Plasma shielding removes prior magnetization record from impacted rocks near Santa Fe, New Mexico
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
20-08294S
Grantová Agentura České Republiky
LTAUSA 19141
Ministry of Education, Youth and Science
PubMed
34789763
PubMed Central
PMC8599688
DOI
10.1038/s41598-021-01451-8
PII: 10.1038/s41598-021-01451-8
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The shock exposure of the Santa Fe's impact structure in New Mexico is evidenced by large human-size shatter cones. We discovered a new magnetic mechanism that allows a magnetic detection of plasma's presence during the impact processes. Rock fragments from the impactites were once magnetized by a geomagnetic field. Our novel approach, based on Neel's theory, revealed more than an order of magnitude lower magnetizations in the rocks that were exposed to the shockwave. Here we present a support for a newly proposed mechanism where the shock wave appearance can generate magnetic shielding that allow keeping the magnetic grains in a superparamagnetic-like state shortly after the shock's exposure, and leaves the individual magnetized grains in random orientations, significantly lowering the overall magnetic intensity. Our data not only clarify how an impact process allows for a reduction of magnetic paleointensity but also inspire a new direction of effort to study impact sites, using paleointensity reduction as a new impact proxy.
Faculty of Science Charles University Albertov 6 Prague Czech Republic
Geophysical Institute University of Alaska Fairbanks 903 N Koyukuk Drive Fairbanks AK USA
See more in PubMed
Montalvo PE, et al. Detrital shocked zircon provides first radiometric age constraint (< 1472 Ma) for the Santa Fe impact structure, New Mexico, USA. Geol. Soc. Am. Bull. 2019;131:845–863. doi: 10.1130/b31761.1. DOI
Fackelman SP, Morrow JR, Koeberl C, McElvain TH. Shatter cone and microscopic shock-alteration evidence for a post-paleoproterozoic terrestrial impact structure near Santa Fe, New Mexico, USA. Earth Planet. Sci. Lett. 2008;270:290–299. doi: 10.1016/j.epsl.2008.03.033. DOI
French BM, Koeberl C. The convincing identification of terrestrial meteorite impact structures: What works, what doesn't, and why. Earth Sci. Rev. 2010;98:123–170. doi: 10.1016/j.earscirev.2009.10.009. DOI
Klokočník J, Kostelecký J, Bezděk A, Kletetschka G. Gravity strike angles: A modern approach and tool to estimate the direction of impactors of meteoritic craters. Planet. Space Sci. 2020;1:105113. doi: 10.1016/j.pss.2020.105113. DOI
Cavosie AJ, Lugo Centeno C. 45th Lunar and Planetary Science Conference Abstract #1691. Lunar and Planetary Institute; 2014.
Cavosie AJ, Montalvo PE, Timms NE, Reddy SM. Nanoscale deformation twinning in xenotime, a new shocked mineral, from the Santa Fe impact structure (New Mexico, USA) Geology. 2016;44:803. doi: 10.1130/g38179.1. DOI
Colón Lugo D, Cavosie AJ. 45th Lunar and Planetary Science Conference Abstract #2033. Lunar and Planetary Institute; 2014.
Hicks DG, et al. Dissociation of liquid silica at high pressures and temperatures. Phys. Rev. Lett. 2006;97:4. doi: 10.1103/PhysRevLett.97.025502. PubMed DOI
Knudson MD, Desjarlais MP. Shock compression of quartz to 1.6 TPa: Redefining a pressure standard. Phys. Rev. Lett. 2009;103:4. doi: 10.1103/PhysRevLett.103.225501. PubMed DOI
Sano T, et al. 6th International Conference on Inertial Fusion Sciences and Applications. Iop Publishing Ltd; 2010.
Melosh HJ. Impact cratering: A geologic process. Oxford University Press; 1989.
