• This record comes from PubMed

Plasma shielding removes prior magnetization record from impacted rocks near Santa Fe, New Mexico

. 2021 Nov 17 ; 11 (1) : 22466. [epub] 20211117

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
20-08294S Grantová Agentura České Republiky
LTAUSA 19141 Ministry of Education, Youth and Science

Links

PubMed 34789763
PubMed Central PMC8599688
DOI 10.1038/s41598-021-01451-8
PII: 10.1038/s41598-021-01451-8
Knihovny.cz E-resources

The shock exposure of the Santa Fe's impact structure in New Mexico is evidenced by large human-size shatter cones. We discovered a new magnetic mechanism that allows a magnetic detection of plasma's presence during the impact processes. Rock fragments from the impactites were once magnetized by a geomagnetic field. Our novel approach, based on Neel's theory, revealed more than an order of magnitude lower magnetizations in the rocks that were exposed to the shockwave. Here we present a support for a newly proposed mechanism where the shock wave appearance can generate magnetic shielding that allow keeping the magnetic grains in a superparamagnetic-like state shortly after the shock's exposure, and leaves the individual magnetized grains in random orientations, significantly lowering the overall magnetic intensity. Our data not only clarify how an impact process allows for a reduction of magnetic paleointensity but also inspire a new direction of effort to study impact sites, using paleointensity reduction as a new impact proxy.

See more in PubMed

Montalvo PE, et al. Detrital shocked zircon provides first radiometric age constraint (< 1472 Ma) for the Santa Fe impact structure, New Mexico, USA. Geol. Soc. Am. Bull. 2019;131:845–863. doi: 10.1130/b31761.1. DOI

Fackelman SP, Morrow JR, Koeberl C, McElvain TH. Shatter cone and microscopic shock-alteration evidence for a post-paleoproterozoic terrestrial impact structure near Santa Fe, New Mexico, USA. Earth Planet. Sci. Lett. 2008;270:290–299. doi: 10.1016/j.epsl.2008.03.033. DOI

French BM, Koeberl C. The convincing identification of terrestrial meteorite impact structures: What works, what doesn't, and why. Earth Sci. Rev. 2010;98:123–170. doi: 10.1016/j.earscirev.2009.10.009. DOI

Klokočník J, Kostelecký J, Bezděk A, Kletetschka G. Gravity strike angles: A modern approach and tool to estimate the direction of impactors of meteoritic craters. Planet. Space Sci. 2020;1:105113. doi: 10.1016/j.pss.2020.105113. DOI

Cavosie AJ, Lugo Centeno C. 45th Lunar and Planetary Science Conference Abstract #1691. Lunar and Planetary Institute; 2014.

Cavosie AJ, Montalvo PE, Timms NE, Reddy SM. Nanoscale deformation twinning in xenotime, a new shocked mineral, from the Santa Fe impact structure (New Mexico, USA) Geology. 2016;44:803. doi: 10.1130/g38179.1. DOI

Colón Lugo D, Cavosie AJ. 45th Lunar and Planetary Science Conference Abstract #2033. Lunar and Planetary Institute; 2014.

Hicks DG, et al. Dissociation of liquid silica at high pressures and temperatures. Phys. Rev. Lett. 2006;97:4. doi: 10.1103/PhysRevLett.97.025502. PubMed DOI

Knudson MD, Desjarlais MP. Shock compression of quartz to 1.6 TPa: Redefining a pressure standard. Phys. Rev. Lett. 2009;103:4. doi: 10.1103/PhysRevLett.103.225501. PubMed DOI

Sano T, et al. 6th International Conference on Inertial Fusion Sciences and Applications. Iop Publishing Ltd; 2010.

Melosh HJ. Impact cratering: A geologic process. Oxford University Press; 1989.

