Magnetic tunneling with CNT-based metamaterial

. 2019 Feb 22 ; 9 (1) : 2551. [epub] 20190222

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30796318

Grantová podpora
17-05935S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 30796318
PubMed Central PMC6385282
DOI 10.1038/s41598-019-39325-9
PII: 10.1038/s41598-019-39325-9
Knihovny.cz E-zdroje

Multiwall carbon nanotubes (MWCNTs) fabricated by chemical vapor deposition contain magnetic nanoparticles. While increasing frequency of electromagnetic field (EMF) exposure (up to <10 kHz) of MWCNTs resulted in slight induced magnetization decrease due to skin effect of the conducting carbon, we discovered that higher frequencies (>10 kHz) contained an exponential magnetization increase. We show that puzzling magnetization increase with decreasing magnetic field amplitude (less than 0.5 A/m for 512 kHz) is due to matching the field amplitudes of the magnetic nanoparticles inside nanotubes. This observation reveals a possibility of magnetic tunneling in MWCNTs (change of magnetic state of blocked magnetic moments). This interpretation is supported by observation of unblocking larger magnetic remanence (MR) portion from MWCNTs with progressively smaller amplitude of oscillating magnetic field.

Zobrazit více v PubMed

Li N, et al. Enhanced Microwave Absorption Performance of Coated Carbon Nanotubes by Optimizing the Fe3O4 Nanocoating Structure. ACS Appl. Mater. Interfaces. 2017;9:2973–2983. doi: 10.1021/acsami.6b13142. PubMed DOI

Inoue Y, Nakamura K, Miyasaka Y, Nakano T, Kletetschka G. Cross-linking multiwall carbon nanotubes using PFPA to build robust, flexible and highly aligned large-scale sheets and yarns. Nanotechnology. 2016;27:10. doi: 10.1088/0957-4484/27/11/115701. PubMed DOI

Inoue Y, et al. One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition. Appl. Phys. Lett. 2008;92:213113. doi: 10.1063/1.2937082. DOI

Pang LSK, Saxby JD, Chatfield SP. THERMOGRAVIMETRIC ANALYSIS OF CARBON NANOTUBES AND NANOPARTICLES. J. Phys. Chem. 1993;97:6941–6942. doi: 10.1021/j100129a001. DOI

Tucek J, et al. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix. Nat. Commun. 2016;7:11. doi: 10.1038/ncomms12879. PubMed DOI PMC

Bean CP, Livingston JD. Superparamagnetsm. J. Appl. Phys. 1959;30:120S–129S. doi: 10.1063/1.2185850. DOI

Sun ZY, et al. Fabrication and characterization of magnetic carbon nanotube composites. J. Mater. Chem. 2005;15:4497–4501. doi: 10.1039/b509968d. DOI

Kletetschka G, Acuna MH, Kohout T, Wasilewski PJ, Connerney JEP. An empirical scaling law for acquisition of thermoremanent magnetization. Earth and Planetary Science Letters. 2004;226:521–528. doi: 10.1016/j.epsl.2004.08.001. DOI

Kletetschka G, Wieczorek MA. Fundamental Relations of Mineral Specific Magnetic Carriers for Paleointensity Determination. Physics of the Earth and Planetary Interiors. 2017;272:44–49. doi: 10.1016/j.pepi.2017.09.008. DOI

Kletetschka G, et al. TRM in low magnetic fields: a minimum field that can be recorded by large multidomain grains. Physics of the Earth and Planetary Interiors. 2006;154:290–298. doi: 10.1016/j.pepi.2005.07.005. DOI

Néel L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Annales de Geophysique. 1949;5:99–136.

Zhang W, Xiong HG, Wang SK, Li M, Gu YZ. Negative permittivity behavior of aligned carbon nanotube films. Appl. Phys. Lett. 2015;106:5. doi: 10.1063/1.4919719. DOI

Cai XB, Deng QB, Hu GK. Experimental study on electromagnetic wave transparency for coated metallic cylinders. Journal of Applied Physics. 2009;105:5. doi: 10.1063/1.3132864. DOI

Dunlop, D. D. & Özdemir, Ö. Rock Magnetism: Fundamental and Frontiers. 58 (Cambridge University Press, 1997).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...