Formation of Australasian tektites from gravity and magnetic indicators
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
37553513
PubMed Central
PMC10409792
DOI
10.1038/s41598-023-40177-7
PII: 10.1038/s41598-023-40177-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The parent impact crater of Australasian tektites has not been discovered so far, but a consensus has been accepted on its location in a wider area of Indochina. Recently, an alternative location has been suggested in the Badain Jaran Desert (BJD), Northwest China. Employing gravity and magnetic data derived from satellites, possible presence of an impact structure in BJD is investigated. The gravity parameters include the free air gravity disturbance, its vertical derivative component and total horizontal gradient (THG), strike alignment (SA), and Bouguer anomaly with its first vertical derivative and tilt angle. The magnetic parameters include the anomalous total magnetic field (TMF), its reduced to the pole transformation (RTP), the first vertical derivative of the TMF vertical component (Bzz), tilt angle (TA), and logistic total horizontal gradient (LTHG). Both the gravity and magnetic indicators support the presence of the impact structure. Gravity parameters display typical annular gravity highs circumscribing a gravity low. SA analysis reveals preferred parallel directions, implying the susceptibility of special zones to the impact shock waves, both within and beyond the rim. TMF reveals a large magnetic anomaly in the southern part of the proposed crater, and RTP displaces and restricts it further into the rim. Bzz weakens the long wavelength anomalies, amplifies the superficial ones, and separates them horizontally. TA and LTHG delineate the deep-seated and shallow magnetic signals related to the peak and border magnetization, respectively.
Geophysical Institute University of Alaska Fairbanks 903 N Koyukuk Drive Fairbanks AK 99709 USA
Nuclear Physics Institute Czech Academy of Sciences Hlavní 130 250 68 Husinec Řež Czech Republic
Zobrazit více v PubMed
Koeberl C, et al. Tektite glasses from Belize, Central America: Petrography, geochemistry, and search for a possible meteoritic component. Geochim. Cosmochim. Ac. 2022;325:232–257. doi: 10.1016/j.gca.2022.02.021. DOI
Mizera J, Řanda Z, Kameník J. On a possible parent crater for Australasian tektites: Geochemical, isotopic, geographical and other constraints. Earth-Sci. Rev. 2016;154:123–137. doi: 10.1016/j.earscirev.2015.12.004. DOI
Rochette P, et al. Impact glasses from Belize represent tektites from the Pleistocene Pantasma impact crater in Nicaragua. Commun. Earth Environ. 2021;2:1–8. doi: 10.1038/s43247-021-00155-1. PubMed DOI PMC
Stauffer, P. H. Anatomy of the Australasian Tektite Strewnfield and the Probable Site of its Source Crater. Proceedings of the 3rd Regional Conference on Geology and Mineral Resources of Southeast Asia 285–289 (1978).
Mizera J, et al. Parent crater for Australasian tektites beneath the sands of the Alashan Desert, Northwest China: Best candidate ever? Geol. Soc. Am. Spec. Pap. 2022;553:323–334. doi: 10.1130/2021.2553(25). DOI
Mizera J. Quest for the Australasian impact crater: Failings of the candidate location at the Bolaven Plateau, Southern Laos. Meteorit. Planet. Sci. 2022;57:1973–1986. doi: 10.1111/maps.13912. DOI
Sieh K, et al. Australasian impact crater buried under the Bolaven volcanic field, southern Laos. Proc. Natl. Acad. Sci. USA. 2020;117:1346–1353. doi: 10.1073/pnas.1904368116. PubMed DOI PMC
Pilkington M, Hildebrand AR, Ortiz-Aleman C. Gravity and magnetic field modeling and structure of the Chicxulub Crater, Mexico. J. Geophys. Res. 1994;99:13147–13162. doi: 10.1029/94JE01089. DOI
Hawke PJ, Buckingham AJ, Dentith MC. Modelling source depth and possible origin of magnetic anomalies associated with the Yallalie impact structure, Perth Basin, Western Australia. Explor. Geophys. 2006;37:191–196. doi: 10.1071/EG06191. DOI
Beiki M, Pedersen LB. Eigenvector analysis of the gravity gradient tensor to locate geologic bodies. Geophysics. 2010;75:I37–I49. doi: 10.1190/1.3484098. DOI
Saada A, Mickus K, Eldosouky AM, Ibrahim A. Insights on the tectonic styles of the Red Sea rift using gravity and magnetic data. Mar. Pet. Geol. 2021;133:105253. doi: 10.1016/j.marpetgeo.2021.105253. DOI
Pham LT, et al. An improved approach for detecting ridge locations to interpret the potential feld data for more accurate structural mapping: A case study from Vredefort dome area (South Africa) J. Afr. Earth Sci. 2021;175:104099. doi: 10.1016/j.jafrearsci.2020.104099. DOI
Hamimi Z, Eldosouky AM, Hagag W, Kamh SZ. Large-scale geological structures of the Egyptian Nubian Shield. Sci. Rep. 2023;13:1923. doi: 10.1038/s41598-023-29008-x. PubMed DOI PMC
Urrutia-Fucugauchi J, Arellano-Catalán O, Pérez-Cruz L, Romero-Galindo IA. Chicxulub crater joint gravity and magnetic anomaly analysis: Structure, asymmetries, impact trajectory and target structures. Pure Appl. Geophys. 2022;179:2735–2756. doi: 10.1007/s00024-022-03074-0. DOI
Yang X, et al. Formation of the highest sand dunes on Earth. Geomorphology. 2011;135:108–116. doi: 10.1016/j.geomorph.2011.08.008. DOI
Wang F, et al. Formation and evolution of the Badain Jaran Desert, North China, as revealed by a drill core from the desert centre and by geological survey. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015;426:139–158. doi: 10.1016/j.palaeo.2015.03.011. DOI
Du J, et al. Cenozoic tectono-geomorphic evolution of Yabrai Mountain and the Badain Jaran Desert (NE Tibetan Plateau margin) Geomorphology. 2021;389:107857. doi: 10.1016/j.geomorph.2021.107857. DOI
IKCEST. Geological Map of Inner Mongolia Autonomous Region, China. International Knowledge Centre for Engineering Sciences and Technology under the Auspices of UNESCO, Disaster Risk Reduction Knowledge Service. http://ikcest-drr.osgeo.cn/map/m02c7 (2020).
