci. Engineer. 2019;5:4671–4682. doi: 10.1021/acsbiomaterials.9b00603. PubMed DOI
Tomar V., Kumar P., Sharma D., Joshi R.K., Nemiwal M. Anticancer potential of ferrocene-containing derivatives: Current and future prospective. J. Mol. Struct. 2025;1319:139589. doi: 10.1016/j.molstruc.2024.139589. DOI
Li W., Yu J., Wang J., Fan X., Xu X., Wang H., Xiong Y., Li X., Zhang X., Zhang Q., et al. How does ferrocene correlate with ferroptosis? Multiple approaches to explore ferrocene-appended GPX4 inhibitors as anticancer agents. Chem Sci. 2024;15:10477–10490. doi: 10.1039/D4SC02002B. PubMed DOI PMC
Favaron C., Gabano E., Zanellato I., Gaiaschi L., Casali C., Bottone M.G., Ravera M. Effects of Ferrocene and Ferrocenium on MCF-7 Breast Cancer Cells and Interconnection with Regulated Cell Death Pathways. Molecules. 2023;28:6469. doi: 10.3390/molecules28186469. PubMed DOI PMC
Guo M., Xiang H.-J., Wang Y., Zhang Q.-L., An L., Yang S.-P., Ma Y., Wang Y., Liu J.-G. Ruthenium nitrosyl functionalized graphene quantum dots as an efficient nanoplatform for NIR-light-controlled and mitochondria-targeted delivery of nitric oxide combined with photothermal therapy. Chem. Commun. 2017;53:3253–3256. doi: 10.1039/C7CC00670E. PubMed DOI
Poderoso J.J., Helfenberger K., Poderoso C. The effect of nitric oxide on mitochondrial respiration. Nitric Oxide. 2019;88:61–72. doi: 10.1016/j.niox.2019.04.005. PubMed DOI
Tengan C.H., Moraes C.T. NO control of mitochondrial function in normal and transformed cells. Biochim. Biophys. Acta. 2018;1858:573–581. doi: 10.1016/j.bbabio.2017.02.009. PubMed DOI PMC
Huang M., Myers C.R., Wang Y., You M. Mitochondria as a Novel Target for Cancer Chemoprevention: Emergence of Mitochondrial-targeting Agents. Cancer Prev. Res. 2021;14:285–306. doi: 10.1158/1940-6207.CAPR-20-0425. PubMed DOI PMC
Fan Z., Nie Y., Wei Y., Zhao J., Liao X., Zhang J. Facile and large-scale synthesis of graphene quantum dots for selective targeting and imaging of cell nucleus and mitochondria. Mater. Sci. Eng. C. 2019;103:109824. doi: 10.1016/j.msec.2019.109824. PubMed DOI
Zhang D., Wen L., Huang R., Wang H., Hu X., Xing D. Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots. Biomaterials. 2018;153:14–26. doi: 10.1016/j.biomaterials.2017.10.034. PubMed DOI
Dong X., Yu X., Lu M., Xu Y., Zhou L., Peng T. Quantitative chemical proteomics reveals that phenethyl isothiocyanate covalently targets BID to promote apoptosis. Cell Death Discov. 2024;10:456. doi: 10.1038/s41420-024-02225-7. PubMed DOI PMC
Tang L., Zhang Y. Mitochondria are the primary target in isothiocyanate-induced apoptosis in human bladder cancer cells. Mol. Cancer Ther. 2005;4:1250–1259. doi: 10.1158/1535-7163.MCT-05-0041. PubMed DOI
Saeed L.M., Mahmood M., Pyrek S.J., Fahmi T., Xu Y., Mustafa T., Nima Z.A., Bratton S.M., Casciano D., Dervishi E., et al. Single-walled carbon nanotube and graphene nanodelivery of gambogic acid increases its cytotoxicity in breast and pancreatic cancer cells. J. Appl. Toxicol. 2014;34:1188–1199. doi: 10.1002/jat.3018. PubMed DOI PMC
Yang L., Sun Q., Chen S., Ma D., Qi Y., Liu H., Tan S., Yue Q., Cai L. pH-responsive hydrogel with gambogic acid and calcium nanowires for promoting mitochondrial apoptosis in osteosarcoma. J. Control. Real. 2025;377:563–577. doi: 10.1016/j.jconrel.2024.11.055. PubMed DOI
