Hybrid Coatings Based on Polyvinylpyrrolidone/Polyethylene Glycol Enriched with Collagen and Hydroxyapatite: Incubation Studies and Evaluation of Mechanical and Physiochemical Properties

. 2024 Mar 01 ; 15 (3) : . [epub] 20240301

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38535255

Grantová podpora
POIR.04.04.00-00-16D7/18 Foundation for Polish Science
APVV-17-0373 Slovak Research and Development Agency
APVV-21-0321 Slovak Research and Development Agency

Coating materials offers an intriguing solution for imparting inert implants with additional bioactive characteristics without changing underlying parameters such as mechanical strength. Metallic implants like endoprostheses or polymeric implants can be coated with a thin layer of bioactive film capable of stimulating bone-forming cells to proliferate or release a drug. However, irrespective of the final implantation site of such a coating biomaterial, it is necessary to conduct detailed mechanical and physicochemical in vitro analyses to determine its likely behavior under biological conditions. In this study, polymeric and composite coatings with hydroxyapatite obtained under UV light underwent incubation tests in four different artificial biological fluids: simulated body fluid (SBF), artificial saliva, Ringer's fluid, and water (as the reference fluid). The potentiometric and conductometric properties, sorption capacity, and degradation rate of the coatings were examined. Furthermore, their hardness, modulus of elasticity, and deformation were determined. It was demonstrated that the coatings remained stable in SBF liquid at a pH value of around 7.4. In artificial saliva, the greatest degradation of the polymer matrix (ranging between 36.19% and 39.79%) and chipping of hydroxyapatite in the composite coatings were observed. Additionally, the effect of ceramics on sorption capacity was determined, with lower capacity noted with higher HA additions. Moreover, the evaluation of surface morphology supported by elemental microanalysis confirmed the appearance of new apatite layers on the surface as a result of incubation in SBF. Ceramics also influenced mechanical aspects, increasing hardness and modulus of elasticity. For the polymer coatings, the value was 11.48 ± 0.61, while for the composite coating with 15% ceramics, it increased more than eightfold to a value of 93.31 ± 11.18 N/mm2. Based on the conducted studies, the effect of ceramics on the physicochemical as well as mechanical properties of the materials was determined, and their behavior in various biological fluids was evaluated. However, further studies, especially cytotoxicity analyses, are required to determine the potential use of the coatings as biomaterials.

Zobrazit více v PubMed

Chevallier P., Turgeon S., Sarra-Bournet C., Turcotte R., Laroche G. Characterization of multilayer anti-fog coatings. ACS Appl. Mater. Interfaces. 2011;3:750–758. doi: 10.1021/am1010964. PubMed DOI

Marco F., Milena F., Gianluca G., Vittoria O. Peri-implant osteogenesis in health and osteoporosis. Micron. 2005;36:630–644. doi: 10.1016/j.micron.2005.07.008. PubMed DOI

Nouri A., Wen C. Introduction to surafce coating and modification of metallic biomaterials. In: Wen C., editor. Surface Coating and Modification of Metallic Biomaterials. Elsevier; Amsterdam, The Netherlands: 2015. pp. 3–45.

Kokubo T., Himeno T., Kim H.M., Kawashita M., Nakamura T. Process of bonelike apatite formation on sintered hydroxyapatite in serum-containing SBF. Key Eng. Mater. 2004;254–256:139–142. doi: 10.4028/www.scientific.net/KEM.254-256.139. DOI

Batchelor A.W., Chandrasekaran M. Service Characteristics of Biomedical Materials and Implants. Imperial College Press; London, UK: 2004.

