Comparison between the geological features of Venus and Earth based on gravity aspects
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
37507435
PubMed Central
PMC10382528
DOI
10.1038/s41598-023-39100-x
PII: 10.1038/s41598-023-39100-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We probe the gravitational properties of two neighboring planets, Earth and Venus. To justify a comparison between gravity models of the two planets, spherical harmonic series were considered up to a degree and order of 100. The topography and gravity aspects, including [Formula: see text] (vertical derivative of the vertical component of the gravity field), strike alignment (SA), comb factor (CF), and I2 invariant derived from the Marussi tensor, were calculated for the two planets at specifically selected zones that provided sufficient resolution. From Γzz we discovered that the N-NW edge of Lakshmi Planum does not show any subduction-like features. Its Γzz signature resembles passive continental margins on Earth, like those surrounding the Indian Peninsula. Moreover, according to SA and CF, the Pacific and Philippine-North American Contact Zone on Earth indicates significantly higher level of deformation due to convergent motion of the plates, whereas the deformation level on Venus is significantly smaller and local, when considering an equatorial rifting zone (ERZ) of Venus (between Atla-Beta Regios) as diverging boundaries. The strain mode on the East African Rift system is smaller in comparison with ERZ as its Venusian analog. The topography-I2 analysis suggests a complicated nature of the topographic rise on Beta Regio. We show that specific regions in this volcanic rise are in incipient stages of upward motion, with denser mantle material approaching the surface and thinning the crust, whereas some risen districts show molten and less dense underlying crustal materials. Other elevated districts appear to be due to mantle plumes and local volcanic activities with large density of underlying material.
Zobrazit více v PubMed
Klokočník J, et al. Support for two subglacial impact craters in northwest Greenland from Earth gravity model EIGEN 6C4 and other data. Tectonophysics. 2020;780:228396. doi: 10.1016/j.tecto.2020.228396. DOI
Klokočník J, Kostelecký J, Bezděk A, Kletetschka G, Staňková H. A 200 km suspected impact crater Kotuykanskaya near Popigai, Siberia, in the light of new gravity aspects from EIGEN 6C4, and other data. Sci. Rep. 2020;10:6093. doi: 10.1038/s41598-020-62998-6. PubMed DOI PMC
Klokočník J, Kostelecký J, Varadzinová L, Bezděk A, Kletetschka G. A gravity search for oil and gas and groundwater in Egypt using the strike angles derived from EIGEN 6C4. Appl. Sci. 2020;10:8950. doi: 10.3390/app10248950. DOI
Mataragio J, Kieley J. Application of full tensor gradient invariants in detection of intrusion-hosted sulphide mineralization: Implications for deposition mechanisms. First Break. 2009 doi: 10.3997/1365-2397.27.1301.29032. DOI
Beiki M, Pedersen LB. Eigenvector analysis of gravity gradient tensor to locate geologic bodies. Geophysics. 2010;75:I37–I49. doi: 10.1190/1.3484098. DOI
Murphy A, Dickinson JL. Exploring exploration play models with FTG gravity data. Eur. Assoc. Geosci. Eng. 2009 doi: 10.3997/2214-4609-pdb.241.murphy_paper1. DOI
Edwards AJ, Maki JT, Peterson DG. Gravity gradiometry as a tool for underground facility detection. JEEG. 1997;2:137–142. doi: 10.4133/JEEG2.2.137. DOI
Karimi, K., Oveisy Moakhar, M. & Shirzaditabar, F. Location and dimensionality estimation of geological bodies using eigenvectors of “computed gravity gradient tensor”. JESP44, 63–71, 10.22059/jesphys.2018.253742.1006984 (2018).
Pajot G, de Viron O, Diament M, Lequentrec-Lalancette M-F, Mikhailov V. Noise reduction through joint processing of gravity and gravity gradient data. Geophysics. 2008;73:I23–I34. doi: 10.1190/1.2905222. DOI
Pedersen LB, Rasmussen TM. The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps. Geophysics. 1990;55:1558–1566. doi: 10.1190/1.1442807. DOI
Saad AH. Understanding gravity gradients—A tutorial. Lead. Edge. 2006;25:942–949. doi: 10.1190/1.2335167. DOI
Klokočník J, Kostelecký J, Kalvoda J, Eppelbaum LV, Bezděk A. 2014. Gravity disturbances, Marussi tensor, invariants and other functions of the geopotential represented by EGM 2008. JESR. DOI
Klokocnik J, Kostelecký J, Bezdek A, Kletetschka G. Gravity strike angles: A modern approach and tool to estimate the direction of impactors of meteoritic craters. Planet. Sp. Sci. 2020;194:105113. doi: 10.1016/j.pss.2020.105113. DOI
Kalvoda J, Klokočník J, Kostelecký J. Regional correlation of the Earth gravitational model 08 with morphogenetic patterns of the Nepal Himalaya. AUC Geogr. 2021;45:53–71. doi: 10.14712/23361980.2015.48. DOI
Watts, A. B. Isostasy and Flexure of the Lithosphere Solid Earth Geophysics. https://www.cambridge.org/cz/academic/subjects/earth-and-environmental-science/solid-earth-geophysics/isostasy-and-flexure-lithosphere, https://www.cambridge.org/cz/academic/subjects/earth-and-environmental-science/solid-earth-geophysics (Cambridge University Press, 2001).
