Analytical methods in strigolactone research
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32514284
PubMed Central
PMC7257151
DOI
10.1186/s13007-020-00616-2
PII: 616
Knihovny.cz E-zdroje
- Klíčová slova
- DESI-MS, Determination, GC–MS, HR-DART-MS, Isolation, LC–MS/MS, Strigolactones,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Strigolactones (SLs) are important plant hormones that are produced via the carotenoid biosynthetic pathway and occur at extremely low concentrations in various plant species. They regulate root development, play important roles in symbioses between higher plants and mycorrhizal fungi, and stimulate germination of plant-parasitic Orobanche and Striga species. Chemical analysis is central to research on the biochemistry of SLs and their roles in developmental biology and plant physiology. Here we summarize key issues relating to the identification and quantification of SLs isolated from plant tissues and exudates. The advantages and drawbacks of different protocols used for strigolactone analysis are discussed, and guidelines for selecting a procedure that will minimize losses during isolation and purification prior to final analysis are proposed. Hyphenated techniques suitable for SL analysis such as GC-MS and LC-MS/MS are also discussed, and newer ambient techniques such as HR-DART-MS and DESI-MS are highlighted as tools with considerable potential in SL research. A key advantage of these methods is that they require only simply sample preparation.
Central European Institute of Technology Mendel University in Brno Zemědělská 1 613 00 Brno Czechia
Department of Chemistry and Biochemistry Mendel University in Brno Zemědělská 1 613 00 Brno Czechia
Zobrazit více v PubMed
Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 2005;139:920–934. PubMed PMC
Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science. 1966;154:1189–1190. PubMed
Xie X, Yoneyama K, Yoneyama K. The strigolactone story. Ann Rev Phytopatol. 2010;48:93–117. PubMed
Nomura S, Nakashima H, Mizutani M, Takikawa H, Sugimoto Y. Structural requirements of strigolactones for germination induction and inhibition of Striga gesnerioides seeds. Plant Cell Rep. 2013;32:829–838. PubMed
Proust H, Hoffmann B, Xie XN, Yoneyama K, Schaefer DG, Yoneyama K, Nogue F, Rameau C. Strigolactones regulate protonema branching and act as a quorum sensing like signal in the moss Physcomitrella patens. Development. 2011;138:1531–1539. PubMed
Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT. Germination stimulants. II. The structure of strigol-a potent seed germination stimulant for witchweed (Striga lutea Lour.) J Amer Chem Soc. 1972;94:6198–6199.
Al-Babili S, Bouwmeester HJ. Strigolactones, a novel carotenoid-derived plant hormone. Ann Rev Plant Biol. 2015;66:161–166. PubMed
Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005;435:824–827. PubMed
Zhang Y, van Dijk AD, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith SM, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester HJ. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol. 2014;10:1028–1033. PubMed
Joel DM. The long-term approach to parasitic weeds control: manipulation of specific developmental mechanisms of the parasite. Crop Prot. 2000;19:753–758.
Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol. 2011;155:974–987. PubMed PMC
Xie X. Structural diversity of strigolactones and their distribution in the plant kingdom. Pest Sci. 2016;41:175–180. PubMed PMC
Halouzka R, Tarkowski P, Zwanenburg B, Ćavar Zeljković S. Stability of strigolactone analog GR24 toward nucleophiles. Pest Manag Sci. 2018;74:896–904. PubMed
Zwanenburg B, Pospíšil T. Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant. 2013;6:38–62. PubMed
Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K. Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol. 2008;179:484–494. PubMed
Ueno K, Furumoto T, Umeda S, Mizutani M, Takikawa H, Batchvarova R, Sugimoto Y. Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry. 2014;108:122–128. PubMed
Xie X, Mori N, Yoneyama K, Nomura T, Uchida K, Yoneyama K, Akiyama K. Lotuslactone, a non-canonical strigolactone from Lotus japonicus. Phytochemistry. 2019;157:200–205. PubMed
Sato D, Awad AA, Chae SH, Yokota T, Sugimoto Y, Takeuchi Y, Yoneyama K. Analysis of strigolactones, germination stimulants for Striga and Orobanche, by high-performance liquid chromatography/tandem mass spectrometry. J Agric Food Chem. 2003;51:1162–1168. PubMed
Podlešáková K, Tarkowská D, Pěnčík A, Oklešťková J, Turečková V, Floková K, Tarkowski P. Nové trendy v analýze fytohormonů. Chem Listy. 2012;106:373–379.
