Hybrid Coatings Based on Polyvinylpyrrolidone/Polyethylene Glycol Enriched with Collagen and Hydroxyapatite: Incubation Studies and Evaluation of Mechanical and Physiochemical Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
POIR.04.04.00-00-16D7/18
Foundation for Polish Science
APVV-17-0373
Slovak Research and Development Agency
APVV-21-0321
Slovak Research and Development Agency
PubMed
38535255
PubMed Central
PMC10971160
DOI
10.3390/jfb15030062
PII: jfb15030062
Knihovny.cz E-zdroje
- Klíčová slova
- ceramic, coatings, collagen, glutathione, hydroxyapatite, polyethylene glycol, polymer, polyvinylpyrrolidone,
- Publikační typ
- časopisecké články MeSH
Coating materials offers an intriguing solution for imparting inert implants with additional bioactive characteristics without changing underlying parameters such as mechanical strength. Metallic implants like endoprostheses or polymeric implants can be coated with a thin layer of bioactive film capable of stimulating bone-forming cells to proliferate or release a drug. However, irrespective of the final implantation site of such a coating biomaterial, it is necessary to conduct detailed mechanical and physicochemical in vitro analyses to determine its likely behavior under biological conditions. In this study, polymeric and composite coatings with hydroxyapatite obtained under UV light underwent incubation tests in four different artificial biological fluids: simulated body fluid (SBF), artificial saliva, Ringer's fluid, and water (as the reference fluid). The potentiometric and conductometric properties, sorption capacity, and degradation rate of the coatings were examined. Furthermore, their hardness, modulus of elasticity, and deformation were determined. It was demonstrated that the coatings remained stable in SBF liquid at a pH value of around 7.4. In artificial saliva, the greatest degradation of the polymer matrix (ranging between 36.19% and 39.79%) and chipping of hydroxyapatite in the composite coatings were observed. Additionally, the effect of ceramics on sorption capacity was determined, with lower capacity noted with higher HA additions. Moreover, the evaluation of surface morphology supported by elemental microanalysis confirmed the appearance of new apatite layers on the surface as a result of incubation in SBF. Ceramics also influenced mechanical aspects, increasing hardness and modulus of elasticity. For the polymer coatings, the value was 11.48 ± 0.61, while for the composite coating with 15% ceramics, it increased more than eightfold to a value of 93.31 ± 11.18 N/mm2. Based on the conducted studies, the effect of ceramics on the physicochemical as well as mechanical properties of the materials was determined, and their behavior in various biological fluids was evaluated. However, further studies, especially cytotoxicity analyses, are required to determine the potential use of the coatings as biomaterials.
Zobrazit více v PubMed
Chevallier P., Turgeon S., Sarra-Bournet C., Turcotte R., Laroche G. Characterization of multilayer anti-fog coatings. ACS Appl. Mater. Interfaces. 2011;3:750–758. doi: 10.1021/am1010964. PubMed DOI
Marco F., Milena F., Gianluca G., Vittoria O. Peri-implant osteogenesis in health and osteoporosis. Micron. 2005;36:630–644. doi: 10.1016/j.micron.2005.07.008. PubMed DOI
Nouri A., Wen C. Introduction to surafce coating and modification of metallic biomaterials. In: Wen C., editor. Surface Coating and Modification of Metallic Biomaterials. Elsevier; Amsterdam, The Netherlands: 2015. pp. 3–45.
Kokubo T., Himeno T., Kim H.M., Kawashita M., Nakamura T. Process of bonelike apatite formation on sintered hydroxyapatite in serum-containing SBF. Key Eng. Mater. 2004;254–256:139–142. doi: 10.4028/www.scientific.net/KEM.254-256.139. DOI
Batchelor A.W., Chandrasekaran M. Service Characteristics of Biomedical Materials and Implants. Imperial College Press; London, UK: 2004.
