Magnetic domains oscillation in the brain with neurodegenerative disease
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33436793
PubMed Central
PMC7804002
DOI
10.1038/s41598-020-80212-5
PII: 10.1038/s41598-020-80212-5
Knihovny.cz E-resources
- MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Phenomena * MeSH
- Brain metabolism pathology MeSH
- Neurodegenerative Diseases metabolism pathology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Iron analysis metabolism MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Iron MeSH
Geomagnetic fields interfere with the accumulation of iron in the human brain. Magnetic sensing of the human brain provides compelling evidence of new electric mechanisms in human brains and may interfere with the evolution of neurodegenerative diseases. We revealed that the human brain may have a unique susceptibility to conduct electric currents as feedback of magnetic dipole fluctuation in superparamagnetic grains. These grains accumulate and grow with brain aging. The electric feedback creates an electronic noise background that depends on geomagnetic field intensity and may compromise functional stability of the human brain, while induced currents are spontaneously generated near superparamagnetic grains. Grain growth due to an increase of iron mobility resulted in magnetic remanence enhancement during the final years of the studied brains.
See more in PubMed
Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ. Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci. USA. 1992;89:7683–7687. doi: 10.1073/pnas.89.16.7683. PubMed DOI PMC
Maher BA, et al. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA. 2016;113:10797–10801. doi: 10.1073/pnas.1605941113. PubMed DOI PMC
Liu Y, Nguyen M, Robert A, Meunier B. Metal Ions in Alzheimer's disease: a key role or not? Acc. Chem. Res. 2019;52:2026–2035. doi: 10.1021/acs.accounts.9b00248. PubMed DOI
Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage. 2012;59:2625–2635. doi: 10.1016/j.neuroimage.2011.08.077. PubMed DOI PMC
Langkammer C, et al. Susceptibility induced gray-white matter MRI contrast in the human brain. Neuroimage. 2012;59:1413–1419. doi: 10.1016/j.neuroimage.2011.08.045. PubMed DOI PMC
Langkammer C, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage. 2012;62:1593–1599. doi: 10.1016/j.neuroimage.2012.05.049. PubMed DOI PMC
Acosta-Cabronero J, et al. In vivo quantitative susceptibility mapping (QSM) in Alzheimer's disease. PLoS ONE. 2013;8:15. doi: 10.1371/journal.pone.0081093. PubMed DOI PMC
Deh K, et al. Reproducibility of quantitative susceptibility mapping in the brain at two field strengths from two vendors. J. Magn. Reson. Imaging. 2015;42:1592–1600. doi: 10.1002/jmri.24943. PubMed DOI PMC
Hinoda T, et al. Quantitative susceptibility mapping at 3 T and 1.5 T evaluation of consistency and reproducibility. Invest. Radiol. 2015;50:522–530. doi: 10.1097/rli.0000000000000159. PubMed DOI
Dunlop JD, Özdemir Ö. Rock Magnetism: Fundamentals and Frontiers 595. Cambridge: Cambridge University Press; 1997.
Kletetschka G, Wieczorek MA. Fundamental relations of mineral specific magnetic carriers for paleointensity determination. Phys. Earth Planet. Int. 2017;272:44–49. doi: 10.1016/j.pepi.2017.09.008. DOI
Chang CH, Lane HY, Lin CH. Brain stimulation in Alzheimer's disease. Front. Psychiatry. 2018;9:13. doi: 10.3389/fpsyt.2018.00201. PubMed DOI PMC
Barker AT, Jalinous R. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1:1106–1107. PubMed
Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187–199. doi: 10.1016/j.neuron.2007.06.026. PubMed DOI
Tiepolt S, et al. Quantitative susceptibility mapping of amyloid-beta aggregates in Alzheimer's disease with 7T MR. J. Alzheimers Dis. 2018;64:393–404. doi: 10.3233/jad-180118. PubMed DOI
Fernandez T, Martinez-Serrano A, Cusso L, Desco M, Ramos-Gomez M. Functionalization and characterization of magnetic nanoparticles for the detection of ferritin accumulation in Alzheimer's disease. ACS Chem. Neurosci. 2018;9:912–924. doi: 10.1021/acschemneuro.7b00260. PubMed DOI
