Comparison between the geological features of Venus and Earth based on gravity aspects

. 2023 Jul 28 ; 13 (1) : 12259. [epub] 20230728

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37507435
Odkazy

PubMed 37507435
PubMed Central PMC10382528
DOI 10.1038/s41598-023-39100-x
PII: 10.1038/s41598-023-39100-x
Knihovny.cz E-zdroje

We probe the gravitational properties of two neighboring planets, Earth and Venus. To justify a comparison between gravity models of the two planets, spherical harmonic series were considered up to a degree and order of 100. The topography and gravity aspects, including [Formula: see text] (vertical derivative of the vertical component of the gravity field), strike alignment (SA), comb factor (CF), and I2 invariant derived from the Marussi tensor, were calculated for the two planets at specifically selected zones that provided sufficient resolution. From Γzz we discovered that the N-NW edge of Lakshmi Planum does not show any subduction-like features. Its Γzz signature resembles passive continental margins on Earth, like those surrounding the Indian Peninsula. Moreover, according to SA and CF, the Pacific and Philippine-North American Contact Zone on Earth indicates significantly higher level of deformation due to convergent motion of the plates, whereas the deformation level on Venus is significantly smaller and local, when considering an equatorial rifting zone (ERZ) of Venus (between Atla-Beta Regios) as diverging boundaries. The strain mode on the East African Rift system is smaller in comparison with ERZ as its Venusian analog. The topography-I2 analysis suggests a complicated nature of the topographic rise on Beta Regio. We show that specific regions in this volcanic rise are in incipient stages of upward motion, with denser mantle material approaching the surface and thinning the crust, whereas some risen districts show molten and less dense underlying crustal materials. Other elevated districts appear to be due to mantle plumes and local volcanic activities with large density of underlying material.

Zobrazit více v PubMed

Klokočník J, et al. Support for two subglacial impact craters in northwest Greenland from Earth gravity model EIGEN 6C4 and other data. Tectonophysics. 2020;780:228396. doi: 10.1016/j.tecto.2020.228396. DOI

Klokočník J, Kostelecký J, Bezděk A, Kletetschka G, Staňková H. A 200 km suspected impact crater Kotuykanskaya near Popigai, Siberia, in the light of new gravity aspects from EIGEN 6C4, and other data. Sci. Rep. 2020;10:6093. doi: 10.1038/s41598-020-62998-6. PubMed DOI PMC

Klokočník J, Kostelecký J, Varadzinová L, Bezděk A, Kletetschka G. A gravity search for oil and gas and groundwater in Egypt using the strike angles derived from EIGEN 6C4. Appl. Sci. 2020;10:8950. doi: 10.3390/app10248950. DOI

Mataragio J, Kieley J. Application of full tensor gradient invariants in detection of intrusion-hosted sulphide mineralization: Implications for deposition mechanisms. First Break. 2009 doi: 10.3997/1365-2397.27.1301.29032. DOI

Beiki M, Pedersen LB. Eigenvector analysis of gravity gradient tensor to locate geologic bodies. Geophysics. 2010;75:I37–I49. doi: 10.1190/1.3484098. DOI

Murphy A, Dickinson JL. Exploring exploration play models with FTG gravity data. Eur. Assoc. Geosci. Eng. 2009 doi: 10.3997/2214-4609-pdb.241.murphy_paper1. DOI

Edwards AJ, Maki JT, Peterson DG. Gravity gradiometry as a tool for underground facility detection. JEEG. 1997;2:137–142. doi: 10.4133/JEEG2.2.137. DOI

Karimi, K., Oveisy Moakhar, M. & Shirzaditabar, F. Location and dimensionality estimation of geological bodies using eigenvectors of “computed gravity gradient tensor”. JESP44, 63–71, 10.22059/jesphys.2018.253742.1006984 (2018).

Pajot G, de Viron O, Diament M, Lequentrec-Lalancette M-F, Mikhailov V. Noise reduction through joint processing of gravity and gravity gradient data. Geophysics. 2008;73:I23–I34. doi: 10.1190/1.2905222. DOI

Pedersen LB, Rasmussen TM. The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps. Geophysics. 1990;55:1558–1566. doi: 10.1190/1.1442807. DOI

Saad AH. Understanding gravity gradients—A tutorial. Lead. Edge. 2006;25:942–949. doi: 10.1190/1.2335167. DOI

Klokočník J, Kostelecký J, Kalvoda J, Eppelbaum LV, Bezděk A. 2014. Gravity disturbances, Marussi tensor, invariants and other functions of the geopotential represented by EGM 2008. JESR. DOI

Klokocnik J, Kostelecký J, Bezdek A, Kletetschka G. Gravity strike angles: A modern approach and tool to estimate the direction of impactors of meteoritic craters. Planet. Sp. Sci. 2020;194:105113. doi: 10.1016/j.pss.2020.105113. DOI

Kalvoda J, Klokočník J, Kostelecký J. Regional correlation of the Earth gravitational model 08 with morphogenetic patterns of the Nepal Himalaya. AUC Geogr. 2021;45:53–71. doi: 10.14712/23361980.2015.48. DOI

Watts, A. B. Isostasy and Flexure of the Lithosphere Solid Earth Geophysics. https://www.cambridge.org/cz/academic/subjects/earth-and-environmental-science/solid-earth-geophysics/isostasy-and-flexure-lithosphere, https://www.cambridge.org/cz/academic/subjects/earth-and-environmental-science/solid-earth-geophysics (Cambridge University Press, 2001).

