New findings on the action of hypericin in hypoxic cancer cells with a focus on the modulation of side population cells
Jazyk angličtina Země Francie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37146419
PubMed Central
PMC10227191
DOI
10.1016/j.biopha.2023.114829
PII: S0753-3322(23)00619-4
Knihovny.cz E-zdroje
- Klíčová slova
- Breast cancer resistance protein, ECM reorganization, Hypericin, Hypoxia, Proteomics, Side population,
- MeSH
- ABC transportér z rodiny G, člen 2 genetika metabolismus MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa metabolismus MeSH
- hypoxie buňky MeSH
- hypoxie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádorové proteiny genetika metabolismus MeSH
- nádory * metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- transkripční faktory bHLH genetika metabolismus MeSH
- vedlejší populace buněk * patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportér z rodiny G, člen 2 MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
- hypericin MeSH Prohlížeč
- nádorové proteiny MeSH
- transkripční faktory bHLH MeSH
The presence of key hypoxia regulators, namely, hypoxia-inducible factor (HIF)-1α or HIF-2α, in tumors is associated with poor patient prognosis. Hypoxia massively activates several genes, including the one encoding the BCRP transporter that proffers multidrug resistance to cancer cells through the xenobiotic efflux and is a determinant of the side population (SP) associated with cancer stem-like phenotypes. As natural medicine comes to the fore, it is instinctive to look for natural agents possessing powerful features against cancer resistance. Hypericin, a pleiotropic agent found in Hypericum plants, is a good example as it is a BCRP substrate and potential inhibitor, and an SP and HIF modulator. Here, we showed that hypericin efficiently accumulated in hypoxic cancer cells, degraded HIF-1/2α, and decreased BCRP efflux together with hypoxia, thus diminishing the SP population. On the contrary, this seemingly favorable result was accompanied by the stimulated migration of this minor population that preserved the SP phenotype. Because hypoxia unexpectedly decreased the BCRP level and SP fraction, we compared the SP and non-SP proteomes and their changes under hypoxia in the A549 cell line. We identified differences among protein groups connected to the epithelial-mesenchymal transition, although major changes were related to hypoxia, as the upregulation of many proteins, including serpin E1, PLOD2 and LOXL2, that ultimately contribute to the initiation of the metastatic cascade was detected. Altogether, this study helps in clarifying the innate and hypoxia-triggered resistance of cancer cells and highlights the ambivalent role of natural agents in the biology of these cells.
Zobrazit více v PubMed
Emami Nejad A., Najafgholian S., Rostami A., Sistani A., Shojaeifar S., Esparvarinha M., Nedaeinia R., Haghjooy Javanmard S., Taherian M., Ahmadlou M., Salehi R., Sadeghi B., Manian M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int. 2021;21 doi: 10.1186/s12935-020-01719-5. PubMed DOI PMC
Semenza G.L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29:625–634. doi: 10.1038/onc.2009.441. PubMed DOI PMC
Dengler V.L., Galbraith M.D., Espinosa J.M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 2014;49:1–15. doi: 10.3109/10409238.2013.838205. PubMed DOI PMC
