Distinct retinal ganglion cell types in strictly subterranean, naturally microphthalmic mammals
Language English Country England, Great Britain Media print-electronic
Document type Journal Article
Grant support
Grant Agency of Charles University
Ministry of Education, Youth and Sport of the Czech Republic
Grantová Agentura České Republiky
PubMed
39809306
PubMed Central
PMC11732417
DOI
10.1098/rspb.2024.2586
Knihovny.cz E-resources
- Keywords
- Fukomys, microphthalmia, mole-rats, ocular regression, retinal ganglion cells, subterranean mammals,
- MeSH
- Dendrites physiology MeSH
- Mole Rats * physiology anatomy & histology MeSH
- Retinal Ganglion Cells * physiology cytology MeSH
- Cluster Analysis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
African mole-rats (Bathyergidae, Rodentia) are subterranean rodents that live in extensive dark underground tunnel systems and rarely emerge aboveground. They can discriminate between light and dark but show no overt visually driven behaviours except for light-avoidance responses. Their eyes and central visual system are strongly reduced but not degenerated. Here, we focus on retinal ganglion cells (RGCs). Sighted mammals have numerous RGC types with distinct morphological and functional properties that encode different aspects of a visual scene. We analysed the morphological diversity of 216 intracellularly dye-injected RGCs in the giant mole-rat (Fukomys mechowii) and 48 RGCs in Ansell's mole-rat (Fukomys anselli). Using a hierarchical cluster analysis on 11 morphological parameters, we show that both species possess at least five RGC types with distinct dendritic field sizes and branching patterns. These resemble some RGC types of the mouse and rat, but mole-rat RGCs feature overall sparser and more asymmetric branching patterns. The dendritic trees of most RGCs in all clusters are monostratified in the inner plexiform layer, but bistratified and multistratified/diffuse cells also exist. Thus, although RGC morphologies have become disorganized, the basic retinal organization principle of parallel information processing by distinct RGC types is retained.
Department of General Zoology Faculty of Biology University of Duisburg Essen Essen 45141 Germany
Department of Pediatrics Stanford University School of Medicine Stanford CA 95305 USA
Department of Zoology Faculty of Science Charles University Prague 128 43 Czech Republic
Dr Senckenbergische Anatomie Institute for Clinical Neuroanatomy Frankfurt am Main 60590 Germany
Max Planck Institute for Brain Research Frankfurt am Main 60438 Germany
See more in PubMed
Stevens M. 2013. Sensory ecology, behaviour, and evolution. Oxford, UK: Oxford University Press.
Cronin TW. 2014. Visual ecology. Princeton, NJ: Princeton University Press.
Land MF, Nilsson DE. 2012. Animal eyes, 2nd edn. Oxford, UK: Oxford University Press.
Niven JE, Laughlin SB. 2008. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211, 1792–1804. (10.1242/jeb.017574) PubMed DOI
Moran D, Softley R, Warrant EJ. 2015. The energetic cost of vision and the evolution of eyeless Mexican cavefish. Sci. Adv. 1, e1500363. (10.1126/sciadv.1500363) PubMed DOI PMC
Cooper HM, Herbin M, Nevo E. 1993. Visual system of a naturally microphthalmic mammal: the blind mole rat Spalax ehrenbergi. J. Comp. Neurol. 328, 313–350. (10.1002/cne.903280302) PubMed DOI
Burda H, Bruns V, Müller M. 1990. Sensory adaptations in subterranean mammals. Prog. Clin. Biol. Res. 335, 269–293. PubMed