Kletetschka G, Connerney JEP, Ness NF, Acuna MH. Pressure effects on Martian crustal magnetization near large impact basins. Meteorit. Planet. Sci. 2004;39:1839–1848. doi: 10.1111/j.1945-5100.2004.tb00079.x. DOI
Rochette P, et al. Magnetic properties of tektites and other related impact glasses. Earth Planet. Sci. Lett. 2015;432:381–390. doi: 10.1016/j.epsl.2015.10.030. DOI
Reznik B, Kontny A, Fritz J. Effect of moderate shock waves on magnetic susceptibility and microstructure of a magnetite-bearing ore. Meteorit. Planet. Sci. 2017;52:1495–1504. doi: 10.1111/maps.12787. DOI
Carporzen L, Gilder SA, Hart RJ. Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars. Nature. 2005;435:198–201. doi: 10.1038/nature03560. PubMed DOI
Grieve RAF, Pesonen LJ. The terrestrial impact cratering record. Tectonophysics. 1992;216:1–30. doi: 10.1016/0040-1951(92)90152-v. DOI
Nagata T. introductory notes on the shock remanent magnetization and shock demagnetization of igneous rocks. Pure Appl. Geophys. 1971;89:159. doi: 10.1007/bf00875213. DOI
Kletetschka G, Kohout T, Wasilewski PJ. Magnetic remanence in the Murchison meteorite. Meteorit. Planet. Sci. 2003;38:399–405. doi: 10.1111/j.1945-5100.2003.tb00275.x. DOI
Weiss BP, Tikoo SM. The lunar dynamo. Science. 2014;346:1198. doi: 10.1126/science.1246753. PubMed DOI
Kletetschka G, Wieczorek MA. Fundamental relations of mineral specific magnetic carriers for paleointensity determination. Phys. Earth Planet. Inter. 2017;272:44–49. doi: 10.1016/j.pepi.2017.09.008. DOI
Koenigsberger JG. Natural remanent magnetization of eruptive rocks. Terr. Mag. 1938;43:119–299. doi: 10.1029/TE043i002p00119. DOI
Thellier E, Thellier O. Sur l’intensite du champ magnetique terrestre dans le passé historique et geologique. Ann. Geophys. 1959;15:285–378.
Fabian K. A theoretical treatment of paleointensity determination experiments on rocks containing pseudo-single or multi domain magnetic particles. Earth Planet. Sci. Lett. 2001;188:45–58. doi: 10.1016/s0012-821x(01)00313-2. DOI
Pick T, Tauxe L. Geomagnetic palaeointensities during the cretaceous normal superchron measured using submarine basaltic glass. Nature. 1993;366:238–242. doi: 10.1038/366238a0. DOI
Cottrell RD, Tarduno JA. In search of high-fidelity geomagnetic paleointensities: A comparison of single plagioclase crystal and whole rock Thellier–Thellier analyses. J. Geophys. Res. Solid Earth. 2000;105:23579–23594. doi: 10.1029/2000jb900219. DOI
Tanaka H, Athanassopoulos JDE, Dunn JR, Fuller M. Peleointensity determinations with measurements at high-temperature. J. Geomagn. Geoelectr. 1995;47:103–113. doi: 10.5636/jgg.47.103. DOI
Haag M, Dunn JR, Fuller M. A new quality check for absolute palaeointensities of the Earth magnetic field. Geophys. Res. Lett. 1995;22:3549–3552. doi: 10.1029/95gl03333. DOI
Shaw J. Method of determining magnitude of paleomagnetic field application to 5 historic lavas and 5 archeological samples. Geophys. J. Roy. Astron. Soc. 1974;39:133–141. doi: 10.1111/j.1365-246X.1974.tb05443.x. DOI
Walton D, Share J, Rolph TC, Shaw J. Microwave magnetization. Geophys. Res. Lett. 1993;20:109–111. doi: 10.1029/92gl02782. DOI
Gratton MN, Shaw J, Herrero-Bervera E. An absolute palaeointensity record from SOH1 lava core, Hawaii using the microwave technique. Phys. Earth Planet. Int. 2005;148:193–214. doi: 10.1016/j.pepi.2004.09.009. DOI
Stephenson A, Collinson DW. Lunar magnetic-field paleointensities determined by an anhysteretic remanent magnetization method. Earth Planet. Sci. Lett. 1974;23:220–228. doi: 10.1016/0012-821x(74)90196-4. DOI
Dunlop JD, Özdemir Ö. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press; 1997.
Fuller M, Cisowski SM. Geomagnetism. Academic Press; 1987. pp. 307–455.
