Clindamycin-Loaded Nanosized Calcium Phosphates Powders as a Carrier of Active Substances
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
POIR.04.04.00-00-16D7/18
Foundation for Polish Science
PubMed
37177013
PubMed Central
PMC10180150
DOI
10.3390/nano13091469
PII: nano13091469
Knihovny.cz E-zdroje
- Klíčová slova
- antibiotic, brushite, calcium phosphates, ceramics, clindamycin, drug delivery system, hydroxyapatite,
- Publikační typ
- časopisecké články MeSH
Bioactive calcium phosphate ceramics (CaPs) are one of the building components of the inorganic part of bones. Synthetic CaPs are frequently used as materials for filling bone defects in the form of pastes or composites; however, their porous structure allows modification with active substances and, thus, subsequent use as a drug carrier for the controlled release of active substances. In this study, four different ceramic powders were compared: commercial hydroxyapatite (HA), TCP, brushite, as well as HA obtained by wet precipitation methods. The ceramic powders were subjected to physicochemical analysis, including FTIR, XRD, and determination of Ca/P molar ratio or porosity. These techniques confirmed that the materials were phase-pure, and the molar ratios of calcium and phosphorus elements were in accordance with the literature. This confirmed the validity of the selected synthesis methods. CaPs were then modified with the antibiotic clindamycin. Drug release was determined on HPLC, and antimicrobial properties were tested against Staphylococcus aureus. The specific surface area of the ceramic has been demonstrated to be a factor in drug release efficiency.
Zobrazit více v PubMed
Zang S., Chang S., Shahzad M.B., Sun X., Jiang X., Yang H. Ceramics-based Drug Delivery System: A Review and Outlook. Rev. Adv. Mater. Sci. 2019;58:82–97. doi: 10.1515/rams-2019-0010. DOI
Trucillo P. Drug Carriers: Classification, Administration, Release Profiles, and Industrial Approach. Processes. 2021;9:470. doi: 10.3390/pr9030470. DOI
Adeyemi O.S., Sulaiman F.A. Evaluation of metal nanoparticles for drug delivery systems. J. Biomed. Res. 2015;29:145–149. doi: 10.7555/JBR.28.20130096. PubMed DOI PMC
Kong F.Y., Zhang J.W., Li R.F., Wang Z.X., Wang W.J., Wang W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules. 2017;22:1445. doi: 10.3390/molecules22091445. PubMed DOI PMC
Singh P., Pandit S., Mokkapati V.R.S.S., Garg A., Ravikumar V., Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 2018;19:1979. doi: 10.3390/ijms19071979. PubMed DOI PMC
Jampilek J., Kralova K. Advances in drug delivery nanosystems using graphene-based materials and carbon nanotubes. Materials. 2021;14:1059. doi: 10.3390/ma14051059. PubMed DOI PMC
Tanaka M., Aoki K., Haniu H., Kamanaka T., Takizawa T., Sobajima A., Yoshida K., Okamoto M., Kato H., Saito N. Applications of carbon nanotubes in bone regenerative medicine. Nanomaterials. 2020;10:659. doi: 10.3390/nano10040659. PubMed DOI PMC
Anisimov R.A., Gorin D.A., Abalymov A.A. 3D Cell Spheroids as a Tool for Evaluating the Effectiveness of Carbon Nanotubes as a Drug Delivery and Photothermal Therapy Agents. C. 2022;8:56. doi: 10.3390/c8040056. DOI
Nair A., Haponiuk J.T., Thomas S., Gopi S. Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomed. Pharmacother. 2020;132:110834. doi: 10.1016/j.biopha.2020.110834. PubMed DOI PMC
Iannazzo D., Pistone A., Celesti C., Triolo C., Patané S., Giofré S.V., Romeo R., Ziccarelli I., Mancuso R., Gabriele B., et al. A smart nanovector for cancer targeted drug delivery based on graphene quantum dots. Nanomaterials. 2019;9:282. doi: 10.3390/nano9020282. PubMed DOI PMC
