A 200 km suspected impact crater Kotuykanskaya near Popigai, Siberia, in the light of new gravity aspects from EIGEN 6C4, and other data

. 2020 Apr 08 ; 10 (1) : 6093. [epub] 20200408

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32269264
Odkazy

PubMed 32269264
PubMed Central PMC7142122
DOI 10.1038/s41598-020-62998-6
PII: 10.1038/s41598-020-62998-6
Knihovny.cz E-zdroje

We provide arguments in favour of impact origin of a 200 km suspected impact crater Kotuykanskaya near Popigai, Siberia, Russia. We use the gravity aspects (gravity disturbances, the Marussi tensor of the second derivatives of the disturbing geopotential, the gravity invariants and their specific ratio, the strike angles and the virtual deformations), all derived from the combined static gravity field model EIGEN 6C4, with the ground resolution of about 10 km and a precision of about 10 milliGals. We also use the magnetic anomalies from the model EMAG2 and emphasize the evidence of much deeper sources in the suspected area, constraining the impact origin of this structure.

Zobrazit více v PubMed

Foerste Ch., B S. et al. The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (EIGEN 6C4). 5th GOCE user workshop, Paris 25–28, Nov (2014).

Beiki M, Pedersen LB. Eigenvector analysis of gravity gradient tensor to locate geologic bodies. Geophysics. 2010;75:137–149. doi: 10.1190/1.3484098. DOI

Pedersen BD, Rasmussen TM. The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps. Geophysics. 1990;55:1558–1566. doi: 10.1190/1.1442807. DOI

Klokočník J., Kalvoda J., Kostelecký J., Eppelbaum L.V. and Bezděk A. Gravity Disturbances, Marussi Tensor, Invariants and Other Functions of the Geopotential Represented by EGM 2008, ESA Living Planet Symp. 9-13 Sept. 2013, Edinburgh, Scotland. Publ. 2014: JESR (J. Earth Sci. Res.) 2: 88–101 (2014).

Klokočník J, Kostelecký J, Bezděk A. On Feasibility to Detect Volcanoes Hidden under Ice of Antarctica via their “Gravitational Signal”. Annals of Geophys. 2016;59(5):S0539. doi: 10.4401/ag-7102. DOI

Klokočník J., Kostelecký J., Bezděk A. A support for the existence of paleolakes and paleorivers buried under Saharan sand by means of “gravitational signal” from EIGEN 6C4, Arab. J. Geosci. on-line; 10.1007/s12517-017-2962-8 (2017).

Klokočník J., Kostelecký J., Bezděk A. Gravitational Atlas of Antarctica. Book: Springer International Publishing, 113 pp., ISBN 978-3-319-56639-9. 10.1007/978-3-319-56639-9 (2017).

Klokočník J, et al. Candidates for multiple impact craters? Popigai and Chicxulub as seen by the global high resolution Gravitational Field Model EGM08. EGU Solid Earth. 2010;1:71–83. doi: 10.5194/se-1-71-2010. DOI

Klokočník J., Kostelecký J., Bezděk A. On the detection of the Wilkes Land impact crater, Earth, Planets and Space 70, 135, Open Access, 10.1186/s40623-018-0904-7 (2018).

Klokočník J, Kostelecký J, Bezděk A. The putative Saginaw impact structure, Michigan, Lake Huron, in the light of gravity aspects derived. Journal of Great Lakes Research. 2019;45:12–20. doi: 10.1016/j.jglr.2018.11.013. DOI

Saad A. H. Understanding gravity gradients - a tutorial, the meter reader. Ed. B. Van Nieuwenhuise, August issue, The Leading Edge, 941-949 (2006).

Murphy C. A. and Dickinson J. L. Exploring exploration play models with FTG gravity data. 11th SAGA Biennal Techn. Meeting and Exhib., Swaziland, 89-91, 16-18 Sept. (2009).

Mataragio J, Kieley J. Application of full tensor gradient invariants in detection of intrusion-hosted sulphide mineralization: Implications for deposition mechanisms. Mining Geoscience, EAGE First Break. 2009;27:95–98.

Kalvoda J., Klokočník J., Kostelecký J. and Bezděk A. Mass distribution of Earth landforms determined by aspects of the geopotential as computed from the global gravity field model EGM 2008. Acta Univ. Carolinae, Geographica, XLVIII, 2, Prague (2013).

Klokočník J. and Kostelecký J. Gravity signal at Ghawar, Saudi Arabia, from the global gravitational field model EGM 2008 and similarities around, Arab. J. Geosci, 8: 3515-3522; 10.1007/s12517-014-1491-y; ISSN 1866-7511, Springer-Verlag (2015).

Klokočník J, Kostelecký J, Cílek V, Bezděk A, Pešek I. Gravito- topographic signal of the Lake Vostok area, Antarctica, with the most recent data. Polar Science. 2018 doi: 10.1016/j.polar.2018.05.002. DOI

Bucha B, Janák J. A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Computers and Geosciences. 2013;56:186–196. doi: 10.1016/j.cageo.2013.03.012. DOI

Rajmon D. Impact database v. 2010.1., AAPG Datapages, http://www.datapages.com/gis-map-publishing-program/gis-open-files/geothematic/david-rajmon-global-impact-crater-gis-project<http://impacts.rajmon.cz/> (2010).