Zengerer M. An overview of tensors, gradient and invariant products in imaging and qualitative interpretation. ASEG Ext. Abstr. 2018;2018:1–8.

Karimi K, Shirzaditabar F. Using the ratio of the magnetic field to the analytic signal of the magnetic gradient tensor in determining the position of simple shaped magnetic anomalies. J. Geophys. Eng. 2017;14:769–779. doi: 10.1088/1742-2140/aa68bb. DOI

Karimi K, Shirzaditabar F, Amirian A, Mansoobi A. Center of Mass estimation of simple shaped magnetic bodies using eigenvectors of computed magnetic gradient tensor. JESP. 2019 doi: 10.22059/jesphys.2019.256185.1006999. DOI

Head JW. The geologic evolution of Venus: Insights into Earth history. Geology. 2014;42:95–96. doi: 10.1130/focus012014.1. DOI

Ince ES, et al. ICGEM—15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth Syst. Sci. Data. 2019;11:647–674. doi: 10.5194/essd-11-647-2019. DOI

Konopliv AS, Banerdt WB, Sjogren WL. Venus gravity: 180th degree and order model. Icarus. 1999;139:3–18. doi: 10.1006/icar.1999.6086. DOI

Smrekar, S. E. et al. VERITAS (Venus emissivity, radio science, INSAR, topography and spectroscopy): A proposed discovery mission. In 51st Lunar and Planetary Science Conference, Abstract No. 1449 (2020).

Bickford, M. E. The Web of Geological Sciences: Advances, Impacts, and Interactions. Geol. Soc. Am.10.1130/SPE500 (2013).

Davis, A.M. Meteorites, Comets, and Planets—1st Edition. Elsevier Science, ISBN 978-0-08-052535-8, https://www.elsevier.com/books/meteorites-comets-and-planets/davis/978-0-08-044720-9 (2005)

Treiman, A. H. Geochemistry of Venus’ surface: Current limitations as future opportunities. In Exploring Venus as a Terrestrial Planet 7–22. 10.1029/176GM03. AGU (2007).

McKinnon, W. B., Zahnle, K. J., Ivanov, B. A. & Melosh, H. J. Cratering on Venus: Models and Observations (1997).

Namiki N, Solomon SC. Impact crater densities on volcanoes and coronae on Venus: Implications for volcanic resurfacing. Science. 1994;265:929–933. doi: 10.1126/science.265.5174.929. PubMed DOI

Solomatov V, Moresi L. Stagnant lid convection on Venus. J. Geophys. Res. 1996;101:4737–4754. doi: 10.1029/95JE03361. DOI

James PB, Zuber MT, Phillips RJ. Crustal thickness and support of topography on Venus. J. Geophys. Res. Planets. 2013;118:859–875. doi: 10.1029/2012JE004237. DOI

Solomatov, V. S., & Orth, C. P. Constraints on the Venusian crustal thickness variations in the isostatic stagnant lid approximation. Geochem. Geophys. Geosystems.13. 10.1029/2012GC004377 (2012).

Bindschadler DL, Schubert G, Kaula WM. Coldspots and hotspots: Global tectonics and mantle dynamics of Venus. J. Geophys. Res. 1992;97:13495–13532. doi: 10.1029/92JE01165. DOI

Ivanov M, Head J. Tessera terrain on Venus: A survey of the global distribution, characteristics, and relation to surrounding units from Magellan data. J. Geophys. Res. 1996;101:14861–14908. doi: 10.1029/96JE01245. DOI

Phillips R, Hansen V. Geological evolution of Venus: Rises, plains, plumes, and plateaus. Science. 1998;279:1492–1497. doi: 10.1126/science.279.5356.1492. DOI

Ivanov MA, Head JW. Formation and evolution of Lakshmi Planum, Venus: Assessment of models using observations from geological mapping. Planet. Sp. Sci. 2008;56:1949–1966. doi: 10.1016/j.pss.2008.09.003. DOI

Weller M, Kiefer W. The physics of changing tectonic regimes: Implications for the temporal evolution of mantle convection and the thermal history of Venus. J. Geophys Res. Planets. 2020;125:e2019JE005960. doi: 10.1029/2019JE005960. DOI

Schubert G, Turcotte DL, Olson P. Mantle Convection in the Earth and Planets. Cambridge University Press; 2001.

Harris, L. B. & Bédard, J. H. (2014) Crustal evolution and deformation in a non-plate tectonic Archaean Earth: Comparisons with Venus. In Evolution of Archean Crust and Early Life, Modern Approaches in Solid Earth Sciences, Chapter 9, Vol. 7 (eds Dilek, Y. & Furnes, H.) 215–288, 10.1007/978-94-007-7615-9_9 (Springer, 2014).

