• This record comes from PubMed

Distinct retinal ganglion cell types in strictly subterranean, naturally microphthalmic mammals

. 2025 Jan ; 292 (2038) : 20242586. [epub] 20250115

Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Grant support
Grant Agency of Charles University
Ministry of Education, Youth and Sport of the Czech Republic
Grantová Agentura České Republiky

African mole-rats (Bathyergidae, Rodentia) are subterranean rodents that live in extensive dark underground tunnel systems and rarely emerge aboveground. They can discriminate between light and dark but show no overt visually driven behaviours except for light-avoidance responses. Their eyes and central visual system are strongly reduced but not degenerated. Here, we focus on retinal ganglion cells (RGCs). Sighted mammals have numerous RGC types with distinct morphological and functional properties that encode different aspects of a visual scene. We analysed the morphological diversity of 216 intracellularly dye-injected RGCs in the giant mole-rat (Fukomys mechowii) and 48 RGCs in Ansell's mole-rat (Fukomys anselli). Using a hierarchical cluster analysis on 11 morphological parameters, we show that both species possess at least five RGC types with distinct dendritic field sizes and branching patterns. These resemble some RGC types of the mouse and rat, but mole-rat RGCs feature overall sparser and more asymmetric branching patterns. The dendritic trees of most RGCs in all clusters are monostratified in the inner plexiform layer, but bistratified and multistratified/diffuse cells also exist. Thus, although RGC morphologies have become disorganized, the basic retinal organization principle of parallel information processing by distinct RGC types is retained.

See more in PubMed

Stevens M. 2013. Sensory ecology, behaviour, and evolution. Oxford, UK: Oxford University Press.

Cronin TW. 2014. Visual ecology. Princeton, NJ: Princeton University Press.

Land MF, Nilsson DE. 2012. Animal eyes, 2nd edn. Oxford, UK: Oxford University Press.

Niven JE, Laughlin SB. 2008. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211, 1792–1804. (10.1242/jeb.017574) PubMed DOI

Moran D, Softley R, Warrant EJ. 2015. The energetic cost of vision and the evolution of eyeless Mexican cavefish. Sci. Adv. 1, e1500363. (10.1126/sciadv.1500363) PubMed DOI PMC

Cooper HM, Herbin M, Nevo E. 1993. Visual system of a naturally microphthalmic mammal: the blind mole rat Spalax ehrenbergi. J. Comp. Neurol. 328, 313–350. (10.1002/cne.903280302) PubMed DOI

Burda H, Bruns V, Müller M. 1990. Sensory adaptations in subterranean mammals. Prog. Clin. Biol. Res. 335, 269–293. PubMed

Barton RA, Purvis A, Harvey PH. 1995. Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Phil. Trans. R. Soc. Lond. 348, 381–392. (10.1098/rstb.1995.0076) PubMed DOI

Martin GR, Wilson KJ, Martin Wild J, Parsons S, Fabiana Kubke M, Corfield J. 2007. Kiwi forego vision in the guidance of their nocturnal activities. PLoS ONE 2, e198. (10.1371/journal.pone.0000198) PubMed DOI PMC

Němec P, Cveková P, Burda H, Benada O, Peichl L. Visual systems and the role of vision in subterranean rodents: diversity of retinal properties and visual system designs. In Subterranean rodents (eds Begall S, Burda H, Schleich CE), pp. 129–160. Berlin, Heidelberg, Germany: Springer. (10.1007/978-3-540-69276-8_11) DOI

Krishnan J, Rohner N. 2017. Cavefish and the basis for eye loss. Phil. Trans. R. Soc. B 372, 20150487. (10.1098/rstb.2015.0487) PubMed DOI PMC

de Sousa AA, Todorov OS, Proulx MJ. 2022. A natural history of vision loss: insight from evolution for human visual function. Neurosci. Biobehav. Rev. 134, 104550. (10.1016/j.neubiorev.2022.104550) PubMed DOI

Fröhlich A, Ducatez S, Němec P, Sol Rueda D. 2024. Light conditions and the evolution of the visual system in birds. Evol. Int. J. Org. Evol. 78, 1237–1247. (10.1093/evolut/qpae054) PubMed DOI