Lawrence K, Johnson C, Tauxe L, Gee J. Lunar paleointensity measurements: Implications for lunar magnetic evolution. Phys. Earth Planet. Int. 2008;168:71–87. doi: 10.1016/j.pepi.2008.05.007. DOI
Adachi T, Kletetschka G. Impact-pressure controlled orientation of shatter cone magnetizations in Sierra Madera, Texas, USA. Stud. Geophys. Geod. 2008;52:237–254. doi: 10.1007/s11200-008-0016-0. DOI
Bauer PW, Ralser S, Daniel C, Ilg B. New Mexico Bureau of Geology and Mineral Resources. Cambridge University Press; 1997.
Funaki M, Syono Y. Acquisition of shock remanent magnetization for demagnetized samples in a weak magnetic field (7 mu T) by shock pressures 5–20 GPa without plasma-induced magnetization. Meteorit. Planet. Sci. 2008;43:529–540. doi: 10.1111/j.1945-5100.2008.tb00670.x. DOI
Gattacceca J, Lamali A, Rochette P, Boustie M, Berthe L. The effects of explosive-driven shocks on the natural remanent magnetization and the magnetic properties of rocks. Phys. Earth Planet. Int. 2007;162:85–98. doi: 10.1016/j.pepi.2007.03.006. DOI
Crawford DA. Simulations of magnetic fields produced by asteroid impact: Possible implications for planetary paleomagnetism. Int. J. Impact Eng. 2020;137:8. doi: 10.1016/j.ijimpeng.2019.103464. DOI
Hacker BR, Abers GA. Subduction factory 3: An excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem. Geophys. Geosyst. 2004;5:7. doi: 10.1029/2003gc000614. DOI
Marsh SP. LASL Shock Hugoniot Data. University of California Press; 1980.
Lowrie W, Fuller M. Variation of coercive force isothermal remanent magnetization and magnetic memory in nickel with internal stress. Philos. Mag. 1968;18:589. doi: 10.1080/14786436808227463. DOI
Wasilewski P, Kletetschka G. Lodestone: Natures only permanent magnet: What it is and how it gets charged. Geophys. Res. Lett. 1999;26:2275–2278. doi: 10.1029/1999gl900496. DOI
Kletetschka G, Uria AO, Zila V, Elbra T. Electric discharge evidence found in a new class of material in the Chicxulub ejecta. Sci. Rep. 2020;10:11. doi: 10.1038/s41598-020-65974-2. PubMed DOI PMC
Klokocnik J, Kostelecky J, Varadzinova L, Bezdek A, Kletetschka G. A gravity search for oil and gas and groundwater in Egypt using the strike angles derived from EIGEN 6C4. Appl. Sci. 2020;10:31. doi: 10.3390/app10248950. DOI
Klokocnik J, Kostelecky J, Bezdek A, Kletetschka G. Gravity strike angles: A modern approach and tool to estimate the direction of impactors of meteoritic craters. Planet. Space Sci. 2020;194:16. doi: 10.1016/j.pss.2020.105113. DOI
Head JW, Wilson L. Magmatic intrusion-related processes in the upper lunar crust: The role of country rock porosity/permeability in magmatic percolation and thermal annealing, and implications for gravity signatures. Planet. Space Sci. 2020;180:9. doi: 10.1016/j.pss.2019.104765. DOI
Kletetschka G. Magnetization of extraterrestrial allende material may relate to terrestrial descend. Earth Planet. Sci. Lett. 2018;487:1–8. doi: 10.1016/j.epsl.2018.01.020. DOI
Pilkington M, Grieve RAF. The geophysical signature of terrestrial impact craters. Rev. Geophys. 1992;30:161–181. doi: 10.1029/92rg00192. DOI
Kletetschka G, Adachi T. Large Meteorite Impacts and Planetary Evolution IV 3094.pdf. Lunar and Planetary Institute - Universities Space Research Association; 2008.