Barton RA, Purvis A, Harvey PH. 1995. Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Phil. Trans. R. Soc. Lond. 348, 381–392. (10.1098/rstb.1995.0076) PubMed DOI
Martin GR, Wilson KJ, Martin Wild J, Parsons S, Fabiana Kubke M, Corfield J. 2007. Kiwi forego vision in the guidance of their nocturnal activities. PLoS ONE 2, e198. (10.1371/journal.pone.0000198) PubMed DOI PMC
Němec P, Cveková P, Burda H, Benada O, Peichl L. Visual systems and the role of vision in subterranean rodents: diversity of retinal properties and visual system designs. In Subterranean rodents (eds Begall S, Burda H, Schleich CE), pp. 129–160. Berlin, Heidelberg, Germany: Springer. (10.1007/978-3-540-69276-8_11) DOI
Krishnan J, Rohner N. 2017. Cavefish and the basis for eye loss. Phil. Trans. R. Soc. B 372, 20150487. (10.1098/rstb.2015.0487) PubMed DOI PMC
de Sousa AA, Todorov OS, Proulx MJ. 2022. A natural history of vision loss: insight from evolution for human visual function. Neurosci. Biobehav. Rev. 134, 104550. (10.1016/j.neubiorev.2022.104550) PubMed DOI
Fröhlich A, Ducatez S, Němec P, Sol Rueda D. 2024. Light conditions and the evolution of the visual system in birds. Evol. Int. J. Org. Evol. 78, 1237–1247. (10.1093/evolut/qpae054) PubMed DOI
Künzle H. 1988. Retinofugal projections in hedgehog-tenrecs (Echinops telfairi and Setifer setosus). Anat. Embryol. 178, 77–93. (10.1007/BF00305017) PubMed DOI
Reimer K. 1989. Retinofugal projections in the rufous horseshoe bat, Rhinolophus rouxi. Anat. Embryol. 180, 89–98. (10.1007/BF00321904) PubMed DOI
Sanyal S, Jansen HG, de Grip WJ, Nevo E, de Jong WW. 1990. The eye of the blind mole rat, Spalax ehrenbergi. Rudiment with hidden function? Investig. Ophthalmol. Vis. Sci. 31, 1398–1404. PubMed
Peichl L, Künzle H, Vogel P. 2000. Photoreceptor types and distributions in the retinae of insectivores. Vis. Neurosci. 17, 937–948. (10.1017/s0952523800176138) PubMed DOI
Cernuda-Cernuda R, DeGrip WJ, Cooper HM, Nevo E, García-Fernández JM. 2002. The retina of Spalax ehrenbergi: novel histologic features supportive of a modified photosensory role. Investig. Ophthalmol. Vis. Sci. 43, 2374–2383. PubMed
Cernuda-Cernuda R, García-Fernández JM, Gordijn MCM, Bovee-Geurts PHM, DeGrip WJ. 2003. The eye of the African mole‐rat Cryptomys anselli: to see or not to see? Eur. J. Neurosci. 17, 709–720. (10.1046/j.1460-9568.2003.02485.x) PubMed DOI
Peichl L, Němec P, Burda H. 2004. Unusual cone and rod properties in subterranean African mole‐rats (Rodentia, Bathyergidae). Eur. J. Neurosci. 19, 1545–1558. (10.1111/j.1460-9568.2004.03263.x) PubMed DOI
Němec P, Burda H, Peichl L. 2004. Subcortical visual system of the African mole‐rat Cryptomys anselli: to see or not to see? Eur. J. Neurosci. 20, 757–768. (10.1111/j.1460-9568.2004.03510.x) PubMed DOI
Glösmann M, Steiner M, Peichl L, Ahnelt PK. 2008. Cone photoreceptors and potential UV vision in a subterranean insectivore, the European mole. J. Vis. 8, 23. (10.1167/8.4.23) PubMed DOI
Mills SL, Catania KC. 2004. Identification of retinal neurons in a regressive rodent eye (the naked mole-rat). Vis. Neurosci. 21, 107–117. (10.1017/S0952523804043020) PubMed DOI PMC
Esquiva G, Avivi A, Hannibal J. 2016. Non-image forming light detection by melanopsin, rhodopsin, and long-middlewave (L/W) cone opsin in the subterranean blind mole rat, Spalax ehrenbergi: immunohistochemical characterization, distribution, and connectivity. Front. Neuroanat. 10, 61. (10.3389/fnana.2016.00061) PubMed DOI PMC
Bennett NC, Faulkes CG. 2000. African mole-rats: ecology and eusociality. Cambridge, UK: Cambridge University Press.