Priyadarshini B., Rama M., Chetan, Vijayalakshmi U. Bioactive coating as a surface modification technique for biocompatible metallic implants: A review. J. Asian Ceram. Soc. 2019;7:397–406. doi: 10.1080/21870764.2019.1669861. DOI

Kravanja K.A., Finšgar M. A review of techniques for the application of bioactive coatings on metal-based implants to achieve controlled release of active ingredients. Mater. Des. 2022;217:110653. doi: 10.1016/j.matdes.2022.110653. DOI

Shekhter A.B., Fayzullin A.L., Vukolova M.N., Rudenko T.G., Osipycheva V.D., Litvitsky P.F. Medical applications of collagen and collagen-based materials. Curr. Med. Chem. 2017;26:506–516. doi: 10.2174/0929867325666171205170339. PubMed DOI

Ghomi E.R., Nourbakhsh N., Akbari Kenari M., Zare M., Ramakrishna S. Collagen-based biomaterials for biomedical applications. J. Biomed. Mater. Res.—Part B. 2021;109:1986–1999. doi: 10.1002/jbm.b.34881. PubMed DOI

Alhazmi W., Almutairi A., Al-Muqbil A., Al-Ali A., Alhasson M. Pattern of ear, nose, and throat disease seen by otolaryngologists at Qassim University outpatient clinics, Saudi Arabia. Int. J. Med. Dev. Ctries. 2021;5:1430–1436. doi: 10.24911/IJMDC.51-1623238530. DOI

Sionkowska A., Skopinska J., Wisniewski M., Leznicki A., Fisz J. Spectroscopic studies into the influence of UV radiation on elastin hydrolysates in water solution. J. Photochem. Photobiol. B Biol. 2006;85:79–84. doi: 10.1016/j.jphotobiol.2006.05.005. PubMed DOI

Xu Q., Torres J.E., Hakim M., Babiak P.M., Pal P., Battistoni C.M., Nguyen M., Panitch A., Solorio L., Liu J.C. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. R Rep. 2021;146:100641. doi: 10.1016/j.mser.2021.100641. PubMed DOI PMC

He Y., Wang C., Wang C., Xiao Y., Lin W. An overview on collagen and gelatin-based cryogels: Fabrication, classification, properties and biomedical applications. Polymers. 2021;13:2299. doi: 10.3390/polym13142299. PubMed DOI PMC

Ahmad M.I., Li Y., Pan J., Liu F., Dai H., Fu Y., Huang T., Farooq S., Zhang H. Collagen and gelatin: Structure, properties, and applications in food industry. Int. J. Biol. Macromol. 2024;254:128037. doi: 10.1016/j.ijbiomac.2023.128037. PubMed DOI

Muralidharan N., Shakila R.J., Sukumar D., Jeyasekaran G. Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization. J. Food Sci. Technol. 2013;50:1106–1113. doi: 10.1007/s13197-011-0440-y. PubMed DOI PMC

Leuenberger B.H. Investigation of viscosity and gelation properties of different mammalian and fish gelatins. Food Hydrocoll. 1991;5:353–361. doi: 10.1016/S0268-005X(09)80047-7. DOI

Parcheta M., Świsłocka R., Orzechowska S., Akimowicz M., Choińska R., Lewandowski W. Recent developments in effective antioxidants: The structure and antioxidant properties. Materials. 2021;14:1984. doi: 10.3390/ma14081984. PubMed DOI PMC

Lim J.C., Grey A.C., Zahraei A., Donaldson P.J. Age-dependent changes in glutathione metabolism pathways in the lens: New insights into therapeutic strategies to prevent cataract formation—A review. Clin. Exp. Ophthalmol. 2020;48:1031–1042. doi: 10.1111/ceo.13801. PubMed DOI

Gürbüz Çolak N., Eken N.T., Ülger M., Frary A., Doğanlar S. Mapping of quantitative trait loci for antioxidant molecules in tomato fruit: Carotenoids, vitamins C and E, glutathione and phenolic acids. Plant Sci. 2020;292:110393. doi: 10.1016/j.plantsci.2019.110393. PubMed DOI

