Distribution of water phase near the poles of the Moon from gravity aspects

. 2022 Mar 16 ; 12 (1) : 4501. [epub] 20220316

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35296705
Odkazy

PubMed 35296705
PubMed Central PMC8927600
DOI 10.1038/s41598-022-08305-x
PII: 10.1038/s41598-022-08305-x
Knihovny.cz E-zdroje

Our Moon periodically moves through the magnetic tail of the Earth that contains terrestrial ions of hydrogen and oxygen. A possible density contrast might have been discovered that could be consistent with the presence of water phase of potential terrestrial origin. Using novel gravity aspects (descriptors) derived from harmonic potential coefficients of gravity field of the Moon, we discovered gravity strike angle anomalies that point to water phase locations in the polar regions of the Moon. Our analysis suggests that impact cratering processes were responsible for specific pore space network that were subsequently filled with the water phase filling volumes of permafrost in the lunar subsurface. In this work, we suggest the accumulation of up to ~ 3000 km3 of terrestrial water phase (Earth's atmospheric escape) now filling the pore spaced regolith, portion of which is distributed along impact zones of the polar regions of the Moon. These unique locations serve as potential resource utilization sites for future landing exploration and habitats (e.g., NASA Artemis Plan objectives).

Zobrazit více v PubMed

Smith, R. M., Gates, M., Cassady, A., Krezel, J. & IEEE. in IEEE Aerospace Conference (IEEE, 2018).

Terada K, et al. Biogenic oxygen from Earth transported to the Moon by a wind of magnetospheric ions. Nat. Astron. 2017;1:5. doi: 10.1038/s41550-016-0026. DOI

Del Zanna G, Dere KP, Young PR, Landi E, Mason HE. CHIANTI—An atomic database for emission lines. Version 8. Astron. Astrophys. 2015;582:12. doi: 10.1051/0004-6361/201526827. DOI

Wang HZ, et al. Earth wind as a possible exogenous source of lunar surface hydration. Astrophys. J. 2021;907:L32. doi: 10.3847/2041-8213/abd559. DOI

Seki K, Elphic RC, Hirahara M, Terasawa T, Mukai T. On atmospheric loss of oxygen ions from earth through magnetospheric processes. Science. 2001;291:1939–1941. doi: 10.1126/science.1058913. PubMed DOI

Hale CJ. The intensity of the geomagnetic-field at 3.5 GA—Paleointensity results from the Komati Formation, Barberton Mountain Land, South-Africa. Earth Planet. Sci. Lett. 1987;86:354–364. doi: 10.1016/0012-821x(87)90232-9. DOI

Kletetschka G, et al. Magnetic zones of Mars: Deformation-controlled origin of magnetic anomalies. Meteorit. Planet. Sci. 2009;44:131–140. doi: 10.1111/j.1945-5100.2009.tb00723.x. DOI

Connerney JEP, et al. The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett. 2001;28:4015–4018. doi: 10.1029/2001gl013619. DOI

Harada Y, et al. Marsward and tailward ions in the near-Mars magnetotail: MAVEN observations. Geophys. Res. Lett. 2015;42:8925–8932. doi: 10.1002/2015gl065005. DOI

Kahn PGK, Pompea SM. Nautiloid growth rhythms and dynamical evolution of Earth–Moon system. Nature. 1978;275:606–611. doi: 10.1038/275606a0. DOI

Jakosky BM, et al. MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science. 2015;350:7. doi: 10.1126/science.aad0210. PubMed DOI

Ozima M, et al. Terrestrial nitrogen and noble gases in lunar soils. Nature. 2005;436:655–659. doi: 10.1038/nature03929. PubMed DOI

Shizgal BD, Arkos GG. Nonthermal escape of the atmospheres of Venus, Earth, and Mars. Rev. Geophys. 1996;34:483–505. doi: 10.1029/96rg02213. DOI

Angelopoulos V, et al. Electromagnetic energy conversion at reconnection fronts. Science. 2013;341:1478–1482. doi: 10.1126/science.1236992. PubMed DOI

Walker IK, Moen J, Mitchell CN, Kersley L, Sandholt PE. Ionospheric effects of magnetopause reconnection observed using ionospheric tomography. Geophys. Res. Lett. 1998;25:293–296. doi: 10.1029/97gl53698. DOI

Hultqvist, B., Øieroset, M., Paschmann, G. & Treumann, R. Magnetospheric Plasma Sources and Losses, Vol. 6, 371–372. 10.1007/978-94-011-4477-3_3 (1999).