Mousavi S.M., Hashemi S.A., Kalashgrani M.Y., Omidifar N., Bahrani S., Rao N.V., Babapoor A., Gholami A., Chiang W.H. Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications. Polymers. 2022;14:617. doi: 10.3390/polym14030617. PubMed DOI PMC
Festas A.J., Ramos A., Davim J.P. Medical devices biomaterials—A review. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2020;234:218–228. doi: 10.1177/1464420719882458. DOI
Li H., Li C., Wu L., Wang H., Li J., Fu M., Wang C.A. In-situ synthesis and properties of porous cordierite ceramics with adjustable pore structure. Ceram. Int. 2020;46:14808–14815. doi: 10.1016/j.ceramint.2020.03.005. DOI
Gbureck U., Vorndran E., Barralet J.E. Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions. Acta Biomater. 2008;4:1480–1486. doi: 10.1016/j.actbio.2008.02.027. PubMed DOI
Zamoume O., Thibault S., Regnié G., Mecherri M.O., Fiallo M., Sharrock P. Macroporous calcium phosphate ceramic implants for sustained drug delivery. Mater. Sci. Eng. C. 2011;31:1352–1356. doi: 10.1016/j.msec.2011.04.020. DOI
Vezenkova A., Locs J. Sudoku of porous, injectable calcium phosphate cements—Path to osteoinductivity. Bioact. Mater. 2022;17:109–124. doi: 10.1016/j.bioactmat.2022.01.001. PubMed DOI PMC
Mahjoory M., Shahgholi M., Karimipour A. The Effects of Initial Temperature and Pressure on the Mechanical Properties of Reinforced Calcium Phosphate Cement with Magnesium Nanoparticles; a Molecular Dynamics Approach. SSRN Electron. J. 2022;135:106067. doi: 10.2139/ssrn.4025902. DOI
Kołodziejska B., Kaflak A., Kolmas J. Biologically inspired collagen/apatite composite biomaterials for potential use in bone tissue regeneration—A review. Materials. 2020;13:1748. doi: 10.3390/ma13071748. PubMed DOI PMC
Motameni A., Alshemary A.Z., Evis Z. A review of synthesis methods, properties and use of monetite cements as filler for bone defects. Ceram. Int. 2021;47:13245–13256. doi: 10.1016/j.ceramint.2021.01.240. DOI
Braga R.R. Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent. Mater. 2019;35:3–14. doi: 10.1016/j.dental.2018.08.288. PubMed DOI
Dorozhkin S.V. Calcium orthophosphates (CaPO4): Occurrence and properties. Prog. Biomater. 2015;5:9–70. doi: 10.1007/s40204-015-0045-z. PubMed DOI PMC
Matsuya S., Takagi S., Chow L.C. Effect of mixing ratio and pH on the reaction between Ca4(PO4)2O and CaHPO4. J. Mater. Sci. Mater. Med. 2000;1:305–311. doi: 10.1023/A:1008961314500. PubMed DOI
Ślósarczyk A. Bioceramika Hydroksyapatytowa. Biuletyn Ceramiczny nr 13 Ceramika 51; Polskie Towarzystwo Ceramiczne; Kraków, Poland: 1997.
Harb S.V., Bassous N.J., de Souza T.A.C., Trentin A., Pulcinelli S.H., Santilli C.V., Webster T.J., Lobo A.O., Hammer P. Hydroxyapatite and β-TCP modified PMMA-TiO2 and PMMA-ZrO2 coatings for bioactive corrosion protection of Ti6Al4V implants. Mater. Sci. Eng. C. 2020;116:111149. doi: 10.1016/j.msec.2020.111149. PubMed DOI
Damerau J.M., Bierbaum S., Wiedemeier D., Korn P., Smeets R., Jenny G., Nadalini J., Stadlinger B. A systematic review on the effect of inorganic surface coatings in large animal models and meta-analysis on tricalcium phosphate and hydroxyapatite on periimplant bone formation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022;110:157–175. doi: 10.1002/jbm.b.34899. PubMed DOI PMC
Shalini B., Kumar A.R. A comparative study of hydroxyapatite (Ca10(PO4)6(OH)2) using sol-gel and co-precipitation methods for biomedical applications. J. Indian Cham. Soc. 2019;96:25–28.