Šklíba J, Mazoch V, Patzenhauerová H, Hrouzková E, Lövy M, Kott O, Šumbera R. 2012. A maze-lover’s dream: burrow architecture, natural history and habitat characteristics of Ansell’s mole-rat (Fukomys anselli). Mamm. Biol. 77, 420–427. (10.1016/j.mambio.2012.06.004) DOI
Caspar KR, Burda H, Begall S. 2021. Fukomys mechowii (Rodentia: Bathyergidae). Mamm. Species 53, 145–159. (10.1093/mspecies/seab014) DOI
Begall S, Burda H, Caspar KR. 2021. Fukomys anselli (Rodentia: Bathyergidae). Mamm. Species 53, 160–173. (10.1093/mspecies/seab015) DOI
Burda H. 2022. Zambian mole-rats: 33 years on the scene and what we still do not know and how we could learn it. Front. Ecol. Evol. 10, 866709. (10.3389/fevo.2022.866709) DOI
Kashash Y, Smarsh G, Zilkha N, Yovel Y, Kimchi T. 2022. Alone, in the dark: the extraordinary neuroethology of the solitary blind mole rat. eLife 11, e78295. (10.7554/eLife.78295) PubMed DOI PMC
Němec P, Cveková P, Benada O, Wielkopolska E, Olkowicz S, Turlejski K, Burda H, Bennett NC, Peichl L. 2008. The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex. Brain Res. Bull. 75, 356–364. (10.1016/j.brainresbull.2007.10.055) PubMed DOI
Negroni J, Bennett NC, Cooper HM. 2003. Organization of the circadian system in the subterranean mole rat, Cryptomys hottentotus (Bathyergidae). Brain Res. 967, 48–62. (10.1016/s0006-8993(02)04208-7) PubMed DOI
Crish SD, Dengler-Crish CM, Catania KC. 2006. Central visual system of the naked mole‐rat (Heterocephalus glaber). Anat. Rec. Part Discov. Mol. Cell. Evol. Biol. 288, 205–212. (10.1002/ar.a.20288) PubMed DOI
Molnár Z, Kaas JH, de Carlos JA, Hevner RF, Lein E, Němec P. 2014. Evolution and development of the mammalian cerebral cortex. Brain Behav. Evol. 83, 126–139. (10.1159/000357753) PubMed DOI PMC
Oosthuizen MK, Bennett NC. 2022. Clocks ticking in the dark: a review of biological rhythms in subterranean African mole-rats. Front. Ecol. Evol. 10, 878533. (10.3389/fevo.2022.878533) DOI
Wegner RE, Begall S, Burda H. 2006. Light perception in ‘blind’ subterranean Zambian mole-rats. Anim. Behav. 72, 1021–1024. (10.1016/j.anbehav.2006.02.018) DOI
Kott O, Sumbera R, Němec P. 2010. Light perception in two strictly subterranean rodents: life in the dark or blue? PLoS ONE 5, e11810. (10.1371/journal.pone.0011810) PubMed DOI PMC
Kott O, Němec P, Fremlová A, Mazoch V, Šumbera R. 2016. Behavioural tests reveal severe visual deficits in the strictly Subterranean African mole‐rats (Bathyergidae) but efficient vision in the fossorial rodent coruro (Spalacopus cyanus, Octodontidae). Ethology 122, 682–694. (10.1111/eth.12515) DOI
Wässle H. 2004. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5, 747–757. (10.1038/nrn1497) PubMed DOI
Sun W, Li N, He S. 2002. Large‐scale morphological survey of mouse retinal ganglion cells. J. Comp. Neurol. 451, 115–126. (10.1002/cne.10323) PubMed DOI
Kong JH, Fish DR, Rockhill RL, Masland RH. 2005. Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J. Comp. Neurol. 489, 293–310. (10.1002/cne.20631) PubMed DOI
Coombs J, van der List D, Wang GY, Chalupa LM. 2006. Morphological properties of mouse retinal ganglion cells. Neuroscience 140, 123–136. (10.1016/j.neuroscience.2006.02.079) PubMed DOI
Völgyi B, Chheda S, Bloomfield SA. 2009. Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. J. Comp. Neurol. 512, 664–687. (10.1002/cne.21912) PubMed DOI PMC
Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T. 2016. The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345–350. (10.1038/nature16468) PubMed DOI PMC
Goetz J, et al. . 2022. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Rep. 40, 111040. (10.1016/j.celrep.2022.111040) PubMed DOI PMC
Peichl L. 1992. Morphological types of ganglion cells in the dog and wolf retina. J. Comp. Neurol. 324, 590–602. (10.1002/cne.903240411) PubMed DOI
Peichl L, Buhl EH, Boycott BB. 1987. Alpha ganglion cells in the rabbit retina. J. Comp. Neurol. 263, 25–41. (10.1002/cne.902630103) PubMed DOI
Huang L, Max M, Margolskee RF, Su H, Masland RH, Euler T. 2003. G protein subunit Gγ13 is coexpressed with Gαo, Gβ3, and Gβ4 in retinal ON bipolar cells. J. Comp. Neurol. 455, 1–10. (10.1002/cne.10396) PubMed DOI
Schindelin J, et al. . 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. (10.1038/nmeth.2019) PubMed DOI PMC
R Core Team . 2023. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See https://www.R-project.org/.