Hu C.-J., Wang L.-Y., Chodosh L.A., Keith B., Simon M.C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol. Cell. Biol. 2003;23:9361–9374. doi: 10.1128/mcb.23.24.9361-9374.2003. PubMed DOI PMC
Covello K.L., Kehler J., Yu H., Gordan J.D., Arsham A.M., Hu C.J., Labosky P.A., Simon M.C., Keith B. HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006;20:557–570. doi: 10.1101/gad.1399906. PubMed DOI PMC
Sowa T., Menju T., Chen-Yoshikawa T.F., Takahashi K., Nishikawa S., Nakanishi T., Shikuma K., Motoyama H., Hijiya K., Aoyama A., Sato T., Sonobe M., Harada H., Date H. Hypoxia-inducible factor 1 promotes chemoresistance of lung cancer by inducing carbonic anhydrase IX expression. Cancer Med. 2017;6:288–297. doi: 10.1002/cam4.991. PubMed DOI PMC
He X., Wang J., Wei W., Shi M., Xin B., Zhang T., Shen X. Hypoxia regulates ABCG2 activity through the activivation of ERK1/2/HIF-1α and contributes to chemoresistance in pancreatic cancer cells. Cancer Biol. Ther. 2016;17:188–198. doi: 10.1080/15384047.2016.1139228. PubMed DOI PMC
He M., Wu H., Jiang Q., Liu Y., Han L., Yan Y., Wei B., Liu F., Deng X., Chen H., Zhao L., Wang M., Wu X., Yao W., Zhao H., Chen J., Wei M. Hypoxia-inducible factor-2α directly promotes BCRP expression and mediates the resistance of ovarian cancer stem cells to adriamycin. Mol. Oncol. 2019;13:403–421. doi: 10.1002/1878-0261.12419. PubMed DOI PMC
Das B., Tsuchida R., Malkin D., Koren G., Baruchel S., Yeger H. Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells. 2008;26:1818–1830. doi: 10.1634/stemcells.2007-0724. PubMed DOI
Zhou S., Schuetz J.D., Bunting K.D., Colapietro A.M., Sampath J., Morris J.J., Lagutina I., Grosveld G.C., Osawa M., Nakauchi H., Sorrentino B.P. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7(9):1028–1034. doi: 10.1038/nm0901-1028. PubMed DOI
Adamska A., Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: what is the way forward? World J. Gastroenterol. 2018;24:3222–3238. doi: 10.3748/wjg.v24.i29.3222. PubMed DOI PMC
Rook A.H., Wood G.S., Duvic M., Vonderheid E.C., Tobia A., Cabana B. A phase II placebo-controlled study of photodynamic therapy with topical hypericin and visible light irradiation in the treatment of cutaneous T-cell lymphoma and psoriasis. J. Am. Acad. Dermatol. 2010;63:984–990. doi: 10.1016/j.jaad.2010.02.039. PubMed DOI
Ritz R., Daniels R., Noell S., Feigl G.C., Schmidt V., Bornemann A., Ramina K., Mayer D., Dietz K., Strauss W.S.L., Tatagiba M. Hypericin for visualization of high grade gliomas: first clinical experience. Eur. J. Surg. Oncol. 2012;38:352–360. doi: 10.1016/j.ejso.2011.12.021. PubMed DOI
Stroffekova K., Tomkova S., Huntosova V., Kozar T. Importance of Hypericin-Bcl2 interactions for biological effects at subcellular levels. Photodiagn. Photodyn. Ther. 2019;28:38–52. doi: 10.1016/j.pdpdt.2019.08.016. PubMed DOI
Martínez-Poveda B., Quesada A.R., Medina M.Á. Hypericin in the dark inhibits key steps of angiogenesis in vitro. Eur. J. Pharm. 2005;516:97–103. doi: 10.1016/j.ejphar.2005.03.047. PubMed DOI
Blank M., Mandel M., Hazan S., Keisari Y., Lavie G. Anti-cancer activities of hypericin in the dark. Photochem. Photobiol. 2001;74:120–125. doi: 10.1562/0031-8655(2001)0740120ACAOHI2.0.CO2. PubMed DOI
Blank M., Lavie G., Mandel M., Hazan S., Urenstein A., Meruelo D., Keisari Y. Antimetastatic activity of the photodynamic agent hypericin in the dark. Int. J. Cancer. 2004;111:596–603. doi: 10.1002/ijc.20285. PubMed DOI