Künzle H. 1988. Retinofugal projections in hedgehog-tenrecs (Echinops telfairi and Setifer setosus). Anat. Embryol. 178, 77–93. (10.1007/BF00305017) PubMed DOI

Reimer K. 1989. Retinofugal projections in the rufous horseshoe bat, Rhinolophus rouxi. Anat. Embryol. 180, 89–98. (10.1007/BF00321904) PubMed DOI

Sanyal S, Jansen HG, de Grip WJ, Nevo E, de Jong WW. 1990. The eye of the blind mole rat, Spalax ehrenbergi. Rudiment with hidden function? Investig. Ophthalmol. Vis. Sci. 31, 1398–1404. PubMed

Peichl L, Künzle H, Vogel P. 2000. Photoreceptor types and distributions in the retinae of insectivores. Vis. Neurosci. 17, 937–948. (10.1017/s0952523800176138) PubMed DOI

Cernuda-Cernuda R, DeGrip WJ, Cooper HM, Nevo E, García-Fernández JM. 2002. The retina of Spalax ehrenbergi: novel histologic features supportive of a modified photosensory role. Investig. Ophthalmol. Vis. Sci. 43, 2374–2383. PubMed

Cernuda-Cernuda R, García-Fernández JM, Gordijn MCM, Bovee-Geurts PHM, DeGrip WJ. 2003. The eye of the African mole‐rat Cryptomys anselli: to see or not to see? Eur. J. Neurosci. 17, 709–720. (10.1046/j.1460-9568.2003.02485.x) PubMed DOI

Peichl L, Němec P, Burda H. 2004. Unusual cone and rod properties in subterranean African mole‐rats (Rodentia, Bathyergidae). Eur. J. Neurosci. 19, 1545–1558. (10.1111/j.1460-9568.2004.03263.x) PubMed DOI

Němec P, Burda H, Peichl L. 2004. Subcortical visual system of the African mole‐rat Cryptomys anselli: to see or not to see? Eur. J. Neurosci. 20, 757–768. (10.1111/j.1460-9568.2004.03510.x) PubMed DOI

Glösmann M, Steiner M, Peichl L, Ahnelt PK. 2008. Cone photoreceptors and potential UV vision in a subterranean insectivore, the European mole. J. Vis. 8, 23. (10.1167/8.4.23) PubMed DOI

Mills SL, Catania KC. 2004. Identification of retinal neurons in a regressive rodent eye (the naked mole-rat). Vis. Neurosci. 21, 107–117. (10.1017/S0952523804043020) PubMed DOI PMC

Esquiva G, Avivi A, Hannibal J. 2016. Non-image forming light detection by melanopsin, rhodopsin, and long-middlewave (L/W) cone opsin in the subterranean blind mole rat, Spalax ehrenbergi: immunohistochemical characterization, distribution, and connectivity. Front. Neuroanat. 10, 61. (10.3389/fnana.2016.00061) PubMed DOI PMC

Bennett NC, Faulkes CG. 2000. African mole-rats: ecology and eusociality. Cambridge, UK: Cambridge University Press.

Šklíba J, Mazoch V, Patzenhauerová H, Hrouzková E, Lövy M, Kott O, Šumbera R. 2012. A maze-lover’s dream: burrow architecture, natural history and habitat characteristics of Ansell’s mole-rat (Fukomys anselli). Mamm. Biol. 77, 420–427. (10.1016/j.mambio.2012.06.004) DOI

Caspar KR, Burda H, Begall S. 2021. Fukomys mechowii (Rodentia: Bathyergidae). Mamm. Species 53, 145–159. (10.1093/mspecies/seab014) DOI

Begall S, Burda H, Caspar KR. 2021. Fukomys anselli (Rodentia: Bathyergidae). Mamm. Species 53, 160–173. (10.1093/mspecies/seab015) DOI

Burda H. 2022. Zambian mole-rats: 33 years on the scene and what we still do not know and how we could learn it. Front. Ecol. Evol. 10, 866709. (10.3389/fevo.2022.866709) DOI

Kashash Y, Smarsh G, Zilkha N, Yovel Y, Kimchi T. 2022. Alone, in the dark: the extraordinary neuroethology of the solitary blind mole rat. eLife 11, e78295. (10.7554/eLife.78295) PubMed DOI PMC