Zengerer M. An overview of tensors, gradient and invariant products in imaging and qualitative interpretation. ASEG Ext. Abstr. 2018;2018:1–8.
Karimi K, Shirzaditabar F. Using the ratio of the magnetic field to the analytic signal of the magnetic gradient tensor in determining the position of simple shaped magnetic anomalies. J. Geophys. Eng. 2017;14:769–779. doi: 10.1088/1742-2140/aa68bb. DOI
Karimi K, Shirzaditabar F, Amirian A, Mansoobi A. Center of Mass estimation of simple shaped magnetic bodies using eigenvectors of computed magnetic gradient tensor. JESP. 2019 doi: 10.22059/jesphys.2019.256185.1006999. DOI
Head JW. The geologic evolution of Venus: Insights into Earth history. Geology. 2014;42:95–96. doi: 10.1130/focus012014.1. DOI
Ince ES, et al. ICGEM—15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth Syst. Sci. Data. 2019;11:647–674. doi: 10.5194/essd-11-647-2019. DOI
Konopliv AS, Banerdt WB, Sjogren WL. Venus gravity: 180th degree and order model. Icarus. 1999;139:3–18. doi: 10.1006/icar.1999.6086. DOI
Smrekar, S. E. et al. VERITAS (Venus emissivity, radio science, INSAR, topography and spectroscopy): A proposed discovery mission. In 51st Lunar and Planetary Science Conference, Abstract No. 1449 (2020).
Bickford, M. E. The Web of Geological Sciences: Advances, Impacts, and Interactions. Geol. Soc. Am.10.1130/SPE500 (2013).
Davis, A.M. Meteorites, Comets, and Planets—1st Edition. Elsevier Science, ISBN 978-0-08-052535-8, https://www.elsevier.com/books/meteorites-comets-and-planets/davis/978-0-08-044720-9 (2005)
Treiman, A. H. Geochemistry of Venus’ surface: Current limitations as future opportunities. In Exploring Venus as a Terrestrial Planet 7–22. 10.1029/176GM03. AGU (2007).
McKinnon, W. B., Zahnle, K. J., Ivanov, B. A. & Melosh, H. J. Cratering on Venus: Models and Observations (1997).
Namiki N, Solomon SC. Impact crater densities on volcanoes and coronae on Venus: Implications for volcanic resurfacing. Science. 1994;265:929–933. doi: 10.1126/science.265.5174.929. PubMed DOI
Solomatov V, Moresi L. Stagnant lid convection on Venus. J. Geophys. Res. 1996;101:4737–4754. doi: 10.1029/95JE03361. DOI
James PB, Zuber MT, Phillips RJ. Crustal thickness and support of topography on Venus. J. Geophys. Res. Planets. 2013;118:859–875. doi: 10.1029/2012JE004237. DOI
Solomatov, V. S., & Orth, C. P. Constraints on the Venusian crustal thickness variations in the isostatic stagnant lid approximation. Geochem. Geophys. Geosystems.13. 10.1029/2012GC004377 (2012).
Bindschadler DL, Schubert G, Kaula WM. Coldspots and hotspots: Global tectonics and mantle dynamics of Venus. J. Geophys. Res. 1992;97:13495–13532. doi: 10.1029/92JE01165. DOI
Ivanov M, Head J. Tessera terrain on Venus: A survey of the global distribution, characteristics, and relation to surrounding units from Magellan data. J. Geophys. Res. 1996;101:14861–14908. doi: 10.1029/96JE01245. DOI
Phillips R, Hansen V. Geological evolution of Venus: Rises, plains, plumes, and plateaus. Science. 1998;279:1492–1497. doi: 10.1126/science.279.5356.1492. DOI
Ivanov MA, Head JW. Formation and evolution of Lakshmi Planum, Venus: Assessment of models using observations from geological mapping. Planet. Sp. Sci. 2008;56:1949–1966. doi: 10.1016/j.pss.2008.09.003. DOI
Weller M, Kiefer W. The physics of changing tectonic regimes: Implications for the temporal evolution of mantle convection and the thermal history of Venus. J. Geophys Res. Planets. 2020;125:e2019JE005960. doi: 10.1029/2019JE005960. DOI
Schubert G, Turcotte DL, Olson P. Mantle Convection in the Earth and Planets. Cambridge University Press; 2001.
Harris, L. B. & Bédard, J. H. (2014) Crustal evolution and deformation in a non-plate tectonic Archaean Earth: Comparisons with Venus. In Evolution of Archean Crust and Early Life, Modern Approaches in Solid Earth Sciences, Chapter 9, Vol. 7 (eds Dilek, Y. & Furnes, H.) 215–288, 10.1007/978-94-007-7615-9_9 (Springer, 2014).