Seo M.J., Lee D.M., Kim I.Y., Lee D., Choi M.-K., Lee J.-Y., Park S.S., Jeong S.-Y., Choi E.K., Choi K.S. Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis. Cell Death Dis. 2019;10:187. doi: 10.1038/s41419-019-1360-4. PubMed DOI PMC
Hatami E., Jaggi M., Chauhan S.C., Yallapu M.M. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim. Biophys. Acta Rev. Cancer. 2020;1874:188381. doi: 10.1016/j.bbcan.2020.188381. PubMed DOI PMC
Li Y., Liu Y., Fu Y., Wei T., Le Guyader L., Gao G., Liu R.-S., Chang Y.-Z., Chen C. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials. 2012;33:402–411. doi: 10.1016/j.biomaterials.2011.09.091. PubMed DOI
Han C., Zhang C., Ma T., Zhang C., Luo J., Xu X., Zhao H., Chen Y., Kong L. Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect. Acta Biomater. 2018;77:268–281. doi: 10.1016/j.actbio.2018.07.018. PubMed DOI
Choudhary N., Collignon T.E., Tewari D., Bishayee A. Hypericin and its anticancer effects: From mechanism of action to potential therapeutic application. Phytomedicine. 2022;105:154356. doi: 10.1016/j.phymed.2022.154356. PubMed DOI
Lenkavska L., Blascakova L., Jurasekova Z., Macajova M., Bilcik B., Cavarga I., Miskovsky P., Huntosova V. Benefits of hypericin transport and delivery by low- and high-density lipoproteins to cancer cells: From in vitro to ex ovo. Photodiagn. Photodyn. Ther. 2019;25:214–224. doi: 10.1016/j.pdpdt.2018.12.013. PubMed DOI
Bulkova V., Vargova J., Babincak M., Jendzelovsky R., Zdrahal Z., Roudnicky P., Kosuth J., Fedorocko P. New findings on the action of hypericin in hypoxic cancer cells with a focus on the modulation of side population cells. Biomed. Pharmacother. 2023;163:114829. doi: 10.1016/j.biopha.2023.114829. PubMed DOI PMC
Miccoli L., Beurdeley-Thomas A., De Pinieux G., Sureau S., Oudard S., Dutrillaux B., Poupon M.F. Light-induced Photoactivation of Hypericin Affects the Energy Metabolism of Human Glioma Cells by Inhibiting Hexokinase Bound to Mitochondria. Cancer Res. 1998;58:5777–5786. PubMed
Theodossiou T.A., Hothersall J.S., De Witte P.A., Pantos A., Agostinis P. The Multifaceted Photocytotoxic Profile of Hypericin. Mol. Pharm. 2009;6:1775–1789. doi: 10.1021/mp900166q. PubMed DOI
Wu C., Wang L., Tian Y., Guan X., Liu Q., Li S., Qin X., Yang H., Liu Y. “Triple-Punch” Anticancer Strategy Mediated by Near-Infrared Photosensitizer/CpG Oligonucleotides Dual-Dressed and Mitochondria-Targeted Nanographene. ACS Appl. Mater. Interfaces. 2018;10:6942–6955. doi: 10.1021/acsami.7b18896. PubMed DOI
Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem. Rev. 2017;117:10043–10120. doi: 10.1021/acs.chemrev.7b00042. PubMed DOI PMC
Hanagata N. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int. J. Nanomed. 2012;7:2181–2195. doi: 10.2147/IJN.S30197. PubMed DOI PMC
Zeng W.-N., Yu Q.-P., Wang D., Liu J.-L., Yang Q.-J., Zhou Z.-K., Zeng Y.-P. Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J Nanobiotechnol. 2021;19:79. doi: 10.1186/s12951-021-00831-6. PubMed DOI PMC
Wang H., Li X., Tse B.W.-C., Yang H., Thorling C.A., Liu Y., Touraud M., Chouane J.B., Liu X., Roberts M.S., et al. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics. 2018;8:1227–1242. doi: 10.7150/thno.22872. PubMed DOI PMC