Carporzen L, Weiss BP, Gilder SA, Pommier A, Hart RJ. Lightning remagnetization of the Vredefort impact crater: No evidence for impact-generated magnetic fields. J. Geophys. Res. Planets. 2012;117:17. doi: 10.1029/2011je003919. DOI
Erickson TM, et al. Identification and provenance determination of distally transported, Vredefort-derived shocked minerals in the Vaal River, South Africa using SEM and SHRIMP-RG techniques. Geochim. Cosmochim. Acta. 2013;107:170–188. doi: 10.1016/j.gca.2012.12.008. DOI
Bean CP, Livingston JD. Superparamagnetism. J. Appl. Phys. 1959;30:120S–129S. doi: 10.1063/1.2185850. DOI
Kletetschka G, Inoue Y, Lindauer J, Hulka Z. Magnetic tunneling with CNT-based metamaterial. Sci. Rep. 2019;9:6. doi: 10.1038/s41598-019-39325-9. PubMed DOI PMC
Pasternak MP, et al. Breakdown of the Mott-Hubbard state in Fe2O3: A first-order insulator-metal transition with collapse of magnetism at 50 GPa. Phys. Rev. Lett. 1999;82:4663–4666. doi: 10.1103/PhysRevLett.82.4663. DOI
Smirnov AV, Evans DAD. Geomagnetic paleointensity at similar to 2.41 Ga as recorded by the Widgiemooltha Dike Swarm, Western Australia. Earth Planet. Sci. Lett. 2015;416:35–45. doi: 10.1016/j.epsl.2015.02.012. DOI
Nakamura Y, et al. Amorphization of quartz by friction: Implication to silica-gel lubrication of fault surfaces. Geophys. Res. Lett. 2012;39:6. doi: 10.1029/2012gl053228. DOI
Pec M, Stunitz H, Heilbronner R. Semi-brittle deformation of granitoid gouges in shear experiments at elevated pressures and temperatures. J. Struct. Geol. 2012;38:200–221. doi: 10.1016/j.jsg.2011.09.001. DOI
Muto J, Nagahama H, Miura T, Arakawa I. Frictional discharge plasma and seismo-electromagnetic phenomena. Phys. Earth Planet. Int. 2008;168:1–5. doi: 10.1016/j.pepi.2008.04.014. DOI
Matsushita S. On artificial geomagnetic and ionospheric storms associated with high altitude explosions. J. Geophys. Res. 1959;64:1116–1116.
Ivanov KG. Geomagnetic effects of explosions in the lower atmosphere. AIAA J. 1963;1:2703–2708. doi: 10.2514/3.55022. DOI
Shuvalov VV, Artemieva NA. Numerical modeling of Tunguska-like impacts. Planet. Space Sci. 2002;50:181–192. doi: 10.1016/s0032-0633(01)00079-4. DOI
Gorter EW. Saturation magnetization and crystal chemistry of ferrimagnetic oxides. Philips Res. Rep. 1954;9:295–320.
Tracy SJ, Turneaure SJ, Duffy TS. Structural response of alpha-quartz under plate-impact shock compression. Sci. Adv. 2020;6:8. doi: 10.1126/sciadv.abb3913. PubMed DOI PMC
Kondo KI, Mashimo T, Sawaoka A. Electrical-resistivity and phase-transformation of hematite under shock compression. J. Geophys. Res. 1980;85:977–982. doi: 10.1029/JB085iB02p00977. DOI
Kletetschka G, Wasilewski PJ. Grain size limit for SD hematite. Phys. Earth Planet. Int. 2002;129:173–179. doi: 10.1016/s0031-9201(01)00271-0. DOI
Kletetschka G, Wasilewski PJ, Taylor PT. Unique thermoremanent magnetization of multidomain sized hematite: Implications for magnetic anomalies. Earth Planet. Sci. Lett. 2000;176:469–479. doi: 10.1016/s0012-821x(00)00016-9. DOI
Kletetschka G, Wasilewski PJ, Taylor PT. Hematite vs magnetite as the signature for planetary magnetic anomalies? Phys. Earth Planet. Inter. 2000;119:259–267. doi: 10.1016/s0031-9201(00)00141-2. DOI
Kletetschka G, Stout JH. The origin of magnetic anomalies in lower crustal rocks, Labrador. Geophys. Res. Lett. 1998;25:199–202. doi: 10.1029/97gl03506. DOI
Kittel C. Introduction to Solid State Physics. 5. Wiley; 1976. p. 444.
Kletetschka G, et al. Magnetic zones of Mars: Deformation-controlled origin of magnetic anomalies. Meteorit. Planet. Sci. 2009;44:131–140. doi: 10.1111/j.1945-5100.2009.tb00723.x. DOI