Wilson JK, Mendillo M, Spence HE. Magnetospheric influence on the Moon's exosphere. J. Geophys. Res. Space Phys. 2006;111:7. doi: 10.1029/2005ja011364. DOI

Mishra SK, Bhardwaj A. Electrostatic charging of permanently shadowed craters on the Moon. Mon. Not. R. Astron. Soc. 2020;496:L80–L84. doi: 10.1093/mnrasl/slaa082. DOI

Piquette M, Horanyi M. The effect of asymmetric surface topography on dust dynamics on airless bodies. Icarus. 2017;291:65–74. doi: 10.1016/j.icarus.2017.03.019. DOI

Stubbs, T. J., Vondrak, R. R. & Farrell, W. M. in Moon and Near-Earth Objects Vol. 37 Advances in Space Research (eds P. Ehrenfreund et al.) 59–66 (Elsevier Science Bv, 2006). 10.1016/j.asr.2005.04.048

Carroll A, et al. Laboratory measurements of initial launch velocities of electrostatically lofted dust on airless planetary bodies. Icarus. 2020;352:7. doi: 10.1016/j.icarus.2020.113972. DOI

Colwell JE, Gulbis AAS, Horanyi M, Robertson S. Dust transport in photoelectron layers and the formation of dust ponds on Eros. Icarus. 2005;175:159–169. doi: 10.1016/j.icarus.2004.11.001. DOI

Hughes ALH, Colwell JE, DeWolfe AW. Electrostatic dust transport on Eros: 3-D simulations of pond formation. Icarus. 2008;195:630–648. doi: 10.1016/j.icarus.2008.02.008. DOI

Robinson MS, Thomas PC, Veverka J, Murchie S, Carcich B. The nature of ponded deposits on Eros. Nature. 2001;413:396–400. doi: 10.1038/35096518. PubMed DOI

Thomas N, et al. Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 2015;583:18. doi: 10.1051/0004-6361/201526049. DOI

Angelopoulos V. The ARTEMIS mission. Space Sci. Rev. 2011;165:3–25. doi: 10.1007/s11214-010-9687-2. DOI

Russell CT, Angelopoulos V. Acceleration reconnection turbulence and electrodynamics of Moon's interaction with the Sun (ARTEMIS) mission foreword. Space Sci. Rev. 2011;165:1–2. doi: 10.1007/s11214-012-9875-3. DOI

Zhao SQ, et al. Statistical study of magnetotail flux ropes near the lunar orbit. Sci. China Technol. Sci. 2016;59:1591–1596. doi: 10.1007/s11431-015-0962-3. DOI

Studinger M, Bell RE, Tikku AA. Estimating the depth and shape of subglacial Lake Vostok's water cavity from aerogravity data. Geophys. Res. Lett. 2004;31:4. doi: 10.1029/2004gl019801. DOI

Saal AE, et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior. Nature. 2008;454:192–U138. doi: 10.1038/nature07047. PubMed DOI

Greenwood JP, et al. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nat. Geosci. 2011;4:79–82. doi: 10.1038/ngeo1050. DOI

Clark RN. Detection of adsorbed water and hydroxyl on the moon. Science. 2009;326:562–564. doi: 10.1126/science.1178105. PubMed DOI

Spudis PD, et al. Evidence for water ice on the moon: Results for anomalous polar craters from the LRO Mini-RF imaging radar. J. Geophys. Res. Planets. 2013;118:2016–2029. doi: 10.1002/jgre.20156. DOI

Mitrofanov I, et al. Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO. J. Geophys. Res. Planets. 2012;117:14. doi: 10.1029/2011je003956. DOI

Ogino T, Kobayashi T, Takahashi T, Kanamori H. Velocity profiles in the shallow lunar subsurface deduced from laboratory measurements with simulants. J. Aerosp. Eng. 2016;29:13. doi: 10.1061/(asce)as.1943-5525.0000633. DOI

Hayne PO, et al. Global regolith thermophysical properties of the Moon from the diviner lunar radiometer experiment. J. Geophys. Res. Planets. 2017;122:2371–2400. doi: 10.1002/2017je005387. DOI

Klokočník J, Kostelecký J, Varadzinová L, Bezděk A, Kletetschka G. A gravity search for oil and gas and groundwater in Egypt using the strike angles derived from EIGEN 6C4. Appl. Sci. 2020;10:31. doi: 10.3390/app10248950. DOI

Klokočník J, Kostelecký J, Bezděk A, Kletetschka G. Gravity strike angles: A modern approach and tool to estimate the direction of impactors of meteoritic craters. Planet. Space Sci. 2020;194:105113. doi: 10.1016/j.pss.2020.105113. DOI

Klokočník J, Kostelecký J, Cílek V. Subglacial and Underground Structures Detected from Recent Gravito-topography Data. Cambridge Scholars Publishing; 2020.