Wei Y., Zhou F., Zhang D., Chen Q., Xing D. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy. Nanoscale. 2016;8:3530–3538. doi: 10.1039/C5NR07785K. PubMed DOI
Zhu H., Zhang B., Zhu N., Li M., Yu Q. Mitochondrion targeting peptide-modified magnetic graphene oxide delivering mitoxantrone for impairment of tumor mitochondrial functions. Chin. Chem. Lett. 2021;32:1220–1223. doi: 10.1016/j.cclet.2020.09.003. DOI
Evison B.J., Sleebs B.E., Watson K.G., Phillips D.R., Cutts S.M. Mitoxantrone, More than Just Another Topoisomerase II Poison. Med. Res. Rev. 2015;36:248–299. doi: 10.1002/med.21364. PubMed DOI
Kim C.-W., Choi K.-C. Effects of anticancer drugs on the cardiac mitochondrial toxicity and their underlying mechanisms for novel cardiac protective strategies. Life Sci. 2021;277:119607. doi: 10.1016/j.lfs.2021.119607. PubMed DOI
Zhang B., Yu Q., Zhang Y.-M., Liu Y. Two-dimensional supramolecular assemblies based on β-cyclodextrin-grafted graphene oxide for mitochondrial dysfunction and photothermal therapy. Chem. Commun. 2019;55:12200–12203. doi: 10.1039/C9CC05727G. PubMed DOI
Verwilst P., Han J., Lee J., Mun S., Kang H.-G., Kim J.S. Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: A theranostic case study. Biomaterials. 2017;115:104–114. doi: 10.1016/j.biomaterials.2016.11.023. PubMed DOI
Zhang C., Liu Z., Zheng Y., Geng Y., Han C., Shi Y., Sun H., Zhang C., Chen Y., Zhang L., et al. Glycyrrhetinic Acid Functionalized Graphene Oxide for Mitochondria Targeting and Cancer Treatment In Vivo. Small. 2017;14:1703306. doi: 10.1002/smll.201703306. PubMed DOI
Jin X., Li L., Peng Q., Gan C., Gao L., He S., Tan S., Pu W., Liu Y., Gong Y., et al. Glycyrrhetinic acid restricts mitochondrial energy metabolism by targeting SHMT2. iScience. 2022;25:104349. doi: 10.1016/j.isci.2022.104349. PubMed DOI PMC
Song J., Ko H.-S., Sohn E.J., Kim B., Kim J.H., Kim H.J., Kim C., Kim J., Kim S.-H. Inhibition of protein kinase C α/βII and activation of c-Jun NH2-terminal kinase mediate glycyrrhetinic acid induced apoptosis in non-small cell lung cancer NCI-H460 cells. Bioorg. Med. Chem. Lett. 2014;4:1188–1191. doi: 10.1016/j.bmcl.2013.12.111. PubMed DOI
Guo Q., Zhao M., Wang Q., Lu T., Luo P., Chen L., Xia F., Pang H., Shen S., Cheng G., et al. Glycyrrhetinic acid inhibits non-small cell lung cancer via promotion of Prdx6- and caspase-3-mediated mitochondrial apoptosis. Biomed. Pharmacother. 2024;173:116304. doi: 10.1016/j.biopha.2024.116304. PubMed DOI
Fiore C., Salvi M., Palermo M., Sinigaglia G., Armanini D., Toninello A. On the mechanism of mitochondrial permeability transition induction by glycyrrhetinic acid. Biochim. Biophys. Acta-Bioenerg. 2004;1658:195–201. doi: 10.1016/j.bbabio.2004.05.012. PubMed DOI
Jiang J.-H., Pi J., Jin H., Cai J.-Y. Functional graphene oxide as cancer-targeted drug delivery system toselectively induce oesophageal cancer cell apoptosis. Artif. Cells Nanomed. Biotechnol. 2018;46:297–301. doi: 10.1080/21691401.2018.1492418. PubMed DOI
Chauhan A., Joshi H., Kandari D., Aggarwal D., Chauhan R., Tuli H.S., Mehrotra A., Sood A., Sharma U., Mathkar D.M., et al. Oridonin: A natural terpenoid having the potential to modulate apoptosis and survival signaling in cancer. Phytomed. Plus. 2025;5:100721. doi: 10.1016/j.phyplu.2024.100721. DOI