De Aza P.N., Rodríguez M.A., Gehrke S.A., Maté-Sánchez de Val J.E., Calvo-Guirado J.L. A Si-αTCP scaffold for biomedical applications: An experimental study using the rabbit tibia model. Appl. Sci. 2017;7:706. doi: 10.3390/app7070706. DOI
Horch H.H., Sader R., Pautke C., Neff A., Deppe H., Kolk A. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb®) for bone regeneration in the reconstructive surgery of the jaws. Int. J. Oral Maxillofac. Surg. 2006;35:708–713. doi: 10.1016/j.ijom.2006.03.017. PubMed DOI
Sánchez-Salcedo S., Arcos D., Vallet-Regí M. Upgrading Calcium Phosphate Scaffolds for Tissue Engineering Applications. Key Eng. Mater. 2008;377:19–42. doi: 10.4028/www.scientific.net/KEM.377.19. DOI
Mirkiani S., Mesgar A.S., Mohammadi Z., Matinfar M. Synergetic reinforcement of brushite cements by monetite/apatite whisker-like fibers and carboxymethylcellulose. Materialia. 2022;21:101329. doi: 10.1016/j.mtla.2022.101329. DOI
Hurle K., Maia F.R., Ribeiro V.P., Pina S., Oliveira J.M., Goetz-Neunhoeffer F., Reis R.L. Osteogenic lithium-doped brushite cements for bone regeneration. Bioact. Mater. 2022;16:403–417. doi: 10.1016/j.bioactmat.2021.12.025. PubMed DOI PMC
Ben-Nissan B. Advances in Calcium Phosphate Biomaterials. Springer; Berlin/Heidelberg, Germany: 2014.
Qadir M., Li Y., Wen C. Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review. Acta Biomaterialia. 2019;89:14–32. doi: 10.1016/j.actbio.2019.03.006. PubMed DOI
Tavoni M., Dapporto M., Tampieri A., Sprio S. Bioactive calcium phosphate-based composites for bone regeneration. J. Compos. Sci. 2021;5:227. doi: 10.3390/jcs5090227. DOI
Jeong J., Kim J.H., Shim J.H., Hwang N.S., Heo C.Y. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 2019;23:4. doi: 10.1186/s40824-018-0149-3. PubMed DOI PMC
Frank O., Heim M., Jakob M., Barbero A., Schäfer D., Bendik I., Dick W., Heberer M., Martin I. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J. Cell. Biochem. 2002;85:737–746. doi: 10.1002/jcb.10174. PubMed DOI
Whited B.M., Skrtic D., Love B.J., Goldstein A.S. Osteoblast response to zirconia-hybridized pyrophosphate-stabilized amorphous calcium phosphate. J. Biomed. Mater. Res. Part A. 2006;76A:596–604. doi: 10.1002/jbm.a.30573. PubMed DOI PMC
Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. Nippon Med. Sch. 2010;77:4–12. doi: 10.1272/jnms.77.4. PubMed DOI
Bystrova A.V., Dekhtyar Y.D., Popov A.I., Coutinho J., Bystrov V.S. Modified hydroxyapatite structure and properties: Modeling and synchrotron data analysis of modified hydroxyapatite structure. Ferroelectrics. 2015;475:135–147. doi: 10.1080/00150193.2015.995580. DOI
Hübner W., Blume A., Pushnjakova R., Dekhtyar Y., Hein H.J. The influence of X-ray radiation on the mineral/organic matrix interaction of bone tissue: An FT-IR microscopic investigation. Int. J. Artif. Organs. 2005;28:66–73. doi: 10.1177/039139880502800111. PubMed DOI