Aoyama K. Glutathione in the brain. Int. J. Mol. Sci. 2021;22:5010. doi: 10.3390/ijms22095010. PubMed DOI PMC

Bal Z., Kaito T., Korkusuz F., Yoshikawa H. Bone regeneration with hydroxyapatite-based biomaterials. Emergent Mater. 2020;3:521–544. doi: 10.1007/s42247-019-00063-3. DOI

Shi H., Zhou Z., Li W., Fan Y., Li Z., Wei J. Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Crystals. 2021;11:149. doi: 10.3390/cryst11020149. DOI

Schille C., Braun M., Wendel H.P., Scheideler L., Hort N., Reichel H.P., Schweizer E., Geis-Gerstorfer J. Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation. Mater. Sci. Eng. B. 2011;176:1797–1801. doi: 10.1016/j.mseb.2011.04.007. DOI

Anurag K.P., Avinash K., Rupesh K., Gautam R.K., Behera C.K. Tribological performance of SS 316L, commercially pure titanium, and Ti6Al4V in different solutions for biomedical applications. Mater. Today Proc. 2023;78:A1–A8. doi: 10.1016/j.matpr.2023.03.736. DOI

Vladescu A., Pârâu A., Pana I., Cotrut C.M., Constantin L.R., Braic V., Vrânceanu D.M. In vitro activity assays of sputtered HAp coatings with SiC addition in various simulated biological fluids. Coatings. 2019;9:389. doi: 10.3390/coatings9060389. DOI

Ruan C., Hu N., Ma Y., Li Y., Liu J., Zhang X., Pan H. The interfacial pH of acidic degradable polymeric biomaterials and its effects on osteoblast behavior. Sci. Rep. 2017;7:6794. doi: 10.1038/s41598-017-06354-1. PubMed DOI PMC

Reid R., Sgobba M., Raveh B., Rastelli G., Sali A., Santi D.V. Analytical and simulation-based models for drug release and gel-degradation in a tetra-PEG hydrogel drug-delivery system. Macromolecules. 2015;48:7359–7369. doi: 10.1021/acs.macromol.5b01598. DOI

Hu J., Chen Y., Li Y., Zhou Z., Cheng Y. A thermo-degradable hydrogel with light-tunable degradation and drug release. Biomaterials. 2017;112:133–140. doi: 10.1016/j.biomaterials.2016.10.015. PubMed DOI

Bordbar-Khiabani A., Gasik M. Smart hydrogels for advanced drug delivery systems. Int. J. Mol. Sci. 2022;23:3665. doi: 10.3390/ijms23073665. PubMed DOI PMC

Tomala A.M., Słota D., Florkiewicz W., Piętak K., Dyląg M., Sobczak-Kupiec A. Tribological properties and physiochemical analysis of polymer-ceramic composite coatings for bone regeneration. Lubricants. 2022;10:58. doi: 10.3390/lubricants10040058. DOI

Słota D., Piętak K., Florkiewicz W., Jampílek J., Tomala A., Urbaniak M.M., Tomaszewska A., Rudnicka K., Sobczak-Kupiec A. Clindamycin-loaded nanosized calcium phosphates powders as a carrier of active substances. Nanomaterials. 2023;13:1469. doi: 10.3390/nano13091469. PubMed DOI PMC

Pluta K., Florkiewicz W., Malina D., Rudnicka K., Michlewska S., Królczyk J.B., Sobczak-Kupiec A. Measurement methods for the mechanical testing and biocompatibility assessment of polymer-ceramic connective tissue replacements. Meas. J. Int. Meas. Confed. 2021;171:108733. doi: 10.1016/j.measurement.2020.108733. DOI

Bartecka G., Równicka-Zubik J., Sułkowska A., Moczyński M., Famulska W., Sułkowski W.W. The influence of polyurethane component on the properties of polyurethane-rubber composites obtained from waste materials. Mol. Cryst. Liq. Cryst. 2014;603:27–36. doi: 10.1080/15421406.2014.966236. DOI

Tworzywa sztuczne i ebonite. Oznaczanie twardości metodą wciskania z zastosowaniem twardościomierza (twardość metodą Shore’A) Polski Komitet Normalizacyjny; Warszawa, Poland: 2005.

