Electric discharge evidence found in a new class of material in the Chicxulub ejecta
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
32493963
PubMed Central
PMC7271149
DOI
10.1038/s41598-020-65974-2
PII: 10.1038/s41598-020-65974-2
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Chicxulub impact (66 Ma) event resulted in deposition of spheroids and melt glass, followed by deposition of diamectite and carbonate ejecta represented by large polished striated rounded pebbles and cobbles, henceforth, called Albion Formation1 Pook's Pebbles, name given from the first site identified in central Belize, Cayo District. Here we report that magnetic analysis of the Pook's Pebbles samples revealed unique electric discharge signatures. Sectioning of Pook's Pebbles from the Chicxulub ejecta from the Albion Formation at Belize showed that different parts of Pook's Pebbles had not only contrasting magnetization directions, but also sharply different level of magnetizations. Such behavior is indicative of electric discharge taking place sometimes during the formation of the Chicxulub ejecta blanket. In addition, some of the Pook's Pebbles' surface had recrystallized down to 0.2 mm depth. This is evidence of localized extreme pressures and temperatures during the fluidized ejecta formation which was imprinted in the outer layer of Pook's Pebbles. Recrystallization caused formation of nanophase iron along the surface, which was revealed by mapping of both natural remanent magnetization and of saturation remanence magnetization signatures. While the spheroids' magnetization orientation is consistent with reversed magnetic field at the time of impact, the study of the Pook's Pebbles provided, in addition, new evidence of electric charging during the vapor plume cloud processes.
Department of Applied Geophysics Charles University Albertov 6 Prague 2 12843 Czech Republic
Department of Infectious Diseases Virology University of Heidelberg Heidelberg Germany
Geophysical Institute University of Alaska Fairbanks 903 N Koyukuk Drive Fairbanks AK USA
Institute of Geology Czech Academy of Sciences Rozvojová 269 Prague 6 16500 Czech Republic
See more in PubMed
Ocampo, A. C., Pope, K. O. & Fischer, A. G. In The Cretaceous-Tertiary Event and Other Catastrophes in Earth History - Special Paper Vol. 307 (eds. Ryder, G., Fastovsky, D. & Gartner, S.) 75-88 (Geological Society of America, 1996).
Shukolyukov A, Lugmair GW. Isotopic evidence for the Cretaceous-Tertiary impactor and its type. Science. 1998;282:927–929. doi: 10.1126/science.282.5390.927. PubMed DOI
Alvarez LW, Alvarez W, Asaro F, Michel HV. Extraterrestrial Cause for The Cretaceous-Tertiary Extinction - Experimental Results and Theoretical Interpretation. Science. 1980;208:1095–1108. doi: 10.1126/science.208.4448.1095. PubMed DOI
Pope KO, et al. Chicxulub impact ejecta deposits in southern Quintana Roo, Mexico, and central Belize. Large Meteorite Impacts Iii. 2005;384:171–190. doi: 10.1130/0-8137-2384-1.171. DOI
King DT, Petruny LW. Stratigraphy of Breccia Hill Section, Wetumpka Impact Structure, Alabama. Meteorit. Planet. Sci. 2017;52:A165–A165. doi: 10.1111/maps.12872. DOI
Pope KO, et al. Chicxulub impact ejects from Albion Island, Belize. Earth Planet. Sci. Lett. 1999;170:351–364. doi: 10.1016/s0012-821x(99)00123-5. DOI
Pope, K. O. & Ocampo, A. C. In Lunar and Planetary Science Conference Vol. 31 (2000).
Ocampo, A. C., Pope, K. O., Vega, F. J., Fischer, A. G. & Fouke, B. W. In AGU Vol. 81 (Abstract P72C-05, San Francisco, 2000).
Pope, K. O. et al. In Large Meteorite Impacts III Vol. 384 0 (Geological Society of America, 2005).