Couldwell W.T., Surnock A.A., Tobia A.J., Cabana B.E., Stillerman C.B., Forsyth P.A., Appley A.J., Spence A.M., Hinton D.R., Chen T.C. A phase 1/2 study of orally administered synthetic hypericin for treatment of recurrent malignant gliomas. Cancer. 2011;117:4905–4915. doi: 10.1002/cncr.26123. PubMed DOI
Šemeláková M., Sačková V., Fedoročko P. The potential of hypericin and hyperforin for antiadhesion therapy to prevent metastasis of parental and oxaliplatin-resistant human adenocarcinoma cells (HT-29) Anticancer Drugs. 2018;29:983–994. doi: 10.1097/CAD.0000000000000676. PubMed DOI
Jendželovská Z., Jendželovský R., Hiľovská L., Kovaľ J., Mikeš J., Fedoročko P. Single pre-treatment with hypericin, a St. John’s wort secondary metabolite, attenuates cisplatin- and mitoxantrone-induced cell death in A2780, A2780cis and HL-60 cells. Toxicol. Vitr. 2014;28:1259–1273. doi: 10.1016/j.tiv.2014.06.011. PubMed DOI
Jendželovský R., Jendželovská Z., Kuchárová B., Fedoročko P. Breast cancer resistance protein is the enemy of hypericin accumulation and toxicity of hypericin-mediated photodynamic therapy. Biomed. Pharmacother. 2019;109:2173–2181. doi: 10.1016/j.biopha.2018.11.084. PubMed DOI
Vargová J., Mikeš J., Jendželovský R., Mikešová L., Kuchárová B., Čulka Ľ., Fedr R., Remšík J., Souček K., Kozubík A., Fedoročko P. Hypericin affects cancer side populations via competitive inhibition of BCRP. Biomed. Pharmacother. 2018;99:511–522. doi: 10.1016/j.biopha.2018.01.074. PubMed DOI
Barliya T., Mandel M., Livnat T., Weinberger D., Lavie G. Degradation of HIF-1alpha under hypoxia combined with induction of Hsp90 polyubiquitination in cancer cells by hypericin: a unique cancer therapy. PLoS One. 2011;6 doi: 10.1371/journal.pone.0022849. PubMed DOI PMC
Fedr R., Pernicová Z., Slabáková E., Straková N., Bouchal J., Grepl M., Kozubík A., Souček K. Automatic cell cloning assay for determining the clonogenic capacity of cancer and cancer stem-like cells. Cytom. Part A. 2013;83 A:472–482. doi: 10.1002/cyto.a.22273. PubMed DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., Pérez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz Ş., Tiwary S., Cox J., Audain E., Walzer M., Jarnuczak A.F., Ternent T., Brazma A., Vizcaíno J.A. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Kleban J., Mikeš J., Szilárdiová B., Kovaľ J., Sačková V., Solár P., Horváth V., Hofmanová J., Kozubík A., Fedoročko P. Modulation of hypericin photodynamic therapy by pretreatment with 12 various inhibitors of arachidonic acid metabolism in colon adenocarcinoma HT-29 cells. Photochem. Photobiol. 2007;83:1174–1185,. doi: 10.1111/j.1751-1097.2007.00127.x. PubMed DOI
Tompkins L.M., Li H., Li L., Lynch C., Xie Y., Nakanishi T., Ross D.D., Wang H. A novel xenobiotic responsive element regulated by aryl hydrocarbon receptor is involved in the induction of BCRP/ABCG2 in LS174T cells. Biochem. Pharm. 2010;80:1754–1761. doi: 10.1016/j.bcp.2010.08.016. PubMed DOI PMC
Vorrink S.U., Severson P.L., Kulak M.V., Futscher B.W., Domann F.E. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines. Toxicol. Appl. Pharm. 2014;274:408–416. doi: 10.1016/j.taap.2013.12.002. PubMed DOI PMC
Ye W., Chen R., Chen X., Huang B., Lin R., Xie X., Chen J., Jiang J., Deng Y., Wen J. AhR regulates the expression of human cytochrome P450 1A1 (CYP1A1) by recruiting Sp1. FEBS J. 2019;286:4215–4231. doi: 10.1111/febs.14956. PubMed DOI