Tarkowká D, Novák O, Floková K, Turečková V, Grúz J, Rolčík J, Strnad M. Quo vadis plant hormone analysis? Planta. 2014;240:55–76. PubMed
Novák O, Tarkowski P, Tarkowská D, Doležal K, Lenobel R, Strnad M. Quantitative analysis of cytokinins in plants by liquid chromatography-single-quadrupole mass spectrometry. Anal Chim Acta. 2003;480:207–218.
Tarkowski P, Ge L, Yong JWH, Tan SN. Analytical methods for cytokinins. Trend Anal Chem. 2009;28:323–335.
Delaux PM, Xie XN, Timme RE, Puech-Pages V, Dunand C, Lecompte E, Delwiche CF, Yoneyama K, Becard G, Sejalon-Delmas N. Origin of strigolactones in the green lineage. New Phytol. 2012;195:857–871. PubMed
Cardoso C, Ruyter-Spira C, Bouwmeester HJ. Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp. Plant Sci. 2011;180:414–420. PubMed
Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K, Hayashi H, Yokota T, Nomura T, Yoneyama K. Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol Plant. 2013;6:153–163. PubMed PMC
Šimura J, Antoniadi I, Široká J, Tarkowska D, Strnad M, Ljung K, Novák O. Plant Hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Phys. 2018;177:476–489. PubMed PMC
Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y. Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry. 1998;49:1967–1973.
Charnikhova TV, Gaus K, Lumbroso A, Sanders M, Vincken JP, De Mesmaeker A, Ruyter-Spira CP, Screpanti C, Bouwmeester HJ. Zealactones. Novel natural strigolactones from maize. Phytochemistry. 2017;137:123–131. PubMed
Rial C, Varela RM, Molinillo JMG, López-Ráez JA, Macías FA. A new UPLC-MS/MS method for the direct determination of strigolactones in root exudates and extracts. Phytochem Anal. 2018;30:110–116. PubMed
Awad AA, Sato D, Kusumoto D, Kamioka H, Takeuchi Y, Yoneyama K. Characterization of strigolactones for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regul. 2006;48:221–227.
Kisugi T, Xie XN, Kim HI, Yoneyama K, Sado A, Akiyama K, Hayashi H, Uchida K, Yokota T, Nomura T, Yoneyama K. Strigone, isolation and identification as a natural strigolactone from Houttuynia cordata. Phytochemistry. 2013;87:60–64. PubMed
Yoneyama K, Arakawa R, Ishimoto K, Kim HI, Kisugi T, Xie X, Nomura T, Kanampiu F, Yokota T, Ezawa T, Yoneyama K. Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol. 2015;206:983–989. PubMed
López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 2008;178:863–874. PubMed
Yoneyama K, Xie X, Nomura T, Yoneyama K. Extraction and measurement of strigolactones in sorghum roots. Bio-protocol. 2016;2016(6):e1763.
Boutet-Mercey S, Perreau F, Roux A, Clavé G, Pillot JP, Schmitz-Afonso I, Touboul D, Mouille G, Rameau C, Boyer FD. Validated method for strigolactone quantification by ultra high-performance liquid chromatography—electrospray ionisation tandem mass spectrometry using novel deuterium labelled standards. Phytochem Anal. 2018;29:59–68. PubMed
Walker TS, Bais HP, Grotewold E, Vivanco JM. Root exudation and rhizosphere biology. Plant Physiol. 2003;132:44–51. PubMed PMC
Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J. Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J Plant Nutr Soil Sci. 1999;162:373–383.
Bagger CL, Sørensen H, Sørensen JC. High-quality oils, proteins, and bioactive products for food and non-food purposes based on biorefining of cruciferous oilseed crops. In: Gueguen J, Popineau Y, editors. Plant proteins from European crops. Berlin: Springer; 1998. pp. 272–278.
Cai Z, Kastell A, Knorr D, Smetanska I. Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root culture. Plant Cell Rep. 2012;31:461–477. PubMed
Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta. 2007;225:1031–1038. PubMed
Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y. Yoneyama K Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta. 2007;227:125–132. PubMed
Jamil M, Charnikhova T, Cardoso C, Jamil T, Ueno K, Verstappen F, Asami T, Bouwmeester HJ. Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res. 2011;51:373–385.