Priyadarshini B., Rama M., Chetan, Vijayalakshmi U. Bioactive coating as a surface modification technique for biocompatible metallic implants: A review. J. Asian Ceram. Soc. 2019;7:397–406. doi: 10.1080/21870764.2019.1669861. DOI
Kravanja K.A., Finšgar M. A review of techniques for the application of bioactive coatings on metal-based implants to achieve controlled release of active ingredients. Mater. Des. 2022;217:110653. doi: 10.1016/j.matdes.2022.110653. DOI
Shekhter A.B., Fayzullin A.L., Vukolova M.N., Rudenko T.G., Osipycheva V.D., Litvitsky P.F. Medical applications of collagen and collagen-based materials. Curr. Med. Chem. 2017;26:506–516. doi: 10.2174/0929867325666171205170339. PubMed DOI
Ghomi E.R., Nourbakhsh N., Akbari Kenari M., Zare M., Ramakrishna S. Collagen-based biomaterials for biomedical applications. J. Biomed. Mater. Res.—Part B. 2021;109:1986–1999. doi: 10.1002/jbm.b.34881. PubMed DOI
Alhazmi W., Almutairi A., Al-Muqbil A., Al-Ali A., Alhasson M. Pattern of ear, nose, and throat disease seen by otolaryngologists at Qassim University outpatient clinics, Saudi Arabia. Int. J. Med. Dev. Ctries. 2021;5:1430–1436. doi: 10.24911/IJMDC.51-1623238530. DOI
Sionkowska A., Skopinska J., Wisniewski M., Leznicki A., Fisz J. Spectroscopic studies into the influence of UV radiation on elastin hydrolysates in water solution. J. Photochem. Photobiol. B Biol. 2006;85:79–84. doi: 10.1016/j.jphotobiol.2006.05.005. PubMed DOI
Xu Q., Torres J.E., Hakim M., Babiak P.M., Pal P., Battistoni C.M., Nguyen M., Panitch A., Solorio L., Liu J.C. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. R Rep. 2021;146:100641. doi: 10.1016/j.mser.2021.100641. PubMed DOI PMC
He Y., Wang C., Wang C., Xiao Y., Lin W. An overview on collagen and gelatin-based cryogels: Fabrication, classification, properties and biomedical applications. Polymers. 2021;13:2299. doi: 10.3390/polym13142299. PubMed DOI PMC
Ahmad M.I., Li Y., Pan J., Liu F., Dai H., Fu Y., Huang T., Farooq S., Zhang H. Collagen and gelatin: Structure, properties, and applications in food industry. Int. J. Biol. Macromol. 2024;254:128037. doi: 10.1016/j.ijbiomac.2023.128037. PubMed DOI
Muralidharan N., Shakila R.J., Sukumar D., Jeyasekaran G. Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization. J. Food Sci. Technol. 2013;50:1106–1113. doi: 10.1007/s13197-011-0440-y. PubMed DOI PMC
Leuenberger B.H. Investigation of viscosity and gelation properties of different mammalian and fish gelatins. Food Hydrocoll. 1991;5:353–361. doi: 10.1016/S0268-005X(09)80047-7. DOI
Parcheta M., Świsłocka R., Orzechowska S., Akimowicz M., Choińska R., Lewandowski W. Recent developments in effective antioxidants: The structure and antioxidant properties. Materials. 2021;14:1984. doi: 10.3390/ma14081984. PubMed DOI PMC
Lim J.C., Grey A.C., Zahraei A., Donaldson P.J. Age-dependent changes in glutathione metabolism pathways in the lens: New insights into therapeutic strategies to prevent cataract formation—A review. Clin. Exp. Ophthalmol. 2020;48:1031–1042. doi: 10.1111/ceo.13801. PubMed DOI
Gürbüz Çolak N., Eken N.T., Ülger M., Frary A., Doğanlar S. Mapping of quantitative trait loci for antioxidant molecules in tomato fruit: Carotenoids, vitamins C and E, glutathione and phenolic acids. Plant Sci. 2020;292:110393. doi: 10.1016/j.plantsci.2019.110393. PubMed DOI