Němec P, Cveková P, Benada O, Wielkopolska E, Olkowicz S, Turlejski K, Burda H, Bennett NC, Peichl L. 2008. The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex. Brain Res. Bull. 75, 356–364. (10.1016/j.brainresbull.2007.10.055) PubMed DOI

Negroni J, Bennett NC, Cooper HM. 2003. Organization of the circadian system in the subterranean mole rat, Cryptomys hottentotus (Bathyergidae). Brain Res. 967, 48–62. (10.1016/s0006-8993(02)04208-7) PubMed DOI

Crish SD, Dengler-Crish CM, Catania KC. 2006. Central visual system of the naked mole‐rat (Heterocephalus glaber). Anat. Rec. Part Discov. Mol. Cell. Evol. Biol. 288, 205–212. (10.1002/ar.a.20288) PubMed DOI

Molnár Z, Kaas JH, de Carlos JA, Hevner RF, Lein E, Němec P. 2014. Evolution and development of the mammalian cerebral cortex. Brain Behav. Evol. 83, 126–139. (10.1159/000357753) PubMed DOI PMC

Oosthuizen MK, Bennett NC. 2022. Clocks ticking in the dark: a review of biological rhythms in subterranean African mole-rats. Front. Ecol. Evol. 10, 878533. (10.3389/fevo.2022.878533) DOI

Wegner RE, Begall S, Burda H. 2006. Light perception in ‘blind’ subterranean Zambian mole-rats. Anim. Behav. 72, 1021–1024. (10.1016/j.anbehav.2006.02.018) DOI

Kott O, Sumbera R, Němec P. 2010. Light perception in two strictly subterranean rodents: life in the dark or blue? PLoS ONE 5, e11810. (10.1371/journal.pone.0011810) PubMed DOI PMC

Kott O, Němec P, Fremlová A, Mazoch V, Šumbera R. 2016. Behavioural tests reveal severe visual deficits in the strictly Subterranean African mole‐rats (Bathyergidae) but efficient vision in the fossorial rodent coruro (Spalacopus cyanus, Octodontidae). Ethology 122, 682–694. (10.1111/eth.12515) DOI

Wässle H. 2004. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5, 747–757. (10.1038/nrn1497) PubMed DOI

Sun W, Li N, He S. 2002. Large‐scale morphological survey of mouse retinal ganglion cells. J. Comp. Neurol. 451, 115–126. (10.1002/cne.10323) PubMed DOI

Kong JH, Fish DR, Rockhill RL, Masland RH. 2005. Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J. Comp. Neurol. 489, 293–310. (10.1002/cne.20631) PubMed DOI

Coombs J, van der List D, Wang GY, Chalupa LM. 2006. Morphological properties of mouse retinal ganglion cells. Neuroscience 140, 123–136. (10.1016/j.neuroscience.2006.02.079) PubMed DOI

Völgyi B, Chheda S, Bloomfield SA. 2009. Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. J. Comp. Neurol. 512, 664–687. (10.1002/cne.21912) PubMed DOI PMC

Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T. 2016. The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345–350. (10.1038/nature16468) PubMed DOI PMC

Goetz J, et al. . 2022. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Rep. 40, 111040. (10.1016/j.celrep.2022.111040) PubMed DOI PMC

Peichl L. 1992. Morphological types of ganglion cells in the dog and wolf retina. J. Comp. Neurol. 324, 590–602. (10.1002/cne.903240411) PubMed DOI

Peichl L, Buhl EH, Boycott BB. 1987. Alpha ganglion cells in the rabbit retina. J. Comp. Neurol. 263, 25–41. (10.1002/cne.902630103) PubMed DOI

Huang L, Max M, Margolskee RF, Su H, Masland RH, Euler T. 2003. G protein subunit Gγ13 is coexpressed with Gαo, Gβ3, and Gβ4 in retinal ON bipolar cells. J. Comp. Neurol. 455, 1–10. (10.1002/cne.10396) PubMed DOI

Schindelin J, et al. . 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. (10.1038/nmeth.2019) PubMed DOI PMC

R Core Team . 2023. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See https://www.R-project.org/.