Kletetschka G, Connerney JEP, Ness NF, Acuna MH. Pressure effects on Martian crustal magnetization near large impact basins. Meteorit. Planet. Sci. 2004;39:1839–1848. doi: 10.1111/j.1945-5100.2004.tb00079.x. DOI

Rochette P, et al. Magnetic properties of tektites and other related impact glasses. Earth Planet. Sci. Lett. 2015;432:381–390. doi: 10.1016/j.epsl.2015.10.030. DOI

Reznik B, Kontny A, Fritz J. Effect of moderate shock waves on magnetic susceptibility and microstructure of a magnetite-bearing ore. Meteorit. Planet. Sci. 2017;52:1495–1504. doi: 10.1111/maps.12787. DOI

Carporzen L, Gilder SA, Hart RJ. Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars. Nature. 2005;435:198–201. doi: 10.1038/nature03560. PubMed DOI

Grieve RAF, Pesonen LJ. The terrestrial impact cratering record. Tectonophysics. 1992;216:1–30. doi: 10.1016/0040-1951(92)90152-v. DOI

Nagata T. introductory notes on the shock remanent magnetization and shock demagnetization of igneous rocks. Pure Appl. Geophys. 1971;89:159. doi: 10.1007/bf00875213. DOI

Kletetschka G, Kohout T, Wasilewski PJ. Magnetic remanence in the Murchison meteorite. Meteorit. Planet. Sci. 2003;38:399–405. doi: 10.1111/j.1945-5100.2003.tb00275.x. DOI

Weiss BP, Tikoo SM. The lunar dynamo. Science. 2014;346:1198. doi: 10.1126/science.1246753. PubMed DOI

Kletetschka G, Wieczorek MA. Fundamental relations of mineral specific magnetic carriers for paleointensity determination. Phys. Earth Planet. Inter. 2017;272:44–49. doi: 10.1016/j.pepi.2017.09.008. DOI

Koenigsberger JG. Natural remanent magnetization of eruptive rocks. Terr. Mag. 1938;43:119–299. doi: 10.1029/TE043i002p00119. DOI

Thellier E, Thellier O. Sur l’intensite du champ magnetique terrestre dans le passé historique et geologique. Ann. Geophys. 1959;15:285–378.

Fabian K. A theoretical treatment of paleointensity determination experiments on rocks containing pseudo-single or multi domain magnetic particles. Earth Planet. Sci. Lett. 2001;188:45–58. doi: 10.1016/s0012-821x(01)00313-2. DOI

Pick T, Tauxe L. Geomagnetic palaeointensities during the cretaceous normal superchron measured using submarine basaltic glass. Nature. 1993;366:238–242. doi: 10.1038/366238a0. DOI

Cottrell RD, Tarduno JA. In search of high-fidelity geomagnetic paleointensities: A comparison of single plagioclase crystal and whole rock Thellier–Thellier analyses. J. Geophys. Res. Solid Earth. 2000;105:23579–23594. doi: 10.1029/2000jb900219. DOI

Tanaka H, Athanassopoulos JDE, Dunn JR, Fuller M. Peleointensity determinations with measurements at high-temperature. J. Geomagn. Geoelectr. 1995;47:103–113. doi: 10.5636/jgg.47.103. DOI

Haag M, Dunn JR, Fuller M. A new quality check for absolute palaeointensities of the Earth magnetic field. Geophys. Res. Lett. 1995;22:3549–3552. doi: 10.1029/95gl03333. DOI

Shaw J. Method of determining magnitude of paleomagnetic field application to 5 historic lavas and 5 archeological samples. Geophys. J. Roy. Astron. Soc. 1974;39:133–141. doi: 10.1111/j.1365-246X.1974.tb05443.x. DOI

Walton D, Share J, Rolph TC, Shaw J. Microwave magnetization. Geophys. Res. Lett. 1993;20:109–111. doi: 10.1029/92gl02782. DOI

Gratton MN, Shaw J, Herrero-Bervera E. An absolute palaeointensity record from SOH1 lava core, Hawaii using the microwave technique. Phys. Earth Planet. Int. 2005;148:193–214. doi: 10.1016/j.pepi.2004.09.009. DOI

Stephenson A, Collinson DW. Lunar magnetic-field paleointensities determined by an anhysteretic remanent magnetization method. Earth Planet. Sci. Lett. 1974;23:220–228. doi: 10.1016/0012-821x(74)90196-4. DOI

Dunlop JD, Özdemir Ö. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press; 1997.

Fuller M, Cisowski SM. Geomagnetism. Academic Press; 1987. pp. 307–455.