Moroi H., Kimura K., Ido A., Banno H., Jin W., Wachino J.I., Yamada K., Kikkawa F., Park Y.J., Arakawa Y. Erythromycin-susceptible but clindamycin-resistant phenotype of clinical ermb-pcr-positive group b streptococci isolates with is1216e-inserted ermb. Jpn. J. Infect. Dis. 2019;72:420–422. doi: 10.7883/yoken.JJID.2019.015. PubMed DOI
Hu H., Ramezanpour M., Hayes A.J., Liu S., Psaltis A.J., Wormald P.J., Vreugde S. Sub-inhibitory clindamycin and azithromycin reduce s. Aureus exoprotein induced toxicity, inflammation, barrier disruption and invasion. J. Clin. Med. 2019;8:1617. doi: 10.3390/jcm8101617. PubMed DOI PMC
Ahmadi H., Ebrahimi A., Ahmadi F. Antibiotic Therapy in Dentistry. Int. J. Dent. 2021;2021:1–10. doi: 10.1155/2021/6667624. PubMed DOI PMC
Álvarez L.A., Van de Sijpe G., Desmet S., Metsemakers W.J., Spriet I., Allegaert K., Rozenski J. Ways to Improve Insights into Clindamycin Pharmacology and Pharmacokinetics Tailored to Practice. Antibiotics. 2022;11:701. doi: 10.3390/antibiotics11050701. PubMed DOI PMC
Słota D., Florkiewicz W., Piętak K., Pluta K., Sadlik J., Miernik K., Sobczak-Kupiec A. Preparation of PVP and betaine biomaterials enriched with hydroxyapatite and its evaluation as a drug carrier for controlled release of clindamycin. Ceram. Int. 2022;48:35467–35473. doi: 10.1016/j.ceramint.2022.08.151. DOI
Słota D., Florkiewicz W., Piętak K., Szwed A., Włodarczyk M., Siwińska M., Rudnicka K., Sobczak-Kupiec A. Preparation, Characterization, and Biocompatibility Assessment of Polymer-Ceramic Composites Loaded with Salvia officinalis Extract. Materials. 2021;14:6000. doi: 10.3390/ma14206000. PubMed DOI PMC
Tomala A.M., Słota D., Florkiewicz W., Piętak K., Dyląg M., Sobczak-Kupiec A. Tribological Properties and Physiochemical Analysis of Polymer-Ceramic Composite Coatings for Bone Regeneration. Lubricants. 2022;10:58. doi: 10.3390/lubricants10040058. DOI
Sawada M., Sridhar K., Kanda Y., Yamanaka S. Pure hydroxyapatite synthesis originating from amorphous calcium carbonate. Sci. Rep. 2021;11:1–9. doi: 10.1038/s41598-021-91064-y. PubMed DOI PMC
Słota D., Florkiewicz W., Sobczak-Kupiec A. Ceramic-polymer coatings on Ti-6Al-4V alloy modified with L-cysteine in biomedical applications. Mater. Today Commun. 2020;25:101301. doi: 10.1016/j.mtcomm.2020.101301. DOI
Florkiewicz W., Słota D., Placek A., Pluta K., Tyliszczak B., Douglas T.E.L., Sobczak-Kupiec A. Synthesis and characterization of polymer-based coatings modified with bioactive ceramic and bovine serum albumin. J. Funct. Biomater. 2021;12:21. doi: 10.3390/jfb12020021. PubMed DOI PMC
Gong X., Liang Z., Yang Y., Liu H., Ji J., Fan Y. A resazurin-based, nondestructive assay for monitoring cell proliferation during a scaffold-based 3D culture process. Regen. Biomater. 2020;7:271–281. doi: 10.1093/rb/rbaa002. PubMed DOI PMC
European Committee on Antimicrobial Susceptibility Testing . Breakpoint Tables for Interpretation of MICs and Zone Diameters. European Committee on Antimicrobial Susceptibility Testing; Växjö, Sweden: 2013. Version 13.0.
Bilton M.W. Ph.D. Thesis. University of Leeds; Leeds, UK: 2012. Nanoparticulate Hydroxyapatite and Calcium—Based CO2 Sorbents; pp. 201–282.