Robey R.W., Honjo Y., Morisaki K., Nadjem T.A., Runge S., Risbood M., Poruchybsky M.S., Bates S.E. Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br. J. Cancer. 2003;89:1971–1978. doi: 10.1038/sj.bjc.6601370. PubMed DOI PMC
Walsh C.A., Akrap N., Garre E., Magnusson Y., Harrison H., Andersson D., Jonasson E., Rafnsdottir S., Choudhry H., Buffa F., Ragoussis J., Ståhlberg A., Harris A., Landberg G. The mevalonate precursor enzyme HMGCS1 is a novel marker and key mediator of cancer stem cell enrichment in luminal and basal models of breast cancer. PLoS One. 2020;15 doi: 10.1371/journal.pone.0236187. PubMed DOI PMC
Liang L., Zeng M., Pan H., Liu H., He Y. Nicotinamide N-methyltransferase promotes epithelial-mesenchymal transition in gastric cancer cells by activating transforming growth factor-β1 expression. Oncol. Lett. 2018;15:4592–4598. doi: 10.3892/ol.2018.7885. PubMed DOI PMC
Lupia M., Angiolini F., Bertalot G., Freddi S., Sachsenmeier K.F., Chisci E., Kutryb-Zajac B., Confalonieri S., Smolenski R.T., Giovannoni R., Colombo N., Bianchi F., Cavallaro U. CD73 regulates stemness and epithelial-mesenchymal transition in ovarian cancer-initiating cells. Stem Cell Rep. 2018;10:1412–1425. doi: 10.1016/j.stemcr.2018.02.009. PubMed DOI PMC
Wang M., Ren D., Guo W., Huang S., Wang Z., Li Q., Du H., Song L., Peng X. N-cadherin promotes epithelial-mesenchymal transition and cancer stem cell-like traits via ErbB signaling in prostate cancer cells. Int. J. Oncol. 2016;48:595–606. doi: 10.3892/ijo.2015.3270. PubMed DOI
Wang Z., Yu Z., Wang G.H., Zhou Y.M., Deng J.P., Feng Y., Chen J.Q., Tian L. Aurkb promotes the metastasis of gastric cancer, possibly by inducing EMT. Cancer Manag. Res. 2020;12:6947–6958. doi: 10.2147/CMAR.S254250. PubMed DOI PMC
Wu Y., Peng Y., Wu M., Zhang W., Zhang M., Xie R., Zhang P., Bai Y., Zhao J., Li A., Nan Q., Chen Y., Ren Y., Liu S., Wang J. Oncogene FOXK1 enhances invasion of colorectal carcinoma by inducing epithelial-mesenchymal transition. Oncotarget. 2016;7:51150–51162. doi: 10.18632/oncotarget.9457. PubMed DOI PMC
Zhang Q., Han M., Wang W., Song Y., Chen G., Wang Z., Liang Z. Downregulation of cathepsin L suppresses cancer invasion and migration by inhibiting transforming growth factor-β-mediated epithelial-mesenchymal transition. Oncol. Rep. 2015;33:1851–1859. doi: 10.3892/or.2015.3754. PubMed DOI
Zhao Y., He J., Li Y., Xu M., Peng X., Mao J., Xu B., Cui H. PHF14 promotes cell proliferation and migration through the AKT and ERK1/2 pathways in gastric cancer cells. BioMed Res. Int. 2020;(2020) doi: 10.1155/2020/6507510. PubMed DOI PMC
Yang Y., Mei Q. Accumulation of AGO2 facilitates tumorigenesis of human hepatocellular carcinoma. BioMed Res. Int. 2020;(2020) doi: 10.1155/2020/1631843. PubMed DOI PMC
Tome-Garcia J., Erfani P., Nudelman G., Tsankov A.M., Katsyv I., Tejero R., bin Zhang M., Walsh R.H., Friedel E., Zaslavsky N.M., Tsankova Analysis of chromatin accessibility uncovers TEAD1 as a regulator of migration in human glioblastoma. Nat. Commun. 2018;9 doi: 10.1038/s41467-018-06258-2. PubMed DOI PMC
Du R., Xia L., Ning X., Liu L., Sun W., Huang C., Wang H., Sun S. Hypoxia-induced Bmi1 promotes renal tubular epithelial cell-mesenchymal transition and renal fibrosis via PI3K/Akt signal. Mol. Biol. Cell. 2014;25:2650–2659. doi: 10.1091/mbc.E14-01-0044. PubMed DOI PMC
Gu M., Zheng W., Zhang M., Dong X., Zhao Y., Wang S., Jiang H., Liu L., Zheng X. Downregulation of RAI14 inhibits the proliferation and invasion of breast cancer cells. J. Cancer. 2019;10:6341–6348. doi: 10.7150/jca.34910. PubMed DOI PMC