Lawrence K, Johnson C, Tauxe L, Gee J. Lunar paleointensity measurements: Implications for lunar magnetic evolution. Phys. Earth Planet. Int. 2008;168:71–87. doi: 10.1016/j.pepi.2008.05.007. DOI

Adachi T, Kletetschka G. Impact-pressure controlled orientation of shatter cone magnetizations in Sierra Madera, Texas, USA. Stud. Geophys. Geod. 2008;52:237–254. doi: 10.1007/s11200-008-0016-0. DOI

Bauer PW, Ralser S, Daniel C, Ilg B. New Mexico Bureau of Geology and Mineral Resources. Cambridge University Press; 1997.

Funaki M, Syono Y. Acquisition of shock remanent magnetization for demagnetized samples in a weak magnetic field (7 mu T) by shock pressures 5–20 GPa without plasma-induced magnetization. Meteorit. Planet. Sci. 2008;43:529–540. doi: 10.1111/j.1945-5100.2008.tb00670.x. DOI

Gattacceca J, Lamali A, Rochette P, Boustie M, Berthe L. The effects of explosive-driven shocks on the natural remanent magnetization and the magnetic properties of rocks. Phys. Earth Planet. Int. 2007;162:85–98. doi: 10.1016/j.pepi.2007.03.006. DOI

Crawford DA. Simulations of magnetic fields produced by asteroid impact: Possible implications for planetary paleomagnetism. Int. J. Impact Eng. 2020;137:8. doi: 10.1016/j.ijimpeng.2019.103464. DOI

Hacker BR, Abers GA. Subduction factory 3: An excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem. Geophys. Geosyst. 2004;5:7. doi: 10.1029/2003gc000614. DOI

Marsh SP. LASL Shock Hugoniot Data. University of California Press; 1980.

Lowrie W, Fuller M. Variation of coercive force isothermal remanent magnetization and magnetic memory in nickel with internal stress. Philos. Mag. 1968;18:589. doi: 10.1080/14786436808227463. DOI

Wasilewski P, Kletetschka G. Lodestone: Natures only permanent magnet: What it is and how it gets charged. Geophys. Res. Lett. 1999;26:2275–2278. doi: 10.1029/1999gl900496. DOI

Kletetschka G, Uria AO, Zila V, Elbra T. Electric discharge evidence found in a new class of material in the Chicxulub ejecta. Sci. Rep. 2020;10:11. doi: 10.1038/s41598-020-65974-2. PubMed DOI PMC

Klokocnik J, Kostelecky J, Varadzinova L, Bezdek A, Kletetschka G. A gravity search for oil and gas and groundwater in Egypt using the strike angles derived from EIGEN 6C4. Appl. Sci. 2020;10:31. doi: 10.3390/app10248950. DOI

Klokocnik J, Kostelecky J, Bezdek A, Kletetschka G. Gravity strike angles: A modern approach and tool to estimate the direction of impactors of meteoritic craters. Planet. Space Sci. 2020;194:16. doi: 10.1016/j.pss.2020.105113. DOI

Head JW, Wilson L. Magmatic intrusion-related processes in the upper lunar crust: The role of country rock porosity/permeability in magmatic percolation and thermal annealing, and implications for gravity signatures. Planet. Space Sci. 2020;180:9. doi: 10.1016/j.pss.2019.104765. DOI

Kletetschka G. Magnetization of extraterrestrial allende material may relate to terrestrial descend. Earth Planet. Sci. Lett. 2018;487:1–8. doi: 10.1016/j.epsl.2018.01.020. DOI

Pilkington M, Grieve RAF. The geophysical signature of terrestrial impact craters. Rev. Geophys. 1992;30:161–181. doi: 10.1029/92rg00192. DOI

Kletetschka G, Adachi T. Large Meteorite Impacts and Planetary Evolution IV 3094.pdf. Lunar and Planetary Institute - Universities Space Research Association; 2008.