Murtagh F, Legendre P. 2014. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J. Classif. 31, 274–295. (10.1007/s00357-014-9161-z) DOI
Greferath U, Grünert U, Wässle H. 1990. Rod bipolar cells in the mammalian retina show protein kinase C‐like immunoreactivity. J. Comp. Neurol. 301, 433–442. (10.1002/cne.903010308) PubMed DOI
Huxlin KR, Goodchild AK. 1997. Retinal ganglion cells in the albino rat: revised morphological classification. J. Comp. Neurol. 385, 309–323. (10.1002/(sici)1096-9861(19970825)385:23.3.co;2-7) PubMed DOI
Sun W, Li N, He S. 2002. Large-scale morophological survey of rat retinal ganglion cells. Vis. Neurosci. 19, 483–493. (10.1017/s0952523802194107) PubMed DOI
Rodieck RW, Brening RK. 1983. Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. Brain Behav. Evol. 23, 143–164. (10.1159/000121493) PubMed DOI
Peichl L. 1991. Alpha ganglion cells in mammalian retinae: common properties, species differences, and some comments on other ganglion cells. Vis. Neurosci. 7, 155–169. (10.1017/s0952523800011020) PubMed DOI
Nilsson DE. 2021. The diversity of eyes and vision. Annu. Rev. Vis. Sci. 7, 19–41. (10.1146/annurev-vision-121820-074736) PubMed DOI
Kott O, Moritz RE, Šumbera R, Burda H, Němec P. 2014. Light propagation in burrows of subterranean rodents: tunnel system architecture but not photoreceptor sensitivity limits light sensation range. J. Zool. 294, 67–75. (10.1111/jzo.12152) DOI
Chanel PNC, Bennett NC, Oosthuizen MK. 2024. Light sensitivity of the circadian system in the social Highveld mole-rat Cryptomys hottentotus pretoriae. J. Exp. Biol. 227, b247793. (10.1242/jeb.247793) PubMed DOI PMC
Sklíba J, Lövy M, Hrouzková E, Kott O, Okrouhlík J, Sumbera R. 2014. Social and environmental influences on daily activity pattern in free-living subterranean rodents. J. Biol. Rhythm. 29, 203–214. (10.1177/0748730414526358) PubMed DOI
Hetling JR, Baig-Silva MS, Comer CM, Pardue MT, Samaan DY, Qtaishat NM, Pepperberg DR, Park TJ. 2005. Features of visual function in the naked mole-rat Heterocephalus glaber. J. Comp. Physiol. Neuroethol. Sens. Neural Behav. Physiol. 191, 317–330. (10.1007/s00359-004-0584-6) PubMed DOI
Hattar S, Liao HW, Takao M, Berson DM, Yau KW. 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070. (10.1126/science.1069609) PubMed DOI PMC
Lucas RJ. 2013. Mammalian inner retinal photoreception. Curr. Biol. 23, R125–33. (10.1016/j.cub.2012.12.029) PubMed DOI
Johnson J, Wu V, Donovan M, Majumdar S, Rentería RC, Porco T, Van Gelder RN, Copenhagen DR. 2010. Melanopsin-dependent light avoidance in neonatal mice. Proc. Natl Acad. Sci. USA 107, 17374–17378. (10.1073/pnas.1008533107) PubMed DOI PMC
Semo M, Gias C, Ahmado A, Sugano E, Allen AE, Lawrence JM, Tomita H, Coffey PJ, Vugler AA. 2010. Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception. PLoS ONE 5, e15009. (10.1371/journal.pone.0015009) PubMed DOI PMC
Matynia A, Parikh S, Chen B, Kim P, McNeill DS, Nusinowitz S, Evans C, Gorin MB. 2012. Intrinsically photosensitive retinal ganglion cells are the primary but not exclusive circuit for light aversion. Exp. Eye Res. 105, 60–69. (10.1016/j.exer.2012.09.012) PubMed DOI
Avaroth Bhaskaran R. 2024. Data for: Morphometric analysis of retinal ganglionic cells (3D confocal images) analyzed using filament tracer from Imaris software. Dryad Digital Repository. (10.5061/dryad.pk0p2ngzh) DOI
Avaroth Bhaskaran R, Vondráčková Z, Koladiya A, Čapek M, Dionigi F, Begall Set al. . 2025. Supplementary material from: Distinct retinal ganglion cell types in strictly subterranean, naturally microphthalmic mammals. Figshare (10.6084/m9.figshare.c.7616466) PubMed DOI PMC
Distinct retinal ganglion cell types in strictly subterranean, naturally microphthalmic mammals