Aoyama K. Glutathione in the brain. Int. J. Mol. Sci. 2021;22:5010. doi: 10.3390/ijms22095010. PubMed DOI PMC
Bal Z., Kaito T., Korkusuz F., Yoshikawa H. Bone regeneration with hydroxyapatite-based biomaterials. Emergent Mater. 2020;3:521–544. doi: 10.1007/s42247-019-00063-3. DOI
Shi H., Zhou Z., Li W., Fan Y., Li Z., Wei J. Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Crystals. 2021;11:149. doi: 10.3390/cryst11020149. DOI
Schille C., Braun M., Wendel H.P., Scheideler L., Hort N., Reichel H.P., Schweizer E., Geis-Gerstorfer J. Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation. Mater. Sci. Eng. B. 2011;176:1797–1801. doi: 10.1016/j.mseb.2011.04.007. DOI
Anurag K.P., Avinash K., Rupesh K., Gautam R.K., Behera C.K. Tribological performance of SS 316L, commercially pure titanium, and Ti6Al4V in different solutions for biomedical applications. Mater. Today Proc. 2023;78:A1–A8. doi: 10.1016/j.matpr.2023.03.736. DOI
Vladescu A., Pârâu A., Pana I., Cotrut C.M., Constantin L.R., Braic V., Vrânceanu D.M. In vitro activity assays of sputtered HAp coatings with SiC addition in various simulated biological fluids. Coatings. 2019;9:389. doi: 10.3390/coatings9060389. DOI
Ruan C., Hu N., Ma Y., Li Y., Liu J., Zhang X., Pan H. The interfacial pH of acidic degradable polymeric biomaterials and its effects on osteoblast behavior. Sci. Rep. 2017;7:6794. doi: 10.1038/s41598-017-06354-1. PubMed DOI PMC
Reid R., Sgobba M., Raveh B., Rastelli G., Sali A., Santi D.V. Analytical and simulation-based models for drug release and gel-degradation in a tetra-PEG hydrogel drug-delivery system. Macromolecules. 2015;48:7359–7369. doi: 10.1021/acs.macromol.5b01598. DOI
Hu J., Chen Y., Li Y., Zhou Z., Cheng Y. A thermo-degradable hydrogel with light-tunable degradation and drug release. Biomaterials. 2017;112:133–140. doi: 10.1016/j.biomaterials.2016.10.015. PubMed DOI
Bordbar-Khiabani A., Gasik M. Smart hydrogels for advanced drug delivery systems. Int. J. Mol. Sci. 2022;23:3665. doi: 10.3390/ijms23073665. PubMed DOI PMC
Tomala A.M., Słota D., Florkiewicz W., Piętak K., Dyląg M., Sobczak-Kupiec A. Tribological properties and physiochemical analysis of polymer-ceramic composite coatings for bone regeneration. Lubricants. 2022;10:58. doi: 10.3390/lubricants10040058. DOI
Słota D., Piętak K., Florkiewicz W., Jampílek J., Tomala A., Urbaniak M.M., Tomaszewska A., Rudnicka K., Sobczak-Kupiec A. Clindamycin-loaded nanosized calcium phosphates powders as a carrier of active substances. Nanomaterials. 2023;13:1469. doi: 10.3390/nano13091469. PubMed DOI PMC
Pluta K., Florkiewicz W., Malina D., Rudnicka K., Michlewska S., Królczyk J.B., Sobczak-Kupiec A. Measurement methods for the mechanical testing and biocompatibility assessment of polymer-ceramic connective tissue replacements. Meas. J. Int. Meas. Confed. 2021;171:108733. doi: 10.1016/j.measurement.2020.108733. DOI
Bartecka G., Równicka-Zubik J., Sułkowska A., Moczyński M., Famulska W., Sułkowski W.W. The influence of polyurethane component on the properties of polyurethane-rubber composites obtained from waste materials. Mol. Cryst. Liq. Cryst. 2014;603:27–36. doi: 10.1080/15421406.2014.966236. DOI
Tworzywa sztuczne i ebonite. Oznaczanie twardości metodą wciskania z zastosowaniem twardościomierza (twardość metodą Shore’A) Polski Komitet Normalizacyjny; Warszawa, Poland: 2005.