Altamura S, Muckenthaler MU. Iron toxicity in diseases of aging: Alzheimer's disease, Parkinson's disease and atherosclerosis. J. Alzheimers Dis. 2009;16:879–895. doi: 10.3233/jad-2009-1010. PubMed DOI
Bartzokis G, et al. MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn. Reson. Imaging. 1997;15:29–35. doi: 10.1016/s0730-725x(96)00234-2. PubMed DOI
Acosta-Cabronero J, Betts MJ, Cardenas-Blanco A, Yang S, Nestor PJ. In vivo MRI mapping of brain iron deposition across the adult lifespan. J. Neurosci. 2016;36:364–374. doi: 10.1523/jneurosci.1907-15.2016. PubMed DOI PMC
Prousek J. Fenton chemistry in biology and medicine. Pure Appl. Chem. 2007;79:2325–2338. doi: 10.1351/pac200779122325. DOI
Abeyawardhane DL, Lucas HR. Iron redox chemistry and implications in the Parkinson's disease brain. Oxid. Med. Cell. Longev. 2019;2019:11. doi: 10.1155/2019/4609702. PubMed DOI PMC
Zhao Z. Iron and oxidizing species in oxidative stress and Alzheimer's disease. Aging Med. 2019;2:82–87. doi: 10.1002/agm2.12074. PubMed DOI PMC
Youdim MBH, Benshachar D, Riederer P. The possible role of iron in the etiopathology of Parkinsons-disease. Mov. Disord. 1993;8:1–12. doi: 10.1002/mds.870080102. PubMed DOI
Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 2004;5:863–873. doi: 10.1038/nrn1537. PubMed DOI
Youdim MBH, Stephenson G, Ben Shachar D. In: Redox-Active Metals in Neurological Disorders Vol. 1012 Annals of the New York Academy of Sciences. LeVine SM, Connor JR, Schipper HM, editors. New York: New York Acad Sciences; 2004. pp. 306–325.
Riederer P, et al. Transition-metals, ferritin, glutathione, and ascorbic-acid in Parkinsonian brains. J. Neurochem. 1989;52:515–520. doi: 10.1111/j.1471-4159.1989.tb09150.x. PubMed DOI
Jenner P, Olanow CW. Understanding cell death in Parkinson's disease. Ann. Neurol. 1998;44:S72–S84. doi: 10.1002/ana.410440712. PubMed DOI
Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic. Biol. Med. 2019;133:221–233. doi: 10.1016/j.freeradbiomed.2018.09.033. PubMed DOI
Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid. Med. Cell. Longev. 2019;2019:18. doi: 10.1155/2019/2105607. PubMed DOI PMC
Ayton S, et al. Cerebral quantitative susceptibility mapping predicts amyloid-beta-related cognitive decline. Brain. 2017;140:2112–2119. doi: 10.1093/brain/awx137. PubMed DOI
Dunlop JD, Özdemir Ö. Rock Magnetism: Fundamental and Frontiers 58. Cambridge: Cambridge University Press; 1997.
Duce JA, et al. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Cell. 2010;142:857–867. doi: 10.1016/j.cell.2010.08.014. PubMed DOI PMC
Berg D, et al. Brain iron pathways and their relevance to Parkinson's disease. J. Neurochem. 2001;79:225–236. doi: 10.1046/j.1471-4159.2001.00608.x. PubMed DOI
Lee DW, Andersen JK. Iron elevations in the aging Parkinsonian brain: a consequence of impaired iron homeostasis? J. Neurochem. 2010;112:332–339. doi: 10.1111/j.1471-4159.2009.06470.x. PubMed DOI
Piccinelli P, Samuelsson T. Evolution of the iron-responsive element. RNA. 2007;13:952–966. doi: 10.1261/rna.464807. PubMed DOI PMC
Mastroberardino PG, et al. A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson's disease. Neurobiol. Dis. 2009;34:417–431. doi: 10.1016/j.nbd.2009.02.009. PubMed DOI PMC
Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-Ramos M. alpha-Synuclein expression is modulated at the translational level by iron. NeuroReport. 2012;23:576–580. doi: 10.1097/WNR.0b013e328354a1f0. PubMed DOI
Zecca L, et al. The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson's disease. FEBS Lett. 2002;510:216–220. doi: 10.1016/s0014-5793(01)03269-0. PubMed DOI
Zecca L, et al. Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J. Neurochem. 2001;76:1766–1773. doi: 10.1046/j.1471-4159.2001.00186.x. PubMed DOI
Adlard PA, et al. Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial A beta. Neuron. 2008;59:43–55. doi: 10.1016/j.neuron.2008.06.018. PubMed DOI
