• This record comes from PubMed

Magnetic domains oscillation in the brain with neurodegenerative disease

. 2021 Jan 12 ; 11 (1) : 714. [epub] 20210112

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 33436793
PubMed Central PMC7804002
DOI 10.1038/s41598-020-80212-5
PII: 10.1038/s41598-020-80212-5
Knihovny.cz E-resources

Geomagnetic fields interfere with the accumulation of iron in the human brain. Magnetic sensing of the human brain provides compelling evidence of new electric mechanisms in human brains and may interfere with the evolution of neurodegenerative diseases. We revealed that the human brain may have a unique susceptibility to conduct electric currents as feedback of magnetic dipole fluctuation in superparamagnetic grains. These grains accumulate and grow with brain aging. The electric feedback creates an electronic noise background that depends on geomagnetic field intensity and may compromise functional stability of the human brain, while induced currents are spontaneously generated near superparamagnetic grains. Grain growth due to an increase of iron mobility resulted in magnetic remanence enhancement during the final years of the studied brains.

See more in PubMed

Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ. Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci. USA. 1992;89:7683–7687. doi: 10.1073/pnas.89.16.7683. PubMed DOI PMC

Maher BA, et al. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA. 2016;113:10797–10801. doi: 10.1073/pnas.1605941113. PubMed DOI PMC

Liu Y, Nguyen M, Robert A, Meunier B. Metal Ions in Alzheimer's disease: a key role or not? Acc. Chem. Res. 2019;52:2026–2035. doi: 10.1021/acs.accounts.9b00248. PubMed DOI

Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage. 2012;59:2625–2635. doi: 10.1016/j.neuroimage.2011.08.077. PubMed DOI PMC

Langkammer C, et al. Susceptibility induced gray-white matter MRI contrast in the human brain. Neuroimage. 2012;59:1413–1419. doi: 10.1016/j.neuroimage.2011.08.045. PubMed DOI PMC

Langkammer C, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage. 2012;62:1593–1599. doi: 10.1016/j.neuroimage.2012.05.049. PubMed DOI PMC

Acosta-Cabronero J, et al. In vivo quantitative susceptibility mapping (QSM) in Alzheimer's disease. PLoS ONE. 2013;8:15. doi: 10.1371/journal.pone.0081093. PubMed DOI PMC

Deh K, et al. Reproducibility of quantitative susceptibility mapping in the brain at two field strengths from two vendors. J. Magn. Reson. Imaging. 2015;42:1592–1600. doi: 10.1002/jmri.24943. PubMed DOI PMC

Hinoda T, et al. Quantitative susceptibility mapping at 3 T and 1.5 T evaluation of consistency and reproducibility. Invest. Radiol. 2015;50:522–530. doi: 10.1097/rli.0000000000000159. PubMed DOI

Dunlop JD, Özdemir Ö. Rock Magnetism: Fundamentals and Frontiers 595. Cambridge: Cambridge University Press; 1997.

Kletetschka G, Wieczorek MA. Fundamental relations of mineral specific magnetic carriers for paleointensity determination. Phys. Earth Planet. Int. 2017;272:44–49. doi: 10.1016/j.pepi.2017.09.008. DOI

Chang CH, Lane HY, Lin CH. Brain stimulation in Alzheimer's disease. Front. Psychiatry. 2018;9:13. doi: 10.3389/fpsyt.2018.00201. PubMed DOI PMC

Barker AT, Jalinous R. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1:1106–1107. PubMed

Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187–199. doi: 10.1016/j.neuron.2007.06.026. PubMed DOI

Tiepolt S, et al. Quantitative susceptibility mapping of amyloid-beta aggregates in Alzheimer's disease with 7T MR. J. Alzheimers Dis. 2018;64:393–404. doi: 10.3233/jad-180118. PubMed DOI

Fernandez T, Martinez-Serrano A, Cusso L, Desco M, Ramos-Gomez M. Functionalization and characterization of magnetic nanoparticles for the detection of ferritin accumulation in Alzheimer's disease. ACS Chem. Neurosci. 2018;9:912–924. doi: 10.1021/acschemneuro.7b00260. PubMed DOI

Altamura S, Muckenthaler MU. Iron toxicity in diseases of aging: Alzheimer's disease, Parkinson's disease and atherosclerosis. J. Alzheimers Dis. 2009;16:879–895. doi: 10.3233/jad-2009-1010. PubMed DOI