Guma. Oznaczanie twardości przez wgniecenie przy użyciu kieszonkowych twardościomierzy. Polski Komitet Normalizacyjny; Warszawa, Poland: 2015.

Tworzywa sztuczne. Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu. Polski Komitet Normalizacyjny; Warszawa, Poland: 2020.

Li Y., Liu X., Xu X., Xin H., Zhang Y., Li B. Red-blood-cell waveguide as a living biosensor and micromotor. Adv. Funct. Mater. 2019;29:1905568. doi: 10.1002/adfm.201905568. DOI

Madhavi W.A.M., Weerasinghe S., Fullerton G.D., Momot K.I. Structure and dynamics of collagen hydration water from molecular dynamics simulations: Implications of temperature and pressure. J. Phys. Chem. B. 2019;123:4901–4914. doi: 10.1021/acs.jpcb.9b03078. PubMed DOI

Slota D., Gląb M., Tyliszczak B., Dogulas T.E.L., Rudnicka K., Miernik K., Urbaniak M.M., Rusek-Wala P., Sobczak-upiec A. Composites based on hydroxyapatite and whey protein isolate for applications in bone regeneration. Materials. 2021;14:2317. doi: 10.3390/ma14092317. PubMed DOI PMC

Correa da Silva Braga de Melo C., Balestrero Cassiano F., Soares Bronze-Uhle É., de Toledo Stuani V., Alves Ferreira Bordini E., de Oliveira Gallinari M. Mineral-induced bubbling effect and biomineralization as strategies to create highly porous and bioactive scaffolds for dentin tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022;11:1757–1770. doi: 10.1002/jbm.b.35032. PubMed DOI

Shibata H., Yokoi T., Goto T., Kim I.Y., Kawashita M., Kikuta K., Ohtsuki C. Behavior of hydroxyapatite crystals in a simulated body fluid: Effects of crystal face. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/J. Ceram. Soc. Jpn. 2013;121:807–812. doi: 10.2109/jcersj2.121.807. DOI

Saba N., Jawaid M., Sultan M.T.H. An Overview of Mechanical and Physical Testing of Composite Materials. Elsevier Ltd.; Amsterdam, The Netherlands: 2018.

Gaharwar A.K., Dammu S.A., Canter J.M., Wu C.J., Schmidt G. Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules. 2011;12:1641–1650. doi: 10.1021/bm200027z. PubMed DOI

Suresh Kumar C., Dhanaraj K., Vimalathithan R.M., Ilaiyaraja P., Suresh G. Hydroxyapatite for bone related applications derived from sea shell waste by simple precipitation method. J. Asian Ceram. Soc. 2020;8:416–429. doi: 10.1080/21870764.2020.1749373. DOI

Sossa P.A.F., Giraldo B.S., Garcia B.C.G., Parra E.R., Arango P.J.A. Comparative study between natural and synthetic hydroxyapatite: Structural, morphological and bioactivity properties. Rev. Mater. 2018;23:e-12217. doi: 10.1590/s1517-707620180004.0551. DOI

Jalageri M.B., Mohan Kumar G.C. Hydroxyapatite reinforced polyvinyl alcohol/polyvinyl pyrrolidone based hydrogel for cartilage replacement. Gels. 2022;8:555. doi: 10.3390/gels8090555. PubMed DOI PMC

Rahmati M., Silva E.A., Reseland J.E., Heyward C.A., Haugen H.J. Biological responses to physicochemical properties of biomaterial surface. Chem. Soc. Rev. 2020;49:5178–5224. doi: 10.1039/D0CS00103A. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...