Subsurface geology detection from application of the gravity-related dimensionality constraint

. 2024 Jan 30 ; 14 (1) : 2440. [epub] 20240130

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38286830
Odkazy

PubMed 38286830
PubMed Central PMC11333590
DOI 10.1038/s41598-024-52843-5
PII: 10.1038/s41598-024-52843-5
Knihovny.cz E-zdroje

Geophysics aims to locate bodies with varying density. We discovered an innovative approach for estimation of the location, in particular depth of a causative body, based on its relative horizontal dimensions, using a dimensionality indicator (I). The method divides the causative bodies into two types based on their horizontal spread: line of poles and point pole (LOP-PP) category, and line of poles and plane of poles (LOP-POP) category; such division allows for two distinct solutions. The method's depth estimate relates to the relative variations of the causative body's horizontal extent and leads to the solutions of the Euler Deconvolution method in specific cases. For causative bodies with limited and small depth extent, the estimated depth (z^0) corresponds to the center of mass, while for those with a large depth extent, z^0 relates to the center of top surface. Both the depth extent and the dimensionality of the causative body influence the depth estimates. As the depth extent increases, the influence of I on the estimated depth is more pronounced. Furthermore, the behavior of z^0 exhibits lower errors for larger values of I in LOP-POP solutions compared with LOP-PP solutions. We tested several specific model scenarios, including isolated and interfering sources with and without artificial noise. We also tested our approach on real lunar data containing two substantial linear structures and their surrounding impact basins and compared our results with the Euler deconvolution method. The lunar results align well with geology, supporting the effectiveness of this approach. The only assumption in this method is that we should choose between whether the gravity signal originates from a body within the LOP-PP category or the LOP-POP category. The depth estimation requires just one data point. Moreover, the method excels in accurately estimating the depth of anomalous causative bodies across a broad spectrum of dimensionality, from 2 to 3D. Furthermore, this approach is mathematically straightforward and reliable. As a result, it provides an efficient means of depth estimation for anomalous bodies, delivering insights into subsurface structures applicable in both planetary and engineering domains.

Zobrazit více v PubMed

Blakely, R. J. Potential Theory in Gravity & Magnetic Applications (Cambridge University Press, 1995). 10.1017/CBO9780511549816.

Peters, L. J. The direct approach to magnetic interpretation and its practical application. Geophysics14, 290–320 (1949).10.1190/1.1437537 DOI

Bott, M. H. P. & Smith, R. A. The estimation of the limiting depth of the gravitating bodies. Geophys. Prospect.6, 1–10 (1958).10.1111/j.1365-2478.1958.tb01639.x DOI

Smith, R. A. Some depth formulae for local magnetic and gravity anomalies. Geophys. Prospect.7, 55–63 (1959).10.1111/j.1365-2478.1959.tb01453.x DOI

Werner, S. Interpretation of magnetic anomalies at sheet-like bodies. Sveriges Geologiska Undersok, Series C, Arsbok. 43(6), 413–449 (1953).

Hartman, R. R., Teskey, D. J. & Friedberg, J. L. A system for rapid digital aeromagnetic interpretation. Geophysics36, 891–918 (1971).10.1190/1.1440223 DOI

Thompson, D. T. EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics47, 31–37 (1982).10.1190/1.1441278 DOI

Barongo, J. O. Euler’s differential equation and the identification of the magnetic point-pole and point-dipole sources. Geophysics49, 1549–1553 (1984).10.1190/1.1441780 DOI

Reid, A. B., Allsop, J. M., Granser, E. L., Millett, A. J. & Somerton, I. W. Magnetic interpretation in three dimensions using euler deconvolution. Geophysics55, 80–91 (1990).10.1190/1.1442774 DOI

Hansen, R. O. & Simmonds, M. Multiple-source werner deconvolution. Geophysics58, 1792–1800 (1993).10.1190/1.1443394 DOI

Zhang, C., Mushayandebvu, M. F., Reid, A. B., Fairhead, J. D. & Odegard, M. Euler deconvolution of gravity tensor gradient data. Geophysics65, 512–520 (2000).10.1190/1.1444745 DOI

Mikhailov, V. G., Pajot, G., Diament, M. & Price, A. Tensor deconvolution: A method to locate equivalent sources from full tensor gravity data. Geophysics72, 161–169 (2007).10.1190/1.2749317 DOI

Beiki, M. & Pedersen, L. B. Eigenvector analysis of gravity gradient tensor to locate geologic bodies. Geophysics75, I37–I49 (2010).10.1190/1.3484098 DOI

Zhou, W. N., Zhang, C. & Zhang, D. L. Depth estimation of potential field by using a new downward continuation based on the continued fraction in space domain. Earth and Space Science. 8, e2021EA001789 (2021).10.1029/2021EA001789 DOI

Pedersen, L. B. & Rasmussen, T. M. The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps. Geophysics55, 1558–1566 (1990).10.1190/1.1442807 DOI

Kletetschka, G. et al. Distribution of water phase near the poles of the moon from gravity aspects. Sci. Rep.12, 4501 (2022). 10.1038/s41598-022-08305-x PubMed DOI PMC

Klokocnik, J., Kostelecký, J., Bezdek, A. & Kletetschka, G. Gravity strike angles: A modern approach and tool to estimate the direction of impactors of meteoritic craters. Planet. Sp. Sci.194, 105113 (2020).10.1016/j.pss.2020.105113 DOI

Pham, L. T., Oksum, E. & Do, T. D. Edge enhancement of potential field data using the logistic function and the total horizontal gradient. Acta Geod. Geophys.54, 143–155 (2019).10.1007/s40328-019-00248-6 DOI

Edwards, A. J., Maki, J. T. & Peterson, D. G. Gravity gradiometry as a tool for underground facility detection. JEEG2, 137–142 (1997).10.4133/JEEG2.2.137 DOI

Karimi, K., Oveisy Moakhar, M. & Shirzaditabar, F. Location and dimensionality estimation of geological bodies using eigenvectors of computed gravity gradient tensor. JESP44, 63–71 (2018).