Stinnesbeck W, et al. Yaxcopoil-1 and the Chicxulub impact. Int. J. Earth Sci. 2004;93:1042–1065. doi: 10.1007/s00531-004-0431-6. DOI
Fouke BW, et al. Cathodoluminescence petrography and isotope geochemistry of KT impact ejecta deposited 360 km from the Chicxulub crater, at Albion Island, Belize. Sedimentology. 2002;49:117–138. doi: 10.1046/j.1365-3091.2002.00435.x. DOI
Connors M, et al. Yucatan karst features and the size of Chicxulub crater. Geophys. J. Int. 1996;127:F11–F14. doi: 10.1111/j.1365-246X.1996.tb04066.x. DOI
Vajda V, Ocampo A, Ferrow E, Koch CB. Nano particles as the primary cause for long-term sunlight suppression at high southern latitudes following the Chicxulub impact - evidence from ejecta deposits in Belize and Mexico. Gondwana Res. 2015;27:1079–1088. doi: 10.1016/j.gr.2014.05.009. DOI
Pope, K. O. & Ocampo, A. C. In Lunar and Planetary Science XXXI (ed. Lunar and Planetary Science) 1419.pdf (Lunar and Planetary Science, Woodland, Texas, USA, 2000).
Leer K, et al. RAT magnet experiment on the Mars Exploration Rovers: Spirit and Opportunity beyond sol 500. J. Geophys. Res.-Planets. 2011;116:8. doi: 10.1029/2010je003667. DOI
Kletetschka G, Wieczorek MA. Fundamental Relations of Mineral Specific Magnetic Carriers for Paleointensity Determination. Physics of the Earth and Planetary Interiors. 2017;272:44–49. doi: 10.1016/j.pepi.2017.09.008. DOI
Kletetschka G, Kohout T, Wasilewski PJ. Magnetic remanence in the Murchison meteorite. Meteoritics & Planetary Science. 2003;38:399–405. doi: 10.1111/j.1945-5100.2003.tb00275.x. DOI
Lindgren P, Price MC, Lee MR, Burchell MJ. Constraining the pressure threshold of impact induced calcite twinning: Implications for the deformation history of aqueously altered carbonaceous chondrite parent bodies. Earth Planet. Sci. Lett. 2013;384:71–80. doi: 10.1016/j.epsl.2013.10.002. DOI
Chao ECT. Mineral-Produced High-Pressure Striae and Clay Polish - Key Evidence for Non-Ballistic Transport of Ejecta from Ries Crater. Science. 1976;194:615–618. doi: 10.1126/science.194.4265.615-a. PubMed DOI
Christeson GL, et al. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364. Earth Planet. Sci. Lett. 2018;495:1–11. doi: 10.1016/j.epsl.2018.05.013. DOI
Da Silva AC, et al. Refining the Early Devonian time scale using Milankovitch cyclicity in Lochkovian-Pragian sediments (Prague Synform, Czech Republic) Earth Planet. Sci. Lett. 2016;455:125–139. doi: 10.1016/j.epsl.2016.09.009. DOI
Cannon KM, et al. Spectral properties of Martian and other planetary glasses and their detection in remotely sensed data. J. Geophys. Res.-Planets. 2017;122:249–268. doi: 10.1002/2016je005219. DOI
Urrutia-Fucugauchi J, Soler-Arechalde AM, Rebolledo-Vieyra M, Vera-Sanchez P. Paleomagnetic and rock magnetic study of the Yaxcopoil-1 impact breccia sequence, Chicxulub impact crater (Mexico) Meteorit. Planet. Sci. 2004;39:843–856. doi: 10.1111/j.1945-5100.2004.tb00934.x. DOI
Elbra T, Pesonen LJ. Physical properties of the Yaxcopoil-1 deep drill core, Chicxulub impact structure, Mexico. Meteorit. Planet. Sci. 2011;46:1640–1652. doi: 10.1111/j.1945-5100.2011.01253.x. DOI
Kletetschka G, Acuna MH, Kohout T, Wasilewski PJ, Connerney JEP. An empirical scaling law for acquisition of thermoremanent magnetization. Earth and Planetary Science Letters. 2004;226:521–528. doi: 10.1016/j.epsl.2004.08.001. DOI
Wasilewski P, Kletetschka G. Lodestone: Natures only permanent magnet - What it is and how it gets charged. Geophysical Research Letters. 1999;26:2275–2278. doi: 10.1029/1999gl900496. DOI