Murtagh F, Legendre P. 2014. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J. Classif. 31, 274–295. (10.1007/s00357-014-9161-z) DOI

Greferath U, Grünert U, Wässle H. 1990. Rod bipolar cells in the mammalian retina show protein kinase C‐like immunoreactivity. J. Comp. Neurol. 301, 433–442. (10.1002/cne.903010308) PubMed DOI

Huxlin KR, Goodchild AK. 1997. Retinal ganglion cells in the albino rat: revised morphological classification. J. Comp. Neurol. 385, 309–323. (10.1002/(sici)1096-9861(19970825)385:23.3.co;2-7) PubMed DOI

Sun W, Li N, He S. 2002. Large-scale morophological survey of rat retinal ganglion cells. Vis. Neurosci. 19, 483–493. (10.1017/s0952523802194107) PubMed DOI

Rodieck RW, Brening RK. 1983. Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. Brain Behav. Evol. 23, 143–164. (10.1159/000121493) PubMed DOI

Peichl L. 1991. Alpha ganglion cells in mammalian retinae: common properties, species differences, and some comments on other ganglion cells. Vis. Neurosci. 7, 155–169. (10.1017/s0952523800011020) PubMed DOI

Nilsson DE. 2021. The diversity of eyes and vision. Annu. Rev. Vis. Sci. 7, 19–41. (10.1146/annurev-vision-121820-074736) PubMed DOI

Kott O, Moritz RE, Šumbera R, Burda H, Němec P. 2014. Light propagation in burrows of subterranean rodents: tunnel system architecture but not photoreceptor sensitivity limits light sensation range. J. Zool. 294, 67–75. (10.1111/jzo.12152) DOI

Chanel PNC, Bennett NC, Oosthuizen MK. 2024. Light sensitivity of the circadian system in the social Highveld mole-rat Cryptomys hottentotus pretoriae. J. Exp. Biol. 227, b247793. (10.1242/jeb.247793) PubMed DOI PMC

Sklíba J, Lövy M, Hrouzková E, Kott O, Okrouhlík J, Sumbera R. 2014. Social and environmental influences on daily activity pattern in free-living subterranean rodents. J. Biol. Rhythm. 29, 203–214. (10.1177/0748730414526358) PubMed DOI

Hetling JR, Baig-Silva MS, Comer CM, Pardue MT, Samaan DY, Qtaishat NM, Pepperberg DR, Park TJ. 2005. Features of visual function in the naked mole-rat Heterocephalus glaber. J. Comp. Physiol. Neuroethol. Sens. Neural Behav. Physiol. 191, 317–330. (10.1007/s00359-004-0584-6) PubMed DOI

Hattar S, Liao HW, Takao M, Berson DM, Yau KW. 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070. (10.1126/science.1069609) PubMed DOI PMC

Lucas RJ. 2013. Mammalian inner retinal photoreception. Curr. Biol. 23, R125–33. (10.1016/j.cub.2012.12.029) PubMed DOI

Johnson J, Wu V, Donovan M, Majumdar S, Rentería RC, Porco T, Van Gelder RN, Copenhagen DR. 2010. Melanopsin-dependent light avoidance in neonatal mice. Proc. Natl Acad. Sci. USA 107, 17374–17378. (10.1073/pnas.1008533107) PubMed DOI PMC

Semo M, Gias C, Ahmado A, Sugano E, Allen AE, Lawrence JM, Tomita H, Coffey PJ, Vugler AA. 2010. Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception. PLoS ONE 5, e15009. (10.1371/journal.pone.0015009) PubMed DOI PMC

Matynia A, Parikh S, Chen B, Kim P, McNeill DS, Nusinowitz S, Evans C, Gorin MB. 2012. Intrinsically photosensitive retinal ganglion cells are the primary but not exclusive circuit for light aversion. Exp. Eye Res. 105, 60–69. (10.1016/j.exer.2012.09.012) PubMed DOI

Avaroth Bhaskaran R. 2024. Data for: Morphometric analysis of retinal ganglionic cells (3D confocal images) analyzed using filament tracer from Imaris software. Dryad Digital Repository. (10.5061/dryad.pk0p2ngzh) DOI

Avaroth Bhaskaran R, Vondráčková Z, Koladiya A, Čapek M, Dionigi F, Begall Set al. . 2025. Supplementary material from: Distinct retinal ganglion cell types in strictly subterranean, naturally microphthalmic mammals. Figshare (10.6084/m9.figshare.c.7616466) PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...