Gai X., Tu K., Lu Z., Zheng X. MRC2 expression correlates with TGFβ1 and survival in hepatocellular carcinoma. Int. J. Mol. Sci. 2014;15:15011–15025. doi: 10.3390/ijms150915011. PubMed DOI PMC
Ribatti D., Tamma R., Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl. Oncol. 2020;13 doi: 10.1016/j.tranon.2020.100773. PubMed DOI PMC
Ueki Y., Saito K., Iioka H., Sakamoto I., Kanda Y., Sakaguchi M., Horii A., Kondo E. PLOD2 is essential to functional activation of integrin β1 for invasion/metastasis in head and neck squamous cell carcinomas. IScience. 2020;23 doi: 10.1016/j.isci.2020.100850. PubMed DOI PMC
Esquer H., Zhou Q., Abraham A.D., LaBarbera D.V. Advanced high-content-screening applications of clonogenicity in cancer. SLAS Discov. 2020;25:734–743. doi: 10.1177/2472555220926921. PubMed DOI
Sung J.M., Cho H.J., Yi H., Lee C.H., Kim H.S., Kim D.K., Abd El-Aty A.M., Kim J.S., Landowski C.P., Hediger M.A., Shin H.C. Characterization of a stem cell population in lung cancer A549 cells. Biochem. Biophys. Res. Commun. 2008;371:163–167. doi: 10.1016/j.bbrc.2008.04.038. PubMed DOI
Muñoz-Sánchez J., Chánez-Cárdenas M.E. The use of cobalt chloride as a chemical hypoxia model. J. Appl. Toxicol. 2019;39:556–570. doi: 10.1002/jat.3749. PubMed DOI
Befani C., Mylonis I., Gkotinakou I.M., Georgoulias P., Hu C.J., Simos G., Liakos P. Cobalt stimulates HIF-1-dependent but inhibits HIF-2-dependent gene expression in liver cancer cells. Int. J. Biochem. Cell Biol. 2013;45:2359–2368. doi: 10.1016/j.biocel.2013.07.025. PubMed DOI PMC
Artemov A., Zhigalova N., Mazur A.M., Prokhortchouk E.B. Transcriptome sequencing revealed differences in the response of renal cancer cells to hypoxia and CoCl2 treatment. F1000Res. 2015;4 doi: 10.12688/f1000research.7571.1. PubMed DOI PMC
Francois L.N., Gorczyca L., Du J., Bircsak K.M., Yen E., Wen X., Tu M.J., Yu A.M., Illsley N.P., Zamudio S., Aleksunes L.M. Down-regulation of the placental BCRP/ABCG2 transporter in response to hypoxia signaling. Placenta. 2017;51:57–63. doi: 10.1016/j.placenta.2017.01.125. PubMed DOI PMC
Gorczyca L., Du J., Bircsak K.M., Wen X., Vetrano A.M., Aleksunes L.M. Low oxygen tension differentially regulates the expression of placental solute carriers and ABC transporters. FEBS Lett. 2021;595:811–827. doi: 10.1002/1873-3468.13937. PubMed DOI PMC
Mahkamova K., Latar N., Aspinall S., Meeson A. Hypoxia increases thyroid cancer stem cell-enriched side population. World J. Surg. 2018;42:350–357. doi: 10.1007/s00268-017-4331-x. PubMed DOI PMC
Tavaluc T.T., Hart L.T., Dicker D.T., El-Deiry W.S. Effects of low confluency, serum starvation and hypoxia on the side population of cancer cell lines. Cell Cycle. 2007;6:2554–2562. doi: 10.4161/cc.6.20.4911. PubMed DOI
Hu L., McArthur C., Jaffe R.B. Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br. J. Cancer. 2010;102:1276–1283. doi: 10.1038/sj.bjc.6605626. PubMed DOI PMC
Steiniger S.C.J., Coppinger J.A., Krüger J.A., Yates J., Janda K.D. Quantitative mass spectrometry identifies drug targets in cancer stem cell-containing side population. Stem Cells. 2008;26:3037–3046. doi: 10.1634/stemcells.2008-0397. PubMed DOI PMC
Huang H.C., Hu C.H., Tang M.C., Wang W.S., Chen P.M., Su Y. Thymosin β4 triggers an epithelial-mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase. Oncogene. 2007;26:2781–2790. doi: 10.1038/sj.onc.1210078. PubMed DOI