Chang M.C. Use of Wet Chemical Method to Prepare β Tri-Calcium Phosphates having Macro- and Nano-crystallites for Artificial Bone. J. Korean Ceram. Soc. 2016;53:670–675. doi: 10.4191/kcers.2016.53.6.670. DOI
Nur A., Jumari A., Budiman A.W., Wicaksono A.H., Nurohmah A.R., Nazriati N., Fajaroh F. Synthesis of nickel—Hydroxyapatite by electrochemical method. IOP Conf. Ser. Mater. Sci. Eng. 2019;543:012026. doi: 10.1088/1757-899X/543/1/012026. DOI
Binitha M.P., Pradyumnan P.P. Dielectric Property Studies of Biologically Compatible Brushite Single Crystals Used as Bone Graft Substitute. J. Biomater. Nanobiotechnol. 2013;4:119–122. doi: 10.4236/jbnb.2013.42016. DOI
Mansour S.F., El-dek S.I., Ahmed M.A., Abd-Elwahab S.M., Ahmed M.K. Effect of preparation conditions on the nanostructure of hydroxyapatite and brushite phases. Appl. Nanosci. 2016;6:991–1000. doi: 10.1007/s13204-015-0509-4. DOI
Ding X., Li A., Yang F., Sun K., Sun X. Β-Tricalcium Phosphate and Octacalcium Phosphate Composite Bioceramic Material for Bone Tissue Engineering. J. Biomater. Appl. 2020;34:1294–1299. doi: 10.1177/0885328220903989. PubMed DOI
Duarte Moreira A.P., Soares Sader M., De Almeida Soares G.D., Leão M.H.M.R. Strontium incorporation on microspheres of alginate/β-tricalcium phosphate as delivery matrices. Mater. Res. 2014;17:967–973. doi: 10.1590/S1516-14392014005000095. DOI
Besleaga C., Nan B., Popa A.C., Balescu L.M., Nedelcu L., Neto A.S., Pasuk I., Leonat L., Popescu-Pelin G., Ferreira J.M.F., et al. Sr and Mg Doped Bi-Phasic Calcium Phosphate Macroporous Bone Graft Substitutes Fabricated by Robocasting: A Structural and Cytocompatibility Assessment. J. Funct. Biomater. 2022;13:123. doi: 10.3390/jfb13030123. PubMed DOI PMC
Rojas-Montoya I.D., Fosado-Esquivel P., Henao-Holguín L.V., Esperanza-Villegas A.E., Bernad-Bernad M.J., Gracia-Mora J. Adsorption/desorption studies of norfloxacin on brushite nanoparticles from reverse microemulsions. Adsorption. 2020;26:825–834. doi: 10.1007/s10450-019-00138-x. DOI
Sayahi M., Santos J., El-Feki H., Charvillat C., Bosc F., Karacan I., Milthorpe B., Drouet C. Brushite (Ca,M)HPO4, 2H2O doping with bioactive ions (M = Mg2+, Sr2+, Zn2+, Cu2+, and Ag+): A new path to functional biomaterials? Mater. Today Chem. 2020;16:100230. doi: 10.1016/j.mtchem.2019.100230. DOI
Idowu B., Cama G., Deb S., Di Silvio L. In vitro osteoinductive potential of porous monetite for bone tissue engineering. J. Tissue Eng. 2014;5:1–4. doi: 10.1177/2041731414536572. PubMed DOI PMC
Ma M.Y., Zhu Y.J., Li L., Cao S.W. Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate: Preparation and application in drug delivery. J. Mater. Chem. 2008;18:2722–2727. doi: 10.1039/b800389k. DOI
Zhao Q., Zhang D., Sun R., Shang S., Wang H., Yang Y., Wang L., Liu X., Sun T., Chen K. Adsorption behavior of drugs on hydroxyapatite with different morphologies: A combined experimental and molecular dynamics simulation study. Ceram. Int. 2019;45:19522–19527. doi: 10.1016/j.ceramint.2019.06.068. DOI
Hybrid Polymer-Inorganic Materials with Hyaluronic Acid as Controlled Antibiotic Release Systems