Takebe N., Miele L., Harris P., Jeong W., Bando H., Kahn M., Yang S.X., Ivy S.P. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat. Rev. Clin. Oncol. 2015;12:445–464. doi: 10.1038/nrclinonc.2015.61. PubMed DOI PMC
Iluta S., Nistor M., Buruiana S., Dima D. Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research. Life. 2025;15:228. doi: 10.3390/life15020228. PubMed DOI PMC
Halim A., Luo Q., Ju Y., Song G. A Mini Review Focused on the Recent Applications of Graphene Oxide in Stem Cell Growth and Differentiation. Nanomaterials. 2018;8:736. doi: 10.3390/nano8090736. PubMed DOI PMC
Fiorillo M., Verre A.F., Iliut M., Peiris-Pages M., Ozsvari B., Gandara R., Cappello A.R., Sotgia F., Vijayaraghavan A., Lisanti M.P. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget. 2015;6:3553–3562. doi: 10.18632/oncotarget.3348. PubMed DOI PMC
Suryaprakash S., Li M., Lao Y.-H., Wang H.-X., Leong K.W. Graphene oxide cellular patches for mesenchymal stem cell-based cancer therapy. Carbon. 2018;129:863–868. doi: 10.1016/j.carbon.2017.12.031. DOI
Kang S., Lee J., Ryu S., Kwon Y., Kim K.-H., Jeong D.H., Paik S.R., Kim B.-S. Gold Nanoparticle/Graphene Oxide Hybrid Sheets Attached on Mesenchymal Stem Cells for Effective Photothermal Cancer Therapy. Chem. Mater. 2017;29:3461–3476. doi: 10.1021/acs.chemmater.6b05164. DOI
Haque S., Tripathy S., Patra C.R. Graphene Based Nanomaterials for ROS-Mediated Cancer Therapeutics. In: Chakraborti S., editor. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer; Singapore: 2022. pp. 1–26. DOI
Dash B.S., Jose G., Lu Y.-J., Chen J.-P. Functionalized Reduced Graphene Oxide as a Versatile Tool for Cancer Therapy. Int. J. Mol. Sci. 2021;22:2989. doi: 10.3390/ijms22062989. PubMed DOI PMC
Kretowski R., Cechowska-Pasko M. The Reduced Graphene Oxide (rGO) Induces Apoptosis, Autophagy and Cell Cycle Arrest in Breast Cancer Cells. Int. J. Mol. Sci. 2022;23:9285. doi: 10.3390/ijms23169285. PubMed DOI PMC
Zhang J., Cao H.-Y., Wang J.-Q., Wu G.-D., Wang L. Graphene Oxide and Reduced Graphene Oxide Exhibit Cardiotoxicity Through the Regulation of Lipid Peroxidation, Oxidative Stress, and Mitochondrial Dysfunction. Front. Cell Dev. Biol. 2021;9:616888. doi: 10.3389/fcell.2021.616888. PubMed DOI PMC
Vinothini K., Rajendran N.K., Rajan M., Ramu A., Marraiki N., Elgorban A.M. A magnetic nanoparticle functionalized reduced graphene oxide-based drug carrier system for a chemo-photodynamic cancer therapy. New J. Chem. 2020;44:5265–5277. doi: 10.1039/D0NJ00049C. DOI
Kretowski R., Szynaka B., Jablonska-Trypuc A., Kiełtyka-Dadasiewicz A., Cechowska-Pasko M. The Synergistic Effect of Reduced Graphene Oxide and Proteasome Inhibitor in the Induction of Apoptosis through Oxidative Stress in Breast Cancer Cell Lines. Int. J. Mol. Sci. 2024;25:5436. doi: 10.3390/ijms25105436. PubMed DOI PMC
Tarjanyi O., Haerer J., Vecsernyes M., Berta G., Stayer-Harci A., Balogh B., Farkas K., Boldizsár F., Szeberényi J., Sétáló G., Jr. Prolonged treatment with the proteasome inhibitor MG-132 induces apoptosis in PC12 rat pheochromocytoma cells. Sci. Rep. 2022;12:5808. doi: 10.1038/s41598-022-09763-z. PubMed DOI PMC