Yoneyama K, Xie X, Kisugi T, Nomura T, Yoneyama K. Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum. Planta. 2013;238:885–894. PubMed
Yoneyama K, Xie X, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K. Characterization of strigolactones exuded by Asteraceae plants. Plant Growth Regul. 2011;65:495–504.
Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB. Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant. 2013;6:76–87. PubMed
Ćavar S, Zwanenburg B, Tarkowski P. Strigolactones: occurrence, structure and biological activity in the rhizosphere. Phytochem Rev. 2015;14:691–711.
Erickson J, Schott D, Reverri T, Muhsin W, Ruttledge T. GC-MS Analysis of hydrophobic root exudates of Sorghum and implications on the parasitic plant Striga asiatica. J Agric Food Chem. 2001;49:5537–5542. PubMed
Xie X, Kisugi T, Yoneyama K, Nomura T, Akiyama K, Uchida K, Yokota T, McErlean CSP, Yoneyama K. Methyl zealactonoate, a novel germination stimulant for root parasitic weeds produced by maize. J Pestic Sci. 2017;42:58–61. PubMed PMC
Xie X, Yoneyama K, Kusumoto D, Yamada Y, Yokota T, Takeuchi Y, Yoneyama K. Isolation and identification of alectrol as (+)-orobanchyl acetate, a novel germination stimulant for root parasitic plants. Phytochemistry. 2008;69:427–431. PubMed
Siame BA, Weerasuriya Y, Wood K, Ejeta G, Butler LG. Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. J Agri Food Chem. 1993;41:1486–1491.
Jamil M, Kanampiu FK, Karaya H, Charnikhova T, Bouwmeester HJ. Striga hermonthica parasitism in maize in response to N and P fertilisers. Field Crops Res. 2012;134:1–10.
Iseki M, Shida K, Kuwabara K, Wakabayashi T, Mizutani M, Takikawa H, Sugimoto Y. Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants. J Exp Bot. 2018;69:2305–2318. PubMed PMC
López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TDH, Thompson AJ, Ruyter-Spira C, Bouwmeester H. Does abscisic acid affect strigolactone biosynthesis? New Phytol. 2010;187:343–354. PubMed
Ayare P, Khanvilkar V, Chalak N. Flash Chromatography: area & Applications. Pharma Tutor. 2014;2:89–103.
Schulte M, Dingenen J. Monolithic silica sorbents for separation of diastereomers by means of simulated moving bed chromatography. J Chomatogr A. 2001;923:17–25. PubMed
Lindon JC, Bailey NJC, Nicholson JK, Wilson ID. Biomedical applications of directly-coupled chromatography-nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) In: Wilson D, editor. Handbook of analytical separations. Amsterdam: Elsevier; 2003. pp. 293–329.
Emwas AMS, Salek RM, Griffi JL, Merzaban J. NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics. 2013;9:1048–1072.
Emwas AHMS. The strengths and weaknesses of nmr spectroscopy and mass spectrometry with particular focus on metabolomics research. Method Mol Biol. 2015;1277:161–193. PubMed
Sumner LW, Mendes P, Dixon RA. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry. 2003;62:817–836. PubMed
Bedair M. Sumner LW Current and emerging mass-spectrometry technologies for metabolomics. Trac-Trend Anal Chem. 2008;27:238–250.
Verpoorte R, Choi YH, Kim HK. NMR-based metabolomics at work in phytochemistry. Phytochem Rev. 2007;6:3–14.
Venter A, Nefliu M, Cooks RG. Ambient desorption mass spectrometry. Trac Trend Anal Chem. 2008;27:284–290.