Carporzen L, Weiss BP, Gilder SA, Pommier A, Hart RJ. Lightning remagnetization of the Vredefort impact crater: No evidence for impact-generated magnetic fields. J. Geophys. Res. Planets. 2012;117:17. doi: 10.1029/2011je003919. DOI

Erickson TM, et al. Identification and provenance determination of distally transported, Vredefort-derived shocked minerals in the Vaal River, South Africa using SEM and SHRIMP-RG techniques. Geochim. Cosmochim. Acta. 2013;107:170–188. doi: 10.1016/j.gca.2012.12.008. DOI

Bean CP, Livingston JD. Superparamagnetism. J. Appl. Phys. 1959;30:120S–129S. doi: 10.1063/1.2185850. DOI

Kletetschka G, Inoue Y, Lindauer J, Hulka Z. Magnetic tunneling with CNT-based metamaterial. Sci. Rep. 2019;9:6. doi: 10.1038/s41598-019-39325-9. PubMed DOI PMC

Pasternak MP, et al. Breakdown of the Mott-Hubbard state in Fe2O3: A first-order insulator-metal transition with collapse of magnetism at 50 GPa. Phys. Rev. Lett. 1999;82:4663–4666. doi: 10.1103/PhysRevLett.82.4663. DOI

Smirnov AV, Evans DAD. Geomagnetic paleointensity at similar to 2.41 Ga as recorded by the Widgiemooltha Dike Swarm, Western Australia. Earth Planet. Sci. Lett. 2015;416:35–45. doi: 10.1016/j.epsl.2015.02.012. DOI

Nakamura Y, et al. Amorphization of quartz by friction: Implication to silica-gel lubrication of fault surfaces. Geophys. Res. Lett. 2012;39:6. doi: 10.1029/2012gl053228. DOI

Pec M, Stunitz H, Heilbronner R. Semi-brittle deformation of granitoid gouges in shear experiments at elevated pressures and temperatures. J. Struct. Geol. 2012;38:200–221. doi: 10.1016/j.jsg.2011.09.001. DOI

Muto J, Nagahama H, Miura T, Arakawa I. Frictional discharge plasma and seismo-electromagnetic phenomena. Phys. Earth Planet. Int. 2008;168:1–5. doi: 10.1016/j.pepi.2008.04.014. DOI

Matsushita S. On artificial geomagnetic and ionospheric storms associated with high altitude explosions. J. Geophys. Res. 1959;64:1116–1116.

Ivanov KG. Geomagnetic effects of explosions in the lower atmosphere. AIAA J. 1963;1:2703–2708. doi: 10.2514/3.55022. DOI

Shuvalov VV, Artemieva NA. Numerical modeling of Tunguska-like impacts. Planet. Space Sci. 2002;50:181–192. doi: 10.1016/s0032-0633(01)00079-4. DOI

Gorter EW. Saturation magnetization and crystal chemistry of ferrimagnetic oxides. Philips Res. Rep. 1954;9:295–320.

Tracy SJ, Turneaure SJ, Duffy TS. Structural response of alpha-quartz under plate-impact shock compression. Sci. Adv. 2020;6:8. doi: 10.1126/sciadv.abb3913. PubMed DOI PMC

Kondo KI, Mashimo T, Sawaoka A. Electrical-resistivity and phase-transformation of hematite under shock compression. J. Geophys. Res. 1980;85:977–982. doi: 10.1029/JB085iB02p00977. DOI

Kletetschka G, Wasilewski PJ. Grain size limit for SD hematite. Phys. Earth Planet. Int. 2002;129:173–179. doi: 10.1016/s0031-9201(01)00271-0. DOI

Kletetschka G, Wasilewski PJ, Taylor PT. Unique thermoremanent magnetization of multidomain sized hematite: Implications for magnetic anomalies. Earth Planet. Sci. Lett. 2000;176:469–479. doi: 10.1016/s0012-821x(00)00016-9. DOI

Kletetschka G, Wasilewski PJ, Taylor PT. Hematite vs magnetite as the signature for planetary magnetic anomalies? Phys. Earth Planet. Inter. 2000;119:259–267. doi: 10.1016/s0031-9201(00)00141-2. DOI

Kletetschka G, Stout JH. The origin of magnetic anomalies in lower crustal rocks, Labrador. Geophys. Res. Lett. 1998;25:199–202. doi: 10.1029/97gl03506. DOI

Kittel C. Introduction to Solid State Physics. 5. Wiley; 1976. p. 444.

Kletetschka G, et al. Magnetic zones of Mars: Deformation-controlled origin of magnetic anomalies. Meteorit. Planet. Sci. 2009;44:131–140. doi: 10.1111/j.1945-5100.2009.tb00723.x. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...