Zanotto-Filho A., Braganhol E., Battastini A.M.O., Moreire J.C.F. Proteasome inhibitor MG132 induces selective apoptosis in glioblastoma cells through inhibition of PI3K/Akt and NFkappaB pathways, mitochondrial dysfunction, and activation of p38-JNK1/2 signaling. Invest. New Drugs. 2012;30:2252–2262. doi: 10.1007/s10637-012-9804-z. PubMed DOI
Kavinkumar T., Varunkumar K., Ravikumar V., Manivannan S. Anticancer activity of graphene oxide-reduced graphene oxide-silver nanoparticle composites. J. Colloid Interface Sci. 2017;505:1125–1133. doi: 10.1016/j.jcis.2017.07.002. PubMed DOI
Qian X., Zhang J., Gu Z., Chen Y. Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials. 2019;211:1–13. doi: 10.1016/j.biomaterials.2019.04.023. PubMed DOI
Gurunathan S., Han J.W., Park J.H., Kim E., Choi Y., Kwon D., Kim J. Reduced graphene oxide–silver nanoparticle nanocomposite: A potential anticancer nanotherapy. Int. J. Nanomed. 2015;10:6257–6276. doi: 10.2147/IJN.S92449. PubMed DOI PMC
Yuan Y.-G., Gurunathan S. Combination of graphene oxide–silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int. J. Nanomed. 2017;12:6537–6558. doi: 10.2147/IJN.S125281. PubMed DOI PMC
Yang Y., Liu L., Tian Y., Gu M., Wang Y., Ashrafizadeh M., Aref A.R., Canadas I., Klionsky D.J., Goel A., et al. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Let. 2024;587:216659. doi: 10.1016/j.canlet.2024.216659. PubMed DOI
Coreas R., Castillo C., Li Z., Yan D., Gao Z., Chen J., Bitounis D., Parviz D., Strano M.S., Demokritou P., et al. Biological impacts of reduced graphene oxide affected by protein corona formation. Chem. Res. Toxicol. 2022;35:1244–1256. doi: 10.1021/acs.chemrestox.2c00042. PubMed DOI PMC
Sawosz E., Jaworski S., Kutwin M., Vadalasetty K.P., Grodzik M., Wierzbicki M., Kurantowicz N., Strojny B., Hotowy A., Lipińska L., et al. Graphene Functionalized with Arginine Decreases the Development of Glioblastoma Multiforme Tumor in a Gene-Dependent Manner. Int. J. Mol. Sci. 2015;16:25214–25233. doi: 10.3390/ijms161025214. PubMed DOI PMC
Liu Y., Borchert G.L., Donald S., Diwan B., Anver M., Phang J.M. Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res. 2009;69:6414–6422. doi: 10.1158/0008-5472.CAN-09-1223. PubMed DOI PMC
Keshet R., Erez A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis. Models Mech. 2018;11:dmm033332. doi: 10.1242/dmm.033332. PubMed DOI PMC
Hajipour Keyvani A., Mohammadnejad P., Pazoki-Toroudi H., Perez Gilabert I., Chu T., Manshian B.B., Soenen S.J., Sohrabi B. Advancements in Cancer Treatment: Harnessing the Synergistic Potential of Graphene-Based Nanomaterials in Combination Therapy. ACS Appl. Mater. Interfaces. 2025;17:2756–2790. doi: 10.1021/acsami.4c15536. PubMed DOI
Rasool M., Malik A., Waquar S., Arooj M., Zahid S., Asif M. New challenges in the use of nanomedicine in cancer therapy. Bioengineered. 2022;13:759–773. doi: 10.1080/21655979.2021.2012907. PubMed DOI PMC
Asadi M., Ghorbani S.H., Mahdavian L., Aghamohammadi M. Graphene-based hybrid composites for cancer diagnostic and therapy. J. Transl. Med. 2024;22:611. doi: 10.1186/s12967-024-05438-7. PubMed DOI PMC
Boddu A., Obireddy S.R., Zhang D., Krishna Rao K.S.V., Lai W.-F. ROS-generating, pH-responsive and highly tunable reduced graphene oxide-embedded microbeads showing intrinsic anticancer properties and multi-drug co-delivery capacity for combination cancer therapy. Drug Deliv. 2022;29:2481–2490. doi: 10.1080/10717544.2022.2100512. PubMed DOI PMC