Harris LB, Bédard JH. Interactions between continent-like ‘drift’, rifting and mantle flow on Venus: Gravity interpretations and Earth analogues. Geol. Soc. Lond. Spec. Publ. 2015;401:327–356. doi: 10.1144/SP401.9. DOI

Head JW, III, Peterfreund AR, Garvin JB, Zisk SH. Surface characteristics of Venus derived from Pioneer Venus altimetry, roughness, and reflectivity measurements. J. Geophys. Res. 1985;90:6873. doi: 10.1029/JB090iB08p06873. DOI

Stofan ER, et al. Geology of a rift zone on Venus: Beta Regio and Devana Chasma. GSA Bull. 1989;101:143–156. doi: 10.1130/0016-7606(1989)101<0143:GOARZO>2.3.CO;2. DOI

Basilevsky A, Head J. Beta Regio, Venus: Evidence for uplift, rifting, and volcanism due to a mantle plume. Icarus. 2007;192:167–186. doi: 10.1016/j.icarus.2007.07.007. DOI

Stofan E, Smrekar S, Bindschadler D, Senske D. Large topographic rises on Venus: Implications for mantle upwelling. J. Geophys. Res. 1995;100:23317–23327. doi: 10.1029/95JE01834. DOI

Guseva, E. N. Classification of the rift zones of venus: Rift valleys and graben belts. Solar Sys. Res.50, 184–196 (2016).

Ivanov M, Head J. The history of tectonism on Venus: A stratigraphic analysis. Planet. Sp. Sci. 2015;113–114:10–32. doi: 10.1016/j.pss.2015.03.016. DOI

Smrekar, S., Kiefer, W. & Stofan, E. Large Volcanic Rises on Venus. Published: Technical Report, NASA/CR-97-205865; NAS 1.26:205865 (1997).

O’Rourke JG, Smrekar SE. Signatures of lithospheric flexure and elevated heat flow in stereo topography at coronae on Venus. J. Geophys. Res. Planets. 2018;123:369–389. doi: 10.1002/2017JE005358. DOI

Grimm RE, Phillips RJ. Anatomy of a Venusian hot spot: Geology, gravity, and mantle dynamics of Eistla Regio. J. Geophys. Res. 1992;97:16035–16054. doi: 10.1029/92JE01500. DOI

Gilmore MS, Head JW. Morphology and deformational history of Tellus Regio, Venus: Evidence for assembly and collision. Planet. Sp. Sci. 2018;154:5–20. doi: 10.1016/j.pss.2018.02.001. DOI

Byrne PK, et al. A globally fragmented and mobile lithosphere on Venus. Proc. Natl. Acad. Sci. 2021;118:e2025919118. doi: 10.1073/pnas.2025919118. PubMed DOI PMC

Andrews-Hanna, J. et al. Gravity gradients of Venus. In 47th Lunar and Planetary Science Conference, Abstract No. 2907 (2016).

Kletetschka G, et al. Distribution of water phase near the poles of the Moon from gravity aspects. Sci. Rep. 2022;12:4501. doi: 10.1038/s41598-022-08305-x. PubMed DOI PMC

Mussett AE, Khan MA, Button S. Looking Into the Earth: An Introduction to Geological Geophysics. Higher Education from Cambridge University Press; 2000.

Grimm RE, Phillips RJ. Tectonics of Lakshmi Planum, Venus: Tests for magellan. Geophys. Res. Lett. 1990;17:1349–1352. doi: 10.1029/GL017i009p01349. DOI

Ansan V, Vergely P, Masson Ph. Model of formation of Ishtar Terra, Venus. Planet. Sp. Sci. 1996;44:817–831. doi: 10.1016/0032-0633(96)00012-8. DOI

Bindschadler DL, Schubert G, Kaula WM. Mantle flow tectonics and the origin of Ishtar Terra, Venus. Geophys. Res. Lett. 1990;17:1345–1348. doi: 10.1029/GL017i009p01345. DOI

Lowrie W. Fundamentals of Geophysics. Cambridge University Press; 2007.

Senske DA, Head JW, Stofan ER, Campbell DB. Geology and structure of Beta Regio, Venus: Results from Arecibo radar imaging. Geophys. Res. Lett. 1991;18:1159–1162. doi: 10.1029/91GL01001. DOI

Kiefer WS, Swafford LC. Topographic analysis of Devana Chasma, Venus: Implications for rift system segmentation and propagation. J. Struct. Geol. 2006;28:2144–2155. doi: 10.1016/j.jsg.2005.12.002. DOI

Vezolainen A, Solomatov V, Basilevsky A, Head J. Uplift of Beta Regio: Three-dimensional models. J. Geophys. Res. (Planets) 2004;109:8007. doi: 10.1029/2004JE002259. DOI

Bucha B, Janák J. A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Comput. Geosci. 2013;56:186–196. doi: 10.1016/j.cageo.2013.03.012. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Subsurface geology detection from application of the gravity-related dimensionality constraint

. 2024 Jan 30 ; 14 (1) : 2440. [epub] 20240130

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...