Rogers JT, et al. An iron-responsive element type II in the 5 '-untranslated region of the Alzheimer's amyloid precursor protein transcript. J. Biol. Chem. 2002;277:45518–45528. doi: 10.1074/jbc.M207435200. PubMed DOI
Klausner RD, Rouault TA, Harford JB. Regulating the fate of messenger-RNA—the control of cellular iron-metabolism. Cell. 1993;72:19–28. doi: 10.1016/0092-8674(93)90046-s. PubMed DOI
Schwaller B. Cytosolic Ca2+ buffers are inherently Ca2+ signal modulators. Cold Spring Harbor Perspect. Biol. 2020;12:24. doi: 10.1101/cshperspect.a035543. PubMed DOI PMC
Tong BCK, Wu AJ, Li M, Cheung KH. Calcium signaling in Alzheimer's disease and therapies. Biochim. Biophys. Acta Mol. Cell Res. 1865;1745–1760:2018. doi: 10.1016/j.bbamcr.2018.07.018. PubMed DOI
Ku JG, et al. Modelling external magnetic fields of magnetite particles: from micro- to macro-scale. Geosciences. 2019;9:7. doi: 10.3390/geosciences9030133. DOI
Kobayashi K, et al. Significance of high-frequency electrical brain activity. Acta Med. Okayama. 2017;71:191–200. PubMed
Seoane, F. et al. in Proceedings of the 26th Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1–7, Vol. 26 Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2322–2325 (IEEE, 2004). PubMed
Haas JS. A new measure for the strength of electrical synapses. Front. Cell. Neurosci. 2015;9:5. doi: 10.3389/fncel.2015.00378. PubMed DOI PMC
Kletetschka G, Inoue Y, Lindauer J, Hulka Z. Magnetic tunneling with CNT-based metamaterial. Sci. Rep. 2019;9:6. doi: 10.1038/s41598-019-39325-9. PubMed DOI PMC
Nishida K, et al. Differences in quantitative EEG between frontotemporal dementia and Alzheimer's disease as revealed by LORETA. Clin. Neurophysiol. 2011;122:1718–1725. doi: 10.1016/j.clinph.2011.02.011. PubMed DOI
Dlhan L, Kopani M, Baca R. Magnetic properties of iron oxides present in the human brain. Polyhedron. 2019;157:505–510. doi: 10.1016/j.poly.2018.10.032. DOI
Bulk M, et al. Quantitative comparison of different iron forms in the temporal cortex of Alzheimer patients and control subjects. Sci. Rep. 2018;8:6898. doi: 10.1038/s41598-018-25021-7. PubMed DOI PMC
Peters C, Dekkers MJ. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth. 2003;28:659–667. doi: 10.1016/s1474-7065(03)00120-7. DOI
Hautot D, Pankhurst QA, Khan N, Dobson J. Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer's disease brain tissue. Proc. R. Soc. B Biol. Sci. 2003;270:S62–S64. doi: 10.1098/rsbl.2003.0012. PubMed DOI PMC
Langkammer C, Ropele S, Pirpamer L, Fazekas F, Schmidt R. MRI for iron mapping in Alzheimer's disease. Neurodegener. Dis. 2014;13:189–191. doi: 10.1159/000353756. PubMed DOI
Langkammer C, et al. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. Neuroimage. 2015;111:622–630. doi: 10.1016/j.neuroimage.2015.02.041. PubMed DOI
Cogswell PM, et al. Associations of quantitative susceptibility mapping with Alzheimer's disease clinical and imaging markers. Neuroimage. 2021;224:117433. doi: 10.1016/j.neuroimage.2020.117433. PubMed DOI PMC
Fukunaga M, et al. Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc. Natl. Acad. Sci. USA. 2011;107:3834–3839. PubMed PMC
Zhang YY, et al. Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping. Neuroimage. 2018;171:176–189. doi: 10.1016/j.neuroimage.2018.01.008. PubMed DOI PMC
Zhang S, et al. Clinical feasibility of brain quantitative susceptibility mapping. Magn. Reson. Imaging. 2019;60:44–51. doi: 10.1016/j.mri.2019.04.003. PubMed DOI PMC
Kim HG, et al. Quantitative susceptibility mapping to evaluate the early stage of Alzheimer's disease. NeuroImage Clin. 2017;16:429–438. doi: 10.1016/j.nicl.2017.08.019. PubMed DOI PMC
Schubert D, Chevion M. The role of iron in beta amyloid toxicity. Biochem. Biophys. Res. Commun. 1995;216:702–707. PubMed
Leskovjan AC, et al. Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer’s disease. Neuroimage. 2011;55:32–38. PubMed PMC