Khakpour E., Salehi S., Naghib S.M., Ghorbanzadeh S., Zhang W. Graphene-based nanomaterials for stimuli-sensitive controlled delivery of therapeutic molecules. Front. Bioeng. Biotechnol. 2023;11:1129768. doi: 10.3389/fbioe.2023.1129768. PubMed DOI PMC
Semenov K.N., Shemchuk O.S., Ageev S.V., Andoskin P.A., Iurev G.O., Murin I.V., Kozhukhov P.K., Maystrenko D.N., Molchanov E.E., Kholmurodova D.K., et al. Development of Graphene-Based Materials with the Targeted Action for Cancer Theranostics. Biochemistry. 2024;89:1362–1391. doi: 10.1134/S0006297924080029. PubMed DOI
Mukherjee S., Mukherjee A., Bytesnikova Z., Ashrafi A.M., Richtera L., Adam V. 2D graphene-based advanced nanoarchitectonics for electrochemical biosensors: Applications in cancer biomarker detection. Biosens. Bioelectron. 2024;250:116050. doi: 10.1016/j.bios.2024.116050. PubMed DOI
Sadeghi M.S., Sangrizeh F.H., Jahani N., Abedin M.S., Chaleshgari S., Ardakan A.K., Baeelashaki R., Ranjbarpazuki G., Rahmanian P., Zandieh M.A., et al. Graphene oxide nanoarchitectures in cancer therapy: Drug and gene delivery, phototherapy, immunotherapy, and vaccine development. Environ. Res. 2023;237:117027. doi: 10.1016/j.envres.2023.117027. PubMed DOI
Fucikova J., Keep O., Kasikova L., Petroni G., Yamazaki T., Liu P., Zhao L., Spisek R., Kroemer G., Galluzzi Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020;11:1013. doi: 10.1038/s41419-020-03221-2. PubMed DOI PMC
Yunus M.A., Ramli M.M., Osman N.H., Mohamed R. Stimulation of Innate and Adaptive Immune Cells with Graphene Oxide and Reduced Graphene Oxide Affect Cancer Progression. Arch. Immunol. Ther. Exp. 2021;69:20. doi: 10.1007/s00005-021-00625-6. PubMed DOI
Xu C., Hong H., Lee Y., Park K.S., Sun M., Wang T., Aikins M.E., Xu Y., Moon J.J. Efficient Lymph Node-Targeted Delivery of Personalized Cancer Vaccines with Reactive Oxygen Species-Inducing Reduced Graphene Oxide Nanosheets. ACS Nano. 2020;14:13268–13278. doi: 10.1021/acsnano.0c05062. PubMed DOI PMC
Yue H., Wei W., Gu Z., Ni D., Luo N., Yang Z., Zhao L., Garate J.A., Zhou R., Su Z., et al. Exploration of graphene oxide as an intelligent platform for cancer vaccines. Nanoscale. 2015;7:19949–19957. doi: 10.1039/C5NR04986E. PubMed DOI
Jomova K., Alomar S.Y., Alwasel S.H., Nepovimova E., Kuca K., Valko M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024;98:1323–1367. doi: 10.1007/s00204-024-03696-4. PubMed DOI PMC
Ristic B., Harhaji-Trajkovic L., Bosnjak M., Dakic I., Mijatovic S., Trajkovic V. Modulation of Cancer Cell Autophagic Responses by Graphene-Based Nanomaterials: Molecular Mechanisms and Therapeutic Implications. Cancers. 2021;13:4145. doi: 10.3390/cancers13164145. PubMed DOI PMC
Sandbhor P., Palkar P., Bhat S., John G., Goda J.S. Nanomedicine as a multimodal therapeutic paradigm against cancer: On the way forward in advancing precision therapy. Nanoscale. 2024;16:6330–6364. doi: 10.1039/D3NR06131K. PubMed DOI
Tabish T.A., Narayan R.J. Mitochondria-targeted graphene for advanced cancer therapeutics. Acta Biomater. 2021;129:43–56. doi: 10.1016/j.actbio.2021.04.054. PubMed DOI