Lemoine FG, et al. GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophys. Res. Lett. 2014;41:3382–3389. doi: 10.1002/2014gl060027. PubMed DOI PMC

Konopliv AS, et al. High-resolution lunar gravity fields from the GRAIL Primary and Extended Missions. Geophys. Res. Lett. 2014;41:1452–1458. doi: 10.1002/2013gl059066. PubMed DOI PMC

Barker MK, et al. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus. 2016;273:346–355. doi: 10.1016/j.icarus.2015.07.039. DOI

Smith DE, et al. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission. Space Sci. Rev. 2010;150:209–241. doi: 10.1007/s11214-009-9512-y. DOI

Fortezzo, C. M., Spudis, P. D. & Harrel, S. L. in 51st Lunar and Planetary Science Conference (Astrogeology, Woodland, 2020).

Honniball CI, et al. Molecular water detected on the sunlit Moon by SOFIA. Nat. Astron. 2021;5:13. doi: 10.1038/s41550-020-01222-x. DOI

Kenkmann T, Poelchau MH, Wulf G. Structural geology of impact craters. J. Struct. Geol. 2014;62:156–182. doi: 10.1016/j.jsg.2014.01.015. DOI

Collins GS, Melosh HJ, Morgan JV, Warner MR. Hydrocode simulations of Chicxulub crater collapse and peak-ring formation. Icarus. 2002;157:24–33. doi: 10.1006/icar.2002.6822. DOI

Kletetschka G, Ocampo Uria A, Zila V, Elbra T. Electric discharge evidence found in a new class of material in the Chicxulub ejecta. Sci. Rep. 2020;10:9035. doi: 10.1038/s41598-020-65974-2. PubMed DOI PMC

Pilkington M, Hildebrand AR, Ortizaleman C. Gravity and magnetic-field modeling and structure of the Chicxulub crater, Mexico. J. Geophys. Res. Planets. 1994;99:13147–13162. doi: 10.1029/94je01089. DOI

Masaitis VL. Morphological, structural and lithological records of terrestrial impacts: An overview. Aust. J. Earth Sci. 2005;52:509–528. doi: 10.1080/08120090500170427. DOI

Mangold N, Adeli S, Conway S, Ansan V, Langlais B. A chronology of early Mars climatic evolution from impact crater degradation. J. Geophys. Res. Planets. 2012;117:22. doi: 10.1029/2011je004005. DOI

Klokočník J, et al. Support for two subglacial impact craters in northwest Greenland from Earth gravity model EIGEN 6C4 and other data. Tectonophysics. 2020;780:228396. doi: 10.1016/j.tecto.2020.228396. DOI

Klokočník J, Kostelecký J, Cílek V, Bezděk A, Pešek I. A support for the existence of paleolakes and paleorivers buried under Saharan sand by means of "gravitational signal" from EIGEN 6C4. Arab. J. Geosci. 2017;10:28. doi: 10.1007/s12517-017-2962-8. DOI

Senft LE, Stewart ST. Dynamic fault weakening and the formation of large impact craters. Earth Planet. Sci. Lett. 2009;287:471–482. doi: 10.1016/j.epsl.2009.08.033. DOI

Wieczorek MA, Weiss BP, Stewart ST. An impactor origin for lunar magnetic anomalies. Science. 2012;335:1212–1215. doi: 10.1126/science.1214773. PubMed DOI

Hayne PO, et al. Evidence for exposed water ice in the Moon's south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements. Icarus. 2015;255:58–69. doi: 10.1016/j.icarus.2015.03.032. DOI

Lucey PG. The poles of the Moon. Elements. 2009;5:41–46. doi: 10.2113/gselements.5.1.41. DOI

Zhu C, et al. Untangling the formation and liberation of water in the lunar regolith. Proc. Natl. Acad. Sci. U.S.A. 2019;116:11165–11170. doi: 10.1073/pnas.1819600116. PubMed DOI PMC

Andrews-Hanna JC, et al. Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry. Science. 2013;339:675–678. doi: 10.1126/science.1231753. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...