Mikheeva A.V. The new tasks of structural geomorphology, resolved by the ENDDB geoinformation system, Computing Center Bulletin. Series Math. model. in geoph. – Novosibirsk: NCC Publisher, 17, 57-72 (2014).

Khazanovitch-Wulff K. M., Mikheeva V., Kuznetsov V. F. Structural elements of some astroblemes indicating direction of cosmic body trajectories, New Concepts in Global Tectonics1 (3), 11-18, ISSN 2202-0039 (2013).

Maus, S., et al. EMAG2: A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements, Geochemistry, Geophysics, Geosystems, 10(8), 10.1029/2009GC002471 (2009).

Connerney JEP, et al. Tectonic implications of Mars crustal magnetism. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(42):14970–14975. doi: 10.1073/pnas.0507469102. PubMed DOI PMC

Connerney JEP, et al. The global magnetic field of Mars and implications for crustal evolution. Geophysical Research Letters. 2001;28(21):4015–4018. doi: 10.1029/2001gl013619. DOI

Kletetschka G, et al. Magnetic zones of Mars: Deformation-controlled origin of magnetic anomalies. Meteoritics & Planetary Science. 2009;44(1):131–140. doi: 10.1111/j.1945-5100.2009.tb00723.x. DOI

Kletetschka G, Ness NF, Connerney JEP, Acuna MH, Wasilewski PJ. Grain size dependent potential for self generation of magnetic anomalies on Mars via thermoremanent magnetic acquisition and magnetic interaction of hematite and magnetite. Physics of the Earth and Planetary Interiors. 2005;148(2-4):149–156. doi: 10.1016/j.pepi.2004.08.010. DOI

Amante C, Eakins BW. ETOPO1, 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Techn. Memo. NESDIS NGDC 24 (National Geophysical Data Center) 2009 doi: 10.7289/V5C8276M. DOI

Kletetschka G, Stout JH. The origin of magnetic anomalies in lower crustal rocks, Labrador. Geophysical Research Letters. 1998;25(2):199–202. doi: 10.1029/97gl03506. DOI

Kletetschka G, Wasilewski PJ, Taylor PT. The role of hematite-ilmenite solid solution in the production of magnetic anomalies in ground- and satellite-based data. Tectonophysics. 2002;347(1-3):167–177. doi: 10.1016/s0040-1951(01)00243-8. DOI

Kletetschka G, Wieczorek MA. Fundamental Relations of Mineral Specific Magnetic Carriers for Paleointensity Determination. Physics of the Earth and Planetary Interiors. 2017;272:44–49. doi: 10.1016/j.pepi.2017.09.008. DOI

Nabelek L, Mazanec M, Kdyr S, Kletetschka G. Magnetic, insitu, mineral characterization of Chelyabinsk meteorite thin section. Meteoritics & Planetary Science. 2015;50(6):1112–1121. doi: 10.1111/maps.12448. DOI

Dunlop DJ, Kletetschka G. Multidomain hematite: A source of planetary magnetic anomalies? Geophysical Research Letters. 2001;28(17):3345–3348. doi: 10.1029/2001gl013125. DOI

Kletetschka G. Intense remanence of hematite-ilmenite solid solution. Geologica Carpathica. 2000;51(3):187–187.

Kletetschka G, et al. TRM in low magnetic fields: a minimum field that can be recorded by large multidomain grains. Physics of the Earth and Planetary Interiors. 2006;154(3-4):290–298. doi: 10.1016/j.pepi.2005.07.005. DOI

Kletetschka G, Wasilewski PJ, Taylor PT. Hematite vs. magnetite as the signature for planetary magnetic anomalies? Physics of the Earth and Planetary Interiors. 2000;119(3-4):259–267. doi: 10.1016/s0031-9201(00)00141-2. DOI

Adachi T, Kletetschka G. Impact-pressure controlled orientation of shatter cone magnetizations in Sierra Madera, Texas, USA. Studia Geophysica Et Geodaetica. 2008;52(2):237–254. doi: 10.1007/s11200-008-0016-0. DOI

Kletetschka G, Connerney JEP, Ness NF, Acuna MH. Pressure effects on martian crustal magnetization near large impact basins. Meteoritics & Plan. Sci. 2004;39(11):1839–1848. doi: 10.1111/j.1945-5100.2004.tb00079.x. DOI

Kletetschka G, Stout JH. Stability analysis of invariant points using Euler spheres, with an application to FMAS granulites. Journal of Metamorphic Geology. 1999;17(4):435–448. doi: 10.1046/j.1525-1314.1999.00209.x. DOI

Crawford, D. A. in Proceedings of the 2015 Hypervelocity Impact Symposium Vol. 103 Procedia Engineering (ed. Schonberg W. P.) 89–96 (Elsevier Science Bv, 2015).

Stoffler D, Claeys P. Extraterrestrial impacts - Earth rocked by combination punch. Nature. 1997;388:331–332. doi: 10.1038/40981. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Comparison between the geological features of Venus and Earth based on gravity aspects

. 2023 Jul 28 ; 13 (1) : 12259. [epub] 20230728

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...