Seo D.C., Sung J.M., Cho H.J., Yi H., Seo K.H., Choi I.S., Kim D.K., Kim J.S., Abd El-Aty A.M., Shin H.C. Gene expression profiling of cancer stem cell in human lung adenocarcinoma A549 cells. Mol. Cancer. 2007;6 doi: 10.1186/1476-4598-6-75. PubMed DOI PMC
Oda T., Tian T., Inoue M., Ikeda J.I., Qiu Y., Okumura M., Aozasa K., Morii E. Tumorigenic role of orphan nuclear receptor NR0B1 in lung adenocarcinoma. Am. J. Pathol. 2009;175:1235–1245. doi: 10.2353/ajpath.2009.090010. PubMed DOI PMC
Platet N., Mayol J.F., Berger F., Hérodin F., Wion D. Fluctuation of the SP/non-SP phenotype in the C6 glioma cell line. FEBS Lett. 2007;581:1435–1440. doi: 10.1016/j.febslet.2007.02.071. PubMed DOI
Eisinger-Mathason T.S.K., Zhang M., Qiu Q., Skuli N., Nakazawa M.S., Karakasheva T., Mucaj V., Shay J.E.S., Stangenberg L., Sadri N., Puré E., Yoon S.S., Kirsch D.G., Simon M.C. Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis. Cancer Discov. 2013;3:1190–1205. doi: 10.1158/2159-8290.CD-13-0118. PubMed DOI PMC
Gilkes D.M., Bajpai S., Chaturvedi P., Wirtz D., Semenza G.L. Hypoxia-inducible f0actor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J. Biol. Chem. 2013;288:10819–10829. doi: 10.1074/jbc.M112.442939. PubMed DOI PMC
Kai F.B., Drain A.P., Weaver V.M. The extracellular matrix modulates the metastatic journey. Dev. Cell. 2019;49:332–346. doi: 10.1016/j.devcel.2019.03.026. PubMed DOI PMC
Gairola K., Gururani S., Bahuguna A., Garia V., Pujari R., Dubey S.K. Natural products targeting cancer stem cells: implications for cancer chemoprevention and therapeutics. J. Food Biochem. 2021;45 doi: 10.1111/jfbc.13772. PubMed DOI
Meerson A., Khatib S., Mahajna J. Flavonoids targeting cancer stem cells for augmenting cancer therapeutics. Int. J. Mol. Sci. 2021;22 doi: 10.3390/ijms222313044. PubMed DOI PMC
Keith B., Johnson R.S., Simon M.C. HIF1α and HIF2α: sibling rivalry in hypoxic tumor growth and progression. Nat. Rev. Cancer. 2012;12:9–22. doi: 10.1038/nrc3183. PubMed DOI PMC
Zhang S., Zhao L., Wang J., Chen N., Yan J., Pan X. HIF-2α and Oct4 have synergistic effects on survival and myocardial repair of very small embryonic-like mesenchymal stem cells in infarcted hearts. Cell Death Dis. 2017;8 doi: 10.1038/cddis.2016.480. PubMed DOI PMC
Greijer A.E., de Jong M.C., Scheffer G.L., Shvarts A., van Diest P.J., van der Wall E. Hypoxia-induced acidification causes mitoxantrone resistance not mediated by drug transporters in human breast cancer cells. Cell Oncol. 2005;27:43–49. doi: 10.1155/2005/236045. PubMed DOI PMC
Sheng X., Li Y., Li Y., Liu W., Lu Z., Zhan J., Xu M., Chen L., Luo X., Cai G., Zhang S. PLOD2 contributes to drug resistance in laryngeal cancer by promoting cancer stem cell-like characteristics. BMC Cancer. 2019;19 doi: 10.1186/s12885-019-6029-y. PubMed DOI PMC
Jiang H., Lin X., Liu Y., Gong W., Ma X., Yu Y., Xie Y., Sun X., Feng Y., Janzen V., Chen T. Transformation of epithelial ovarian cancer stemlike cells into mesenchymal lineage via EMT results in cellular heterogeneity and supports tumor engraftment. Mol. Med. 2012;18:1197–1208. doi: 10.2119/molmed.2012.00075. PubMed DOI PMC
Luo Y., Cui X., Zhao J., Han Y., Li M., Lin Y., Jiang Y., Lan L. Cells susceptible to epithelial-mesenchymal transition are enriched in stem-like side population cells from prostate cancer. Oncol. Rep. 2014;31:874–884. doi: 10.3892/or.2013.2905. PubMed DOI