Mataragio, J. & Kieley, J. Application of full tensor gradient invariants in detection of intrusion-hosted sulphide mineralization: Implications for deposition mechanisms.. First Break10.3997/1365-2397.27.1301.29032 (2009).10.3997/1365-2397.27.1301.29032 DOI

Karimi, K., Kletetschka, G., Mizera, J., Meier, V. & Strunga, V. Formation of Australasian tektites from gravity and magnetic indicators. Sci. Rep.13, 12868 (2023). 10.1038/s41598-023-40177-7 PubMed DOI PMC

Klokočník, J., Kostelecký, J., Kalvoda, J., Eppelbaum, L. V. & Bezděk, A. Gravity disturbances, marussi tensor, invariants and other functions of the geopotential represented by EGM 2008. JESR.2(3), 88–101. 10.18005/JESR0203003 (2014).10.18005/JESR0203003 DOI

Andrews-Hanna, J. C. et al. Ancient igneous intrusions and early expansion of the moon revealed by GRAIL gravity gradiometry. Science339, 675–678 (2013). 10.1126/science.1231753 PubMed DOI

Harris, L. & Bédard, J. Crustal evolution and deformation in a non-plate tectonic Archaean earth: Comparisons with venus. In Evolution of Archean Crust and Early Life, Modern Approaches in Solid Earth Sciences Vol. 7 (eds Dilek, Y. & Furnes, H.) 215–288 (Springer, 2014). 10.1007/978-94-007-7615-9_9.

Karimi, K., Kletetschka, G. & Meier, V. Comparison between the geological features of venus and earth based on gravity aspects. Sci. Rep.13, 12259 (2023). 10.1038/s41598-023-39100-x PubMed DOI PMC

Ince, E. S. et al. ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth Syst. Sci. Data11, 647–674 (2019).10.5194/essd-11-647-2019 DOI

Marson, I. & Klingele, E. E. Advantages of using the vertical gradient of gravity for 3-D interpretation. Geophysics58, 1588–1595 (1993).10.1190/1.1443374 DOI

Zuo, B., Kass, M. A., Hu, X. & Geng, M. Full-tensor gravity gradient eigenvector analysis for locating complex geological source positions. Nonlinear Process. Geophys. Discuss. 10.5194/npg-2016-75 (2017).10.5194/npg-2016-75 DOI

Wedge, D. Mass anomaly depth estimation from full tensor gradient gravity data. In IEEE Workshop on Applications of Computer Vision (WACV), 526–533 (2013). 10.1109/WACV.2013.6475064.

Zhou, W. Normalized full gradient of full tensor gravity gradient based on adaptive iterative Tikhonov regularization downward continuation. J. Appl. Geophys.118, 75–83 (2015).10.1016/j.jappgeo.2015.04.012 DOI

Yuan, Y. et al. Depth estimation of potential field sources by using improved Chebyshev-Padé downward continuation in wave number domain. Earth Sp. Sci.10.1029/2020EA001373 (2020).10.1029/2020EA001373 DOI

Karimi, K. & Shirzaditabar, F. Using the ratio of the magnetic field to the analytic signal of the magnetic gradient tensor in determining the position of simple shaped magnetic anomalies. J. Geophys. Eng.14, 769–779 (2017).10.1088/1742-2140/aa68bb DOI

Karimi, K., Shirzaditabar, F., Amirian, A. & Mansoobi, A. Center of mass estimation of simple shaped magnetic bodies using eigenvectors of computed magnetic gradient tensor. JESP45, 15–25 (2020).

Lemoine, F. G. et al. GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophys. Res. Lett.41, 3382–3389 (2014). 10.1002/2014GL060027 PubMed DOI PMC

Bucha, B., Hirt, C. & Kuhn, M. Divergence-free spherical harmonic gravity field modelling based on the Runge-Krarup theorem: A case study for the moon. J. Geod.93, 489–513 (2019).10.1007/s00190-018-1177-4 DOI

Bucha, B. & Janák, J. A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Comput. Geosci.56, 186–196 (2013).10.1016/j.cageo.2013.03.012 DOI

Sanso, F., Barzaghi, R. & Tscherning, C. Choice of norm for the density distribution of the earth. Geophys. J. R. Astron. Soc.87, 123–141 (1986).10.1111/j.1365-246X.1986.tb04550.x DOI

Nagy, D., Papp, G. & Benedek, J. The gravitational potential and its derivatives for the prism. J. Geodesy74, 552–560. 10.1007/s001900000116 (2000)10.1007/s001900000116 DOI

Hartmann, W. K. & Gaskell, R. W. Planetary cratering 2: Studies of saturation equilibrium. Meteoritics32, 109. 10.1111/j.1945-5100.1997.tb01246.x (1997).10.1111/j.1945-5100.1997.tb01246.x DOI

Menke, W. Geophysical Data Analysis: Discrete Inverse Theory 3rd edn, xv–xxxvi (Academic Press, 2012). 10.1016/B978-0-12-397160-9.00016-3.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...