Harris LB, Bédard JH. Interactions between continent-like ‘drift’, rifting and mantle flow on Venus: Gravity interpretations and Earth analogues. Geol. Soc. Lond. Spec. Publ. 2015;401:327–356. doi: 10.1144/SP401.9. DOI
Head JW, III, Peterfreund AR, Garvin JB, Zisk SH. Surface characteristics of Venus derived from Pioneer Venus altimetry, roughness, and reflectivity measurements. J. Geophys. Res. 1985;90:6873. doi: 10.1029/JB090iB08p06873. DOI
Stofan ER, et al. Geology of a rift zone on Venus: Beta Regio and Devana Chasma. GSA Bull. 1989;101:143–156. doi: 10.1130/0016-7606(1989)101<0143:GOARZO>2.3.CO;2. DOI
Basilevsky A, Head J. Beta Regio, Venus: Evidence for uplift, rifting, and volcanism due to a mantle plume. Icarus. 2007;192:167–186. doi: 10.1016/j.icarus.2007.07.007. DOI
Stofan E, Smrekar S, Bindschadler D, Senske D. Large topographic rises on Venus: Implications for mantle upwelling. J. Geophys. Res. 1995;100:23317–23327. doi: 10.1029/95JE01834. DOI
Guseva, E. N. Classification of the rift zones of venus: Rift valleys and graben belts. Solar Sys. Res.50, 184–196 (2016).
Ivanov M, Head J. The history of tectonism on Venus: A stratigraphic analysis. Planet. Sp. Sci. 2015;113–114:10–32. doi: 10.1016/j.pss.2015.03.016. DOI
Smrekar, S., Kiefer, W. & Stofan, E. Large Volcanic Rises on Venus. Published: Technical Report, NASA/CR-97-205865; NAS 1.26:205865 (1997).
O’Rourke JG, Smrekar SE. Signatures of lithospheric flexure and elevated heat flow in stereo topography at coronae on Venus. J. Geophys. Res. Planets. 2018;123:369–389. doi: 10.1002/2017JE005358. DOI
Grimm RE, Phillips RJ. Anatomy of a Venusian hot spot: Geology, gravity, and mantle dynamics of Eistla Regio. J. Geophys. Res. 1992;97:16035–16054. doi: 10.1029/92JE01500. DOI
Gilmore MS, Head JW. Morphology and deformational history of Tellus Regio, Venus: Evidence for assembly and collision. Planet. Sp. Sci. 2018;154:5–20. doi: 10.1016/j.pss.2018.02.001. DOI
Byrne PK, et al. A globally fragmented and mobile lithosphere on Venus. Proc. Natl. Acad. Sci. 2021;118:e2025919118. doi: 10.1073/pnas.2025919118. PubMed DOI PMC
Andrews-Hanna, J. et al. Gravity gradients of Venus. In 47th Lunar and Planetary Science Conference, Abstract No. 2907 (2016).
Kletetschka G, et al. Distribution of water phase near the poles of the Moon from gravity aspects. Sci. Rep. 2022;12:4501. doi: 10.1038/s41598-022-08305-x. PubMed DOI PMC
Mussett AE, Khan MA, Button S. Looking Into the Earth: An Introduction to Geological Geophysics. Higher Education from Cambridge University Press; 2000.
Grimm RE, Phillips RJ. Tectonics of Lakshmi Planum, Venus: Tests for magellan. Geophys. Res. Lett. 1990;17:1349–1352. doi: 10.1029/GL017i009p01349. DOI
Ansan V, Vergely P, Masson Ph. Model of formation of Ishtar Terra, Venus. Planet. Sp. Sci. 1996;44:817–831. doi: 10.1016/0032-0633(96)00012-8. DOI
Bindschadler DL, Schubert G, Kaula WM. Mantle flow tectonics and the origin of Ishtar Terra, Venus. Geophys. Res. Lett. 1990;17:1345–1348. doi: 10.1029/GL017i009p01345. DOI
Lowrie W. Fundamentals of Geophysics. Cambridge University Press; 2007.
Senske DA, Head JW, Stofan ER, Campbell DB. Geology and structure of Beta Regio, Venus: Results from Arecibo radar imaging. Geophys. Res. Lett. 1991;18:1159–1162. doi: 10.1029/91GL01001. DOI
Kiefer WS, Swafford LC. Topographic analysis of Devana Chasma, Venus: Implications for rift system segmentation and propagation. J. Struct. Geol. 2006;28:2144–2155. doi: 10.1016/j.jsg.2005.12.002. DOI
Vezolainen A, Solomatov V, Basilevsky A, Head J. Uplift of Beta Regio: Three-dimensional models. J. Geophys. Res. (Planets) 2004;109:8007. doi: 10.1029/2004JE002259. DOI
Bucha B, Janák J. A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Comput. Geosci. 2013;56:186–196. doi: 10.1016/j.cageo.2013.03.012. DOI