Bartzokis G, et al. MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn. Reson. Imaging. 1997;15:29–35. doi: 10.1016/s0730-725x(96)00234-2. PubMed DOI

Acosta-Cabronero J, Betts MJ, Cardenas-Blanco A, Yang S, Nestor PJ. In vivo MRI mapping of brain iron deposition across the adult lifespan. J. Neurosci. 2016;36:364–374. doi: 10.1523/jneurosci.1907-15.2016. PubMed DOI PMC

Prousek J. Fenton chemistry in biology and medicine. Pure Appl. Chem. 2007;79:2325–2338. doi: 10.1351/pac200779122325. DOI

Abeyawardhane DL, Lucas HR. Iron redox chemistry and implications in the Parkinson's disease brain. Oxid. Med. Cell. Longev. 2019;2019:11. doi: 10.1155/2019/4609702. PubMed DOI PMC

Zhao Z. Iron and oxidizing species in oxidative stress and Alzheimer's disease. Aging Med. 2019;2:82–87. doi: 10.1002/agm2.12074. PubMed DOI PMC

Youdim MBH, Benshachar D, Riederer P. The possible role of iron in the etiopathology of Parkinsons-disease. Mov. Disord. 1993;8:1–12. doi: 10.1002/mds.870080102. PubMed DOI

Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 2004;5:863–873. doi: 10.1038/nrn1537. PubMed DOI

Youdim MBH, Stephenson G, Ben Shachar D. In: Redox-Active Metals in Neurological Disorders Vol. 1012 Annals of the New York Academy of Sciences. LeVine SM, Connor JR, Schipper HM, editors. New York: New York Acad Sciences; 2004. pp. 306–325.

Riederer P, et al. Transition-metals, ferritin, glutathione, and ascorbic-acid in Parkinsonian brains. J. Neurochem. 1989;52:515–520. doi: 10.1111/j.1471-4159.1989.tb09150.x. PubMed DOI

Jenner P, Olanow CW. Understanding cell death in Parkinson's disease. Ann. Neurol. 1998;44:S72–S84. doi: 10.1002/ana.410440712. PubMed DOI

Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic. Biol. Med. 2019;133:221–233. doi: 10.1016/j.freeradbiomed.2018.09.033. PubMed DOI

Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid. Med. Cell. Longev. 2019;2019:18. doi: 10.1155/2019/2105607. PubMed DOI PMC

Ayton S, et al. Cerebral quantitative susceptibility mapping predicts amyloid-beta-related cognitive decline. Brain. 2017;140:2112–2119. doi: 10.1093/brain/awx137. PubMed DOI

Dunlop JD, Özdemir Ö. Rock Magnetism: Fundamental and Frontiers 58. Cambridge: Cambridge University Press; 1997.

Duce JA, et al. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Cell. 2010;142:857–867. doi: 10.1016/j.cell.2010.08.014. PubMed DOI PMC

Berg D, et al. Brain iron pathways and their relevance to Parkinson's disease. J. Neurochem. 2001;79:225–236. doi: 10.1046/j.1471-4159.2001.00608.x. PubMed DOI

Lee DW, Andersen JK. Iron elevations in the aging Parkinsonian brain: a consequence of impaired iron homeostasis? J. Neurochem. 2010;112:332–339. doi: 10.1111/j.1471-4159.2009.06470.x. PubMed DOI

Piccinelli P, Samuelsson T. Evolution of the iron-responsive element. RNA. 2007;13:952–966. doi: 10.1261/rna.464807. PubMed DOI PMC

Mastroberardino PG, et al. A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson's disease. Neurobiol. Dis. 2009;34:417–431. doi: 10.1016/j.nbd.2009.02.009. PubMed DOI PMC

Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-Ramos M. alpha-Synuclein expression is modulated at the translational level by iron. NeuroReport. 2012;23:576–580. doi: 10.1097/WNR.0b013e328354a1f0. PubMed DOI

Zecca L, et al. The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson's disease. FEBS Lett. 2002;510:216–220. doi: 10.1016/s0014-5793(01)03269-0. PubMed DOI

Zecca L, et al. Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J. Neurochem. 2001;76:1766–1773. doi: 10.1046/j.1471-4159.2001.00186.x. PubMed DOI

Adlard PA, et al. Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial A beta. Neuron. 2008;59:43–55. doi: 10.1016/j.neuron.2008.06.018. PubMed DOI

Rogers JT, et al. An iron-responsive element type II in the 5 '-untranslated region of the Alzheimer's amyloid precursor protein transcript. J. Biol. Chem. 2002;277:45518–45528. doi: 10.1074/jbc.M207435200. PubMed DOI

Klausner RD, Rouault TA, Harford JB. Regulating the fate of messenger-RNA—the control of cellular iron-metabolism. Cell. 1993;72:19–28. doi: 10.1016/0092-8674(93)90046-s. PubMed DOI

Schwaller B. Cytosolic Ca2+ buffers are inherently Ca2+ signal modulators. Cold Spring Harbor Perspect. Biol. 2020;12:24. doi: 10.1101/cshperspect.a035543. PubMed DOI PMC

Tong BCK, Wu AJ, Li M, Cheung KH. Calcium signaling in Alzheimer's disease and therapies. Biochim. Biophys. Acta Mol. Cell Res. 1865;1745–1760:2018. doi: 10.1016/j.bbamcr.2018.07.018. PubMed DOI

Ku JG, et al. Modelling external magnetic fields of magnetite particles: from micro- to macro-scale. Geosciences. 2019;9:7. doi: 10.3390/geosciences9030133. DOI

Kobayashi K, et al. Significance of high-frequency electrical brain activity. Acta Med. Okayama. 2017;71:191–200. PubMed

Seoane, F. et al. in Proceedings of the 26th Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1–7, Vol. 26 Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2322–2325 (IEEE, 2004). PubMed

Haas JS. A new measure for the strength of electrical synapses. Front. Cell. Neurosci. 2015;9:5. doi: 10.3389/fncel.2015.00378. PubMed DOI PMC

Kletetschka G, Inoue Y, Lindauer J, Hulka Z. Magnetic tunneling with CNT-based metamaterial. Sci. Rep. 2019;9:6. doi: 10.1038/s41598-019-39325-9. PubMed DOI PMC

Nishida K, et al. Differences in quantitative EEG between frontotemporal dementia and Alzheimer's disease as revealed by LORETA. Clin. Neurophysiol. 2011;122:1718–1725. doi: 10.1016/j.clinph.2011.02.011. PubMed DOI

Dlhan L, Kopani M, Baca R. Magnetic properties of iron oxides present in the human brain. Polyhedron. 2019;157:505–510. doi: 10.1016/j.poly.2018.10.032. DOI

Bulk M, et al. Quantitative comparison of different iron forms in the temporal cortex of Alzheimer patients and control subjects. Sci. Rep. 2018;8:6898. doi: 10.1038/s41598-018-25021-7. PubMed DOI PMC

Peters C, Dekkers MJ. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth. 2003;28:659–667. doi: 10.1016/s1474-7065(03)00120-7. DOI

Hautot D, Pankhurst QA, Khan N, Dobson J. Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer's disease brain tissue. Proc. R. Soc. B Biol. Sci. 2003;270:S62–S64. doi: 10.1098/rsbl.2003.0012. PubMed DOI PMC

Langkammer C, Ropele S, Pirpamer L, Fazekas F, Schmidt R. MRI for iron mapping in Alzheimer's disease. Neurodegener. Dis. 2014;13:189–191. doi: 10.1159/000353756. PubMed DOI

Langkammer C, et al. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. Neuroimage. 2015;111:622–630. doi: 10.1016/j.neuroimage.2015.02.041. PubMed DOI

Cogswell PM, et al. Associations of quantitative susceptibility mapping with Alzheimer's disease clinical and imaging markers. Neuroimage. 2021;224:117433. doi: 10.1016/j.neuroimage.2020.117433. PubMed DOI PMC

Fukunaga M, et al. Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc. Natl. Acad. Sci. USA. 2011;107:3834–3839. PubMed PMC

Zhang YY, et al. Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping. Neuroimage. 2018;171:176–189. doi: 10.1016/j.neuroimage.2018.01.008. PubMed DOI PMC

Zhang S, et al. Clinical feasibility of brain quantitative susceptibility mapping. Magn. Reson. Imaging. 2019;60:44–51. doi: 10.1016/j.mri.2019.04.003. PubMed DOI PMC

Kim HG, et al. Quantitative susceptibility mapping to evaluate the early stage of Alzheimer's disease. NeuroImage Clin. 2017;16:429–438. doi: 10.1016/j.nicl.2017.08.019. PubMed DOI PMC

Schubert D, Chevion M. The role of iron in beta amyloid toxicity. Biochem. Biophys. Res. Commun. 1995;216:702–707. PubMed

Leskovjan AC, et al. Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer’s disease. Neuroimage. 2011;55:32–38. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...