Weston DJ. Ambient ionization mass spectrometry: current understanding of mechanistic theory; analytical performance and application areas. Analyst. 2010;135:661–668. PubMed
Gross JH. Direct analysis in real time-a critical review on DART-MS. Anal Bioanal Chem. 2014;406:63–80. PubMed
Cha S, Zhang H, Ilarsla HI, Wurtele ES, Brachova L, Nikolau BJ, Yeung ES. Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry. Plant J. 2008;55:348–360. PubMed
Nemes P, Barton AA, Vertes A. Three-dimensional imaging of metabolites in tissues under ambient conditions by laser ablation electrospray ionization mass spectrometry. Anal Chem. 2009;81:6668–6675. PubMed
Navare AT, Mayoral JG, Nouzova M, Noriega FG, Fernández FM. Rapid direct analysis in real time (DART) mass spectrometric detection of juvenile hormone III and its terpene precursors. Anal Bioanal Chem. 2010;398:3005–3013. PubMed PMC
Dong Y, Lin B, Malitsky B, Rogachev I, Aharoni A, Kaftan F, Svatoš A, Franceschi P. Sample preparation for mass spectrometry imaging of plant tissues: a review. Front Plant Sci. 2016;7(60):1–16. PubMed PMC
Thunig J, Hansen SH, Janfelt C. Analysis of secondary plant metabolites by indirect desorption electrospray ionization imaging mass spectrometry. Anal Chem. 2011;83:3256–3259. PubMed
Venter A, Sojka PE, Cooks RG. Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry. Anal Chem. 2006;78:8549–8555. PubMed
Ifa D, Srimany A, Eberlin LS, Naik HR, Bhat V, Cooks RG, Thalappil P. Tissue imprint imaging by desorption electrospray ionization mass spectrometry. Anal Method. 2011;3:1910–1912.
Takats Z, Wiseman JM, Cooks RG. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J Mass Spectrom. 2005;40:1261–1275. PubMed
Ifa DR, Manicke NE, Rusine AL, Cooks RG. Quantitative analysis of small molecules by desorption electrospray ionization mass spectrometry from polytetrafluoroethylene surfaces. Rapid Commun Mass Spectrom. 2008;22:503–510. PubMed
Rejšek J, Vrkoslav V, Pokorný V, Přibyl V, Cvačka J. Ion source with laser triangulation for ambient mass spectrometry of nonplanar samples. Anal Chem. 2017;89:11452–11459. PubMed
Nemes P, Vertes A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem. 2007;79:8098–8106. PubMed
Shrestha B, Patt JM, Vertes A. In situ cell-by-cell imaging and analysis of small cell populations by mass spectrometry. Anal Chem. 2011;83:2947–2955. PubMed
Shroff R, Schramm K, Jeschke V, Nemes P, Vertes A, Gershenzon J, Svatoš A. Quantification of plant surface metabolites by matrix-assisted laser desorption-ionization mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves. Plant J. 2015;81:961–972. PubMed
Bartels B, Svatoš A. Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI. Front Plant Sci. 2015;6:471. PubMed PMC
Wang L, Zou Y, Kaw HY, Wang G, Sun H, Cai L, Li C, Meng L-Y, Li D. Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. Plant Methods. 2020;16:54. PubMed PMC
Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77:2297–2302. PubMed
Hiraoka K, Mori K, Asakawa D. Fundamental aspects of electrospray droplet impact/SIMS. J Mass Spectrom. 2006;41:894–902. PubMed
Xie X, Yoneyama K, Kurita J-Y, Harada Y, Yamada Y, Takeuchi Y. 7-Oxoorobanchyl acetate and 7-oxoorobanchol as germination stimulants for root parasitic plants from flax (Linum usitatissimum) Biosci Biotechnol Biochem. 2009;73:1367–1370. PubMed
Sato D, Awad AA, Takeuchi Y, Yoneyama K. Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Biosci Biotechnol Biochem. 2005;69:98–102. PubMed
Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K. 2′-Epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem. 2007;55:8067–8072. PubMed
Yoneyama K, Awad AA, Xie X, Yoneyama K, Takeuchi Y. Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol. 2010;51:1095–1103. PubMed PMC
Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Nat Acad Sci USA. 2014;111:18084–18089. PubMed PMC
López-Ráez JA, Charnikova T, Mulder P, Kohlen W, Bino R, Levin I, Bouwmeester H. Susceptibility of the tomato mutant high pigment-2dg (hp-2dg) to Orobanche spp. infection. J Agric Food Chem. 2008;56:6326–6332. PubMed
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature. 2008;455:195–200. PubMed
Kim HI, Kisugi T, Khetkam P, Xie X, Yoneyama K, Uchida K, Yokota T, Nomura T, McErlean CSP, Yoneyama K. Avenaol, a germination stimulant for root parasitic plants from Avena strigosa. Phytochemistry. 2014;103:85–88. PubMed
Can plant hormonomics be built on simple analysis? A review