Wang X, Zhou Y. Investigating the mysteries of groundwater in the Badain Jaran Desert, China. Hydrogeol. J. 2018;26:1639–1655. doi: 10.1007/s10040-018-1750-1. DOI
Wang Z, et al. Groundwater characteristics and climate and ecological evolution in the Badain Jaran Desert in the southwest Mongolian Plateau. China Geol. 2021;3:421–432. doi: 10.31035/cg2021056. DOI
Dai D, Cao J, Lai P, Wu Z. TEM study on particles transported by ascending gas flow in the Kaxiutata iron deposit, Inner Mongolia, North China. Geochemistry. 2015;15:255–271. doi: 10.1144/geochem2013-263. DOI
Mindat.org. Gaxun Tal Mine (Kaxiutata Mine). https://www.mindat.org/loc-144066.html (2023).
Blakely RJ, Simpson RW. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics. 1986;51:1494–1498. doi: 10.1190/1.1442197. DOI
Klokočník J, Kostelecký J, Bezděk A, Kletetschka G. Gravity strike angles: A modern approach and tool to estimate the direction of impactors of meteoritic craters. Planet. Space Sci. 2020;194:105113. doi: 10.1016/j.pss.2020.105113. DOI
Klokočník J, Kostelecký J, Cílek V, Kletetschka G, Bezděk A. Gravity aspects from recent gravity field model GRGM1200A of the Moon and analysis of magnetic data. Icarus. 2022;384:115086. doi: 10.1016/j.icarus.2022.115086. DOI
Kletetschka G, et al. Distribution of water phase near the poles of the Moon from gravity aspects. Sci. Rep. 2022;12:4501. doi: 10.1038/s41598-022-08305-x. PubMed DOI PMC
Valet JP, et al. Constraining the age of the last geomagnetic reversal from geochemical and magnetic analyses of Atlantic, Indian, and Pacific Ocean sediments: Earth Planet. Sci. Lett. 2019;506:323–331. doi: 10.1016/j.epsl.2018.11.012. DOI
Ivanov BA, Deutsch A, Ostermann M, Ariskin A. Solidification of the Sudbury impact melt body and nature of the offset dikes: Thermal modeling. Lunar Planet. Sci. C. 1997;28:633–634.
Daubar IJ, Kring DA. Impact-induced hydrothermal systems: Heat sources and lifetimes. Lunar Planet. Sci. C. 2001;32:1727.
Liang X, et al. Warm island effect in the Badain Jaran Desert lake group region inferred from the accumulated temperature. Atmosphere. 2020;11:153. doi: 10.3390/atmos11020153. DOI
Förste C, et al. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Serv. 2014 doi: 10.5880/icgem.2015.1. DOI
Bonvalot, S. et al. World Gravity Map (Bureau Gravimetrique International, CGMW-BGI-CNES-IRD Ed., 2012).
Maus S, et al. EMAG2: A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochem. Geophy. Geosyst. 2009;10:Q08005. doi: 10.1029/2009GC002471. DOI
Amante, C. & Eakins, B. W. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24 (National Geophysical Data Center, NOAA, 2009) 10.7289/V5C8276M.
Blakely, R. Potential Theory in Gravity and Magnetic Applications (Cambridge University Press, 1995). 10.1017/CBO9780511549816.
Karimi K, Shirzaditabar F. Using the ratio of the magnetic field to the analytic signal of the magnetic gradient tensor in determining the position of simple shaped magnetic anomalies. J. Geophys. Eng. 2017;14:769–779. doi: 10.1088/1742-2140/aa68bb. DOI
Karimi K, OveisyMoakhar M, Shirzaditabar F. Location and dimensionality estimation of geological bodies using eigenvectors of “Computed Gravity Gradient Tensor”. J. Earth Space Phys. 2019;44:63–71. doi: 10.22059/jesphys.2018.253742.1006984. DOI