Guma. Oznaczanie twardości przez wgniecenie przy użyciu kieszonkowych twardościomierzy. Polski Komitet Normalizacyjny; Warszawa, Poland: 2015.
Tworzywa sztuczne. Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu. Polski Komitet Normalizacyjny; Warszawa, Poland: 2020.
Li Y., Liu X., Xu X., Xin H., Zhang Y., Li B. Red-blood-cell waveguide as a living biosensor and micromotor. Adv. Funct. Mater. 2019;29:1905568. doi: 10.1002/adfm.201905568. DOI
Madhavi W.A.M., Weerasinghe S., Fullerton G.D., Momot K.I. Structure and dynamics of collagen hydration water from molecular dynamics simulations: Implications of temperature and pressure. J. Phys. Chem. B. 2019;123:4901–4914. doi: 10.1021/acs.jpcb.9b03078. PubMed DOI
Slota D., Gląb M., Tyliszczak B., Dogulas T.E.L., Rudnicka K., Miernik K., Urbaniak M.M., Rusek-Wala P., Sobczak-upiec A. Composites based on hydroxyapatite and whey protein isolate for applications in bone regeneration. Materials. 2021;14:2317. doi: 10.3390/ma14092317. PubMed DOI PMC
Correa da Silva Braga de Melo C., Balestrero Cassiano F., Soares Bronze-Uhle É., de Toledo Stuani V., Alves Ferreira Bordini E., de Oliveira Gallinari M. Mineral-induced bubbling effect and biomineralization as strategies to create highly porous and bioactive scaffolds for dentin tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022;11:1757–1770. doi: 10.1002/jbm.b.35032. PubMed DOI
Shibata H., Yokoi T., Goto T., Kim I.Y., Kawashita M., Kikuta K., Ohtsuki C. Behavior of hydroxyapatite crystals in a simulated body fluid: Effects of crystal face. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/J. Ceram. Soc. Jpn. 2013;121:807–812. doi: 10.2109/jcersj2.121.807. DOI
Saba N., Jawaid M., Sultan M.T.H. An Overview of Mechanical and Physical Testing of Composite Materials. Elsevier Ltd.; Amsterdam, The Netherlands: 2018.
Gaharwar A.K., Dammu S.A., Canter J.M., Wu C.J., Schmidt G. Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules. 2011;12:1641–1650. doi: 10.1021/bm200027z. PubMed DOI
Suresh Kumar C., Dhanaraj K., Vimalathithan R.M., Ilaiyaraja P., Suresh G. Hydroxyapatite for bone related applications derived from sea shell waste by simple precipitation method. J. Asian Ceram. Soc. 2020;8:416–429. doi: 10.1080/21870764.2020.1749373. DOI
Sossa P.A.F., Giraldo B.S., Garcia B.C.G., Parra E.R., Arango P.J.A. Comparative study between natural and synthetic hydroxyapatite: Structural, morphological and bioactivity properties. Rev. Mater. 2018;23:e-12217. doi: 10.1590/s1517-707620180004.0551. DOI
Jalageri M.B., Mohan Kumar G.C. Hydroxyapatite reinforced polyvinyl alcohol/polyvinyl pyrrolidone based hydrogel for cartilage replacement. Gels. 2022;8:555. doi: 10.3390/gels8090555. PubMed DOI PMC
Rahmati M., Silva E.A., Reseland J.E., Heyward C.A., Haugen H.J. Biological responses to physicochemical properties of biomaterial surface. Chem. Soc. Rev. 2020;49:5178–5224. doi: 10.1